
8090978-1-6654-2647-3/21/$31.00 ©2021 IEEE

Traffic Signal Control Using Offline
Reinforcement Learning

Xingyuan Dai1,2, Chen Zhao1,2, Xiaoshuang Li1,2, Xiao Wang2, Fei-Yue Wang2

1School of Artificial Intelligence, University of Chinese Academy of Sciences
2The State Key Laboratory for Management and Control of Complex Systems,

Institute of Automation, Chinese Academy of Sciences
{daixingyuan2015, zhaochen2020, lixiaoshuang2017, x.wang, feiyue.wang}@ia.ac.cn

Abstract—The problem of traffic signal control is essential but
remains unsolved. Some researchers use online reinforcement
learning, including the off-policy one, to derive an optimal control
policy through interaction between agents and environments in
simulation. However, it is difficult to deploy the policy in real
transportation systems due to the gap between simulated and real
traffic data. In this paper, we consider an offline reinforcement
learning method to tackle the problem. First, we construct a
realistic traffic environment and obtain offline data based on
a classic actuated traffic signal controller. Then, we use an
offline reinforcement learning algorithm, namely conservative Q-
learning, to learn an efficient control policy via offline datasets.
We conduct experiments on a typical road intersection and com-
pare the conservative Q-learning policy with the actuated policy
and two data-driven policies based on off-policy reinforcement
learning and imitation learning. Empirical results indicate that
in the offline-learning setting the conservative Q-learning policy
performs significantly better than other baselines, including the
actuated policy, but the other two data-driven policies perform
poorly in test scenarios.

Index Terms—Traffic signal control, offline reinforcement
learning, off-policy reinforcement learning.

I. INTRODUCTION

Urban traffic control plays a vital role in maintaining

efficiency and safety for intelligent transportation systems [1].

As an essential part of urban traffic control, traffic signal con-

trollers direct traffic flows at road intersections by determining

traffic signals’ phase and duration time. Traffic signal control

aims to derive a control policy for traffic signals that minimizes

the delay time for all vehicles crossing the intersection. To

achieve this goal, researchers have proposed various traffic

signal control methods. Initially, the traffic signal control

method uses a kind of fixed-time policy. In such a policy,

the fixed phase sequence and corresponding duration time of

the traffic signal are manually predetermined by experienced

experts according to their observation for historical traffic

flows around the intersection. The policy can relieve the

traffic jam, but the predetermined fixed-time controllers have

difficulties adapting to variant traffic patterns. The drawbacks

provoke researchers to turn to actuated traffic signal controllers

to handle different traffic demands adaptively.

This work was supported in part by the Key-Area Research and Develop-
ment Program of Guangdong Province under Grant 2020B090921003, in part
by the National Natural Science Foundation of China under Grant U1811463,
and in part by the Intel Collaborative Research Institute for Intelligent and
Automated Connected Vehicles (ICRI-IACV).

The actuated controller can adjust its timing plans to

adapt to the change of traffic flow, which is detected by

sensors placed in the road network [2]. A typical actuated

controller implements a kind of greedy policy, keeping the

current phase until detecting a sufficient gap between two

continuous vehicles and then switching to the next phase. Due

to the ability to adapt to different traffic patterns, actuated

controllers outperform fixed-time controllers to reduce traffic

delay in most scenarios. Currently, actuated controllers have

been incorporated in some advanced commercial traffic signal

control systems like SCATS [3] and SCOOT [4], which

are successfully deployed in hundreds of cities worldwide.

Although actuated controllers have been successfully applied

in practice, they are challenging to guarantee an optimal policy

for regional traffic control since a primary actuated controller

focuses on an isolated intersection without considering the

impact of upstream and downstream intersections [5].

To obtain an optimal global policy for regional traffic

control, Fei-Yue Wang proposed the concept of parallel trans-

portation systems in [1]. In parallel transportation systems,

the artificial systems constructed from the real systems are

used for data-driven policy optimization via a global target.

Most importantly, the policy learned from artificial systems

should guide the operation of the real system. Along with this

idea, researchers have proposed various data-driven methods

for traffic signal control. However, most of the works are

based on simulation rather than artificial systems since these

methods do not consider the connection between virtual and

real systems. Nonetheless, we will indiscriminately refer to

the virtual systems used for interaction to optimize the control

strategies as simulated systems for ease of introduction.

For simulation-based data-driven traffic signal control, the

reinforcement learning (RL) based method is a representation.

Generally, RL approaches first construct a simulation system

corresponding to the real one and then learn the control

policy from scratch by interacting with the simulated traffic

environment to maximize the notion of cumulative reward

[6]. To deploy the RL policy in real scenarios, researchers

have delved into the studies that bridge the gap between real

and simulated transportation systems. An intuitive approach

is to build a simulation system that is as real as possible

while covering most traffic patterns in real systems. The

simulation system can be used to train a robust policy that

20
21

 C
hi

na
 A

ut
om

at
io

n
C

on
gr

es
s (

C
A

C
) |

 9
78

-1
-6

65
4-

26
47

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

A
C

53
00

3.
20

21
.9

72
85

51

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 11,2022 at 00:59:37 UTC from IEEE Xplore. Restrictions apply.

8091

is then transferred to the real traffic signal controller [7], [8].

Nevertheless, we find it hard to believe the policy trained from

the simulation is qualified for real systems. The deployment

process still needs many human resources to monitor the

operation conditions carefully and deal with emergencies.

Another widely used data-driven approach, imitation learn-

ing, can directly learn a control policy from real-world traffic

control datasets [9]. However, imitation learning methods,

which model the mapping from traffic states to control actions,

opt to copy the policy they learned and may overfit training

datasets. The overfitting is harmful to the controller’s robust-

ness, leading to poor decision-making on unseen scenarios.

This paper tries to bridge the gap between optimization

and deployment for traffic signal control policies. For this,

we build a realistic traffic environment with classic actuated

signal controllers by default as the real scenario, which can be

used for data collection and control policy deployment but not

for interaction. We first want to optimize the control policy via

offline data collected from the realistic environment rather than

interaction with simulated environments. The optimization

scheme will alleviate the domain difference between training

and testing scenarios for traffic signal control and enable

the learned control policy to deploy in real transportation

systems reassuringly. Furthermore, we hope the optimized

control policy can match or even exceed the real controller’s

policy it learns on generalized scenarios.

To achieve the two goals above, we consider an offline

RL model to optimize traffic signal control policies. First, we

build an offline dataset from realistic traffic environments with

actuated signal controllers; all elements in the dataset can be

collected from real transportation systems. Then, we use an

efficient offline RL model, namely conservative Q-learning

(CQL) [10], to optimize the control policy based on the offline

dataset. The main contributions of this paper are as follows:

1) We rethink a critical problem in data-driven traffic signal

control about trade-offs between the optimality in policy

optimization and reliability in policy deployment.

2) We explore an effective workflow to learn a trusty offline

RL-based traffic signal control policy for deployment

without interaction with the environment.

3) The offline RL-based traffic signal control policy can

outperform the rule-based behavior policy and two typ-

ical data-driven strategies, i.e., imitation learning and

off-policy RL, in the offline learning setting.

To explain our findings further, we organize the rest of

the paper as follows. Section II introduces the problem

formulation of traffic signal control. Section III introduces

the implementation details for offline RL-based traffic signal

control. Section IV compares the offline RL controller with

four baselines. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we will formulate the traffic signal control

problem as a Markov decision process (MDP), which will be

solved by the offline RL method introduced in Section III.

(a)

Phase 1 Phase 2

Phase 4 Phase 3

(b)

Fig. 1: The studied realistic traffic environment, which can be

used for data collection and control policy deployment but not

for interaction like the simulated environment. (a) A typical

signalized intersection with an actuated signal controller by

default. (b) The signal phase sequence.

The formulation of MDP in this paper is based on a

constructed realistic traffic environment with a single inter-

section as shown in Fig. 1, and the following analysis can be

easily generalized to other scenarios. Note that the realistic

environment cannot be used to conduct online learning like

the simulated environment; we can only collect offline data

from realistic environments with the default actuated policy

and deploy the offline-learning policy for evaluation. Although

environment settings discussed in this paper are different from

that in prevalent RL-based traffic signal control, the control

problem can still be formulated as a standard MDP.

The MDP is a formulation of sequential decision-making,

where actions taken by the agent at each time step will affect

both immediate and subsequent rewards [11]. A typical MDP

contains five elements 〈S,A,P,R, γ〉 where S denotes the

set of states, A denotes the set of actions, P : S × A �→ S
denotes the transition probability from any state s ∈ S to any

state s′ ∈ S given action a ∈ A, R : S×A �→ R is the reward

function determining immediate rewards received by the agent

for a transition from (s, a) to s′, and γ is the discount factor.

At each time step t, the traffic signal controller at the

intersection executes an action at that determines the timing

plan for the traffic signal according to the traffic state st to

ensure that vehicles move as speedily, smoothly, and safely

as possible. The traffic environment will transition to the next

state st+1 and return a reward rt as evaluation of the action

at. In this paper, we define Δt as the control period for the

RL agent so that the environment runs for Δt after each MDP

time step. Then, we will detail settings of states, actions, and

rewards for traffic signal control and formulate the problem.

State: The state st ∈ S represents the accessible informa-

tion from the environment by the RL agent at time t. The data

are generally collected by traffic sensors distributed in the road

network. To make our experimental settings more realistic, we

only consider the traffic data accessible in real traffic sensors

and define the state at time t as

st =
{{qt,l, vt,l}l∈L , pt, dt

}
(1)

where L denotes the set of incoming lanes of the intersection,

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 11,2022 at 00:59:37 UTC from IEEE Xplore. Restrictions apply.

8092

qt,l and vt,l denote the queue length and the total number

of approaching vehicles along each incoming lane l of the

intersection, pt is the one-hot encoding for the current phase,

and dt is its spent duration.

Action: The action at ∈ A is taken by the RL agent at

time t according to the state and its policy. Considering the

practicability, we choose the phase switch as the controlled

object. Specifically, a feasible and complete phase sequence

for the intersection is predefined as shown in Fig. 1b, and the

agent selects keeping the current phase or switching to the

next phase for a duration of Δt at each time step. Note that

there is ty (ty < Δt) yellow time when switching the phase

to guarantee traffic safety in the intersection.

Reward: The reward rt is the feedback from the en-

vironment by the reward function r(st, at), representing a

performance indicator to measure the action taken by the

agent. In this paper, we use pressure [12] of the intersection

as reward indicators. The motivation for such a choice is that

it is demonstrated that minimizing pressure is equivalent to

minimizing average travel time, which is the main optimizing

goal in traffic signal control but is hard to obtain in reality

and optimize directly [13]. The pressure of the intersection is

defined as the value of the total number of vehicles entering

lanes minus the total number of leaving vehicles and can be

denoted as

Pt =
∑
l∈L

vt,l −
∑
o∈O

vt,o, (2)

where L and O denote the set of incoming lanes and outgoing

lanes of the intersection and vt,l and vt,o represent vehicle

numbers in the incoming lane l and outgoing lane o at time

step t. As the environment responds to the action at at time

t+ 1, accompanied by the pressure evaluation, we define the

reward as

rt = −Pt+1. (3)

Based on the definition above, we can formulate traffic

signal control as the following MDP problem.

Problem 1: Given a single-intersection traffic environment,

we search for a signal control policy π = {π : S �→ A}
for the intersection agent to maximize the expected value of

cumulative reward

G := E

⎡⎣∑
t≥0

rt

∣∣∣∣∣∣at ∼ π (· | st)
⎤⎦ . (4)

III. METHODOLOGY

A. Offline RL-based Traffic Signal Control

As illustrated in Fig. 2a, the workflow of offline RL-based

traffic signal control contains two successive phases: offline

traffic data collection and control policy optimization. In the

data collection phase, we collect road information and the

signal control behavior based on the policy πβ within a period

from the real traffic environment, and structure them as the

transition (s, a, r, s′) to build offline datasets. In the offline

training phase, the offline data are fed to a buffer, which

buffer

learn

Phase 2: TrainingData collected with real
traffic signal controllers

Real traffic environment Real traffic environment

deploy

Phase 1: Data collection

sensor

(a) Offline RL-based traffic signal control

Real traffic environment

Simulated environment

produce

buffer

update

Simulation-based update

Real traffic environment

deploy

refine

(b) Online RL-based traffic signal control

Fig. 2: The general workflow of offline RL-based (a) and

online RL-based (b) traffic signal control. In offline RL-based

traffic signal control (a), the control policy is learned by data

that can be directly collected from the real traffic environment

with real signal controllers like the actuated one. In online

RL-based traffic signal control (b), the control policy should

be learned in a simulated environment and deal with gaps

between the real and simulated scenarios.

samples data to optimize the control policy π. The policy π is

promising for deployment in the real traffic environment since

it is learned from real-world data.

The procedure for offline RL-based traffic signal control

is different from online RL-based, which is illustrated in

Fig. 2b. For online RL-based traffic signal control, we need

first to build a simulated traffic environment corresponding

to the real one and then enable the agent to optimize the

control policy by interaction with the simulated environment.

Finally, we should refine the learned policy to adapt to the

real traffic environment before deployment. The modeling

error introduced by each procedure can be mitigated by high-

level learning frameworks like parallel learning [14]. On the

contrary, offline RL-based traffic signal control does not need

to rely on simulated environments. So it will reduce envi-

ronmental modeling procedures and mainly focus on learning

methods for better generalizability.

To achieve better generalizability, let us elaborate the work-

flow of offline RL-based traffic signal control for the studied

traffic scenario. As shown in Fig. 2a, in the data collection

phase, we first gather the raw data containing lane-level queue

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 11,2022 at 00:59:37 UTC from IEEE Xplore. Restrictions apply.

8093

length and approaching vehicles from road sensors, and the

signal phase index as well as its spent duration time from the

signal controller. These elements collected at time step t are

formulated as the state st. Then, the signal control behavior

at time step t describing whether the signal controllers keep

the current phase or switch to the next phase is recorded as

the action at. Apart from states and actions, we need to con-

struct rewards as critical components for offline reinforcement

learning. The reward function is defined by traffic pressure in

the intersection, as described in Section II. So we can easily

calculate the reward rt using the collected data through Eqs.

(2) and (3). After constructing the offline datasets, we can use

observed transitions (st, at, rt, st+1) sampled from the dataset

to optimize the signal control policy. In the training phase, we

use an efficient offline RL method called CQL, in which a

conservative Q-function is learned to give rise to the policy

π for traffic signal control. The detailed explanation of CQL

will be presented in Subsection III-C.
The motivation for applying CQL to real traffic signal

control is that the method has overwhelming advantages

compared with two representative data-driven optimization

methods available for offline datasets, i.e., imitation learning

and off-policy RL methods. First, CQL methods enable the

agent to learn a better policy than the behavior policy by taking

advantage of dynamic programming, which could infer poten-

tially optimal behavior from suboptimal parts of trajectories in

datasets [10]. Contrarily, general imitation learning methods

like behavioral cloning only learn the behavior policy from

the datasets and may not generalize well to unseen scenarios.

Second, CQL performs conservative estimation for Q-function

to deal with the distributional shift between the behavior policy

that collected data and the learned policy [10]. However, the

off-policy RL method like Q-learning designed for online

learning is challenging to handle, leading to a poor control

policy for generalizability.
By performing CQL on a previously collected real traffic

dataset, we could learn an effective and well-generalized pol-

icy for real traffic signal control. The property of trustworthy

policy learning for CQL derives from its rigorous theoretical

derivation for safe policy improvement. Before presenting the

formulation and details of CQL, we will first introduce Q-

learning, which is the fundamental of CQL.

B. Q-learning
As a fundamental RL method, Q-learning aims to learn

a policy that maximizes the long-term return of MDP by

approximating the optimal action-value function Q∗. For an

infinite MDP, the action-value function, also known as Q-

function for a policy, is defined as the expected return starting

from the current state st with action at under the policy π:

Qπ(st, at) = Eπ

[∞∑
k=0

γkrt+k

]
(5)

where γ is the discount parameter. By using the Bellman

equation [11], we can decompose the Q-function as

Qπ(st, at) = Eπ [rt + γQπ(st+1, at+1)] . (6)

The Q-learning theory [11] guarantees that the Q-function will

converge to the optimal action-value function Q∗ by iterative

transition data collection and update

Q (st, at) ←Q (st, at)

+ β
[
rt + γmax

a′
Q (st+1, a

′)−Q (st, at)
] (7)

where β is the learning rate.
Empirically, to stabilize the training process, we often use a

separate target Q-function Q̄, which is periodically updated to

the learned Q-function. At each iteration, we collect an online

dataset Do and train the Q-function by minimizing temporal

difference (TD) error

min
Q

Es,a,s′∼Do

[(
r(s, a) + γmax

a′
Q̄(s′, a′)−Q(s, a)

)2]
.

(8)

Note that Q-learning is designed for online learning in

which data are collected through the interaction between

agents and environments. This enables the learned Q-function

to accurately estimate action values since it is trained on

actions sampled from its relative behavior policy. However, in

offline learning, datasets that are collected under the predefined

behavior policy may be irrelevant to the learned policy. This

will lead to the problem of action distribution shift [10],

[15] during training and make the Q-function erroneously

give high action-values for unseen actions outside the dataset.

The problem is serious for offline RL-based traffic signal

control since behavior policies like actuated ones for real

signal controllers are rule-based, which are different from data-

driven policies. To better tackle the problem of overestimation

in Q-learning, we consider conservative Q-learning for traffic

signal control.

C. Conservative Q-learning
CQL adds regularizers for the value function and the learned

policy on top of off-policy RL algorithms like standard Q-

learning. So we can leverage some properties of Q-learning to

formulate the optimization function of CQL.
Suppose we have a previously collected dataset D contain-

ing transitions (s, a, r, s′) obtained by the behavior policy πβ ,

which is the actuated policy in this paper. We want to learn an

effective policy π from the offline dataset without intersection.

To optimize the policy, we need to estimate its value Vπ(s),
which indicates the expected return starting from the current

state s alongside the policy π. To prevent the overestimation

of the policy value Vπ(s), CQL proposes a lower-bound Q-

function Qπ(s) by which we can obtain the lower-bound value

Vπ(s) = Eπ(a|s) [Qπ(s, a)]. Moreover, the Q-function can be

used to obtain the policy π, optimized to approximate the one

that maximizes the Q-function.
The general form of optimization function for CQL is

min
Q

max
π

α [Es∼D,a∼π[Q(s, a)]− Es,a∼D[Q(s, a)] +R(π)]

+
1

2
Es,a,s′∼D

[(
r(s, a) + γmax

a′
Q̄(s′, a′)−Q(s, a)

)2]
,

(9)

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 11,2022 at 00:59:37 UTC from IEEE Xplore. Restrictions apply.

8094

where the first and second items are CQL regularizers for the

Q-function; the third item is the regularizer for the policy; and

the remaining components comprise standard TD error, which

is the optimization objective for Q-learning as shown in (8).

In (9), the first item, the penalty of the Q-function under the

distribution π(a|s), obtains a conservative Q-function under

which the estimated Q-value lower-bounds its true value.

The second item, which maximizes Q-values under the data

distribution πβ(a|s) is used to attain a tighter lower bound for

V π(s). The last regularizer item can be defined as the entropy

of π, i.e., H(π), to better estimate Q-values [16].

By substituting R(π) = H(π) in (9), and replacing π
as argmaxπ Es∼D,a∼π[Q(s, a)] + H(π), we can obtain the

following optimization objective for the Q-function

min
Q

αEs∼D

[
log
∑
a

exp(Q(s, a))− Ea∼πβ(a|s)[Q(s, a)]

]

+
1

2
Es,a,s′∼D

[(
r(s, a) + γmax

a′
Q̄(s′, a′)−Q(s, a)

)2]
.

(10)

The objective enables us to train the Q-function by the offline

dataset D, and the trained Q-function can be leveraged to

infer the action a given state s by a greedy policy, i.e.,

a = argmaxa∈A Q(s, a), during evaluation stages.

IV. EXPERIMENTS

A. Datasets

In the experiment, we use SUMO [17] to build realistic

traffic environments and evaluate the performance of different

traffic signal control policies. SUMO can achieve fine-grained

representations for elements in different traffic scenarios like

emissions or individual vehicle routes as a microscopic traffic

modeling tool that models each vehicle individually. So it

meets our need for environmental realism.

As shown in Fig. 1, we build a realistic traffic environment

with a single signalized intersection. The intersection has

four arms with the same length of 750m and the speed

limit 13.89m/s. Each arm has eight two-way lanes, i.e., four

incoming lanes and four outgoing lanes, and its incoming lanes

include a left-turn lane. The traffic signal in the intersection

contains four sequential phases: N-S straight phase, N-S left-

turn phase, E-W straight phase, and E-W left-turn phase. Note

that the right-turn phase is always allowed.

Apart from the road network and traffic signal settings,

the traffic demand in this paper is considered to follow a

uniform distribution; that is to say, traffic flows are generated

uniformly throughout the runtime. Each runtime will last

3, 600 s, and a total of 7, 200 vehicles will be loaded into the

environment. The turning rate of vehicles is set to 0.25. We

generate different traffic demand files for a fair comparison.

The demand file indicates departure time and driving routes for

each vehicle in the runtime. We use 50 demand files, which are

directed by the actuated traffic signal controller in the realistic

environment, to generate offline datasets, and use 30 demand

files to evaluate different control policies.

B. Control Policy Settings and Performance Criteria

This paper compares the CQL policy with four typical

control policies; their details are as follows:

1) Fixed-time policy: The policy is widely used in real

traffic environments. In our settings, the total duration

for straight phases is 33 s and for left-turn phases is 6 s.
2) Actuated policy [2]: The rule-based policy is widely

deployed in real traffic environments. In our settings, the

actuated traffic signal controller makes decisions every

period of time Δt. It will switch to the next phase if

detecting no vehicle via induction loop detectors related

to the current phase within a time gap tgap. In addition

to being a baseline, the actuated policy is also used as

the behavior policy to generate offline datasets for data-

driven policy optimization.

3) Behavioral cloning (BC) policy [9]: The imitation

learning policy tries to copy the behavior policy by

learning a mapping function from states to actions

based on state-action pairs sampled from the offline

demonstration dataset.

4) Deep Q-network (DQN) policy [6]: The policy ap-

proximates the Q-function using a deep neural network,

where Q-learning updates the Q-function via the tran-

sitions sampled from the offline dataset. Although Q-

learning is designed for online learning, its off-policy

character enables the agent to optimize policies accord-

ing to objective (8) by offline learning.

5) CQL policy [10]: The offline RL policy approximates

the Q-function using a deep neural network like DQN,

but the learning process uses objective (10).

We evaluate the control performance through the total out-
put criterion, which indicates the number of vehicles reaching

destinations in a given environmental period:

Ototal =

T∑
t=1

Ot. (11)

Here, T = 3, 600 in our experiments. Generally, higher total

output means better performance for the control policy.

C. Implementation Details

In the experiment, we set the control period Δt = 5 s, and

yellow time ty = 3 s, so each environmental runtime will last

for 720 MDP steps. The threshold of detection time gap tgap

for the actuated policy is 2 s.

To stabilize training for three data-driven methods, we

normalize states and rewards. The methods share the same

network structure and common learning parameters. The neu-

ral network contains 2 hidden layers, each with 256 units. The

optimization algorithm is Adam with minibatches of size 32,

and the learning rate is 6.25×10−5. Each data-driven policy is

trained for 720, 000 iterations on offline datasets. For DQN and

CQL policies, the target Q-network is updated every 20, 000
iterations. The weight α for CQL objective (10) is 0.01.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 11,2022 at 00:59:37 UTC from IEEE Xplore. Restrictions apply.

8095

Fig. 3: Performance comparison of different control policies

for 30 traffic demands.

Fig. 4: Accumulated output flow along with time for different

control policies. The solid line shows the average output for

30 traffic demands, and the shade shows the variance.

D. Performance Comparison

Fig. 3 plots total output on 30 traffic demands for different

control policies. We can find that the CQL policy outperforms

other baselines significantly, including the actuated policy

it learns. The result indicates that CQL can learn a better

policy for traffic signal control than the behavior policy like

the actuated one while maintaining generalizability. On the

contrary, BC and DQN policies, also trained with data from the

actuated policy, perform poorly on the out-of-training traffic

demands. Worse still, they deliver fewer cars to destinations

compared with the fixed-time policy. We can also find that

BC as a traditional supervised learning method has better

robustness than the off-policy RL method DQN. This result

may be induced by the overestimation in the offline-learning

process for DQN, as discussed in Subsection III-A.

To better understand the experiment results, we show the

accumulated output flow over the runtime for 30 tests in Fig. 4.

We can find that CQL learns an effective policy that maintains

the highest output rate (corresponding to the slope of the

curve) throughout the episode. Compared with CQL, DQN

without conservative penalty can only handle the traffic flow

in the early stage of the episode but performs poorly later

accompanied by high variance.

V. CONCLUSION

In this paper, with the help of the constructed realistic traffic

environment, we explore the feasibility of learning a quantified

RL-based traffic signal controller for real traffic scenarios

with only offline data from the real world. We validate the

effectiveness of workflow for offline RL-based traffic signal

control by a typical offline RL method CQL. The CQL policy

could attain comparable performance to the actuated policy

and outperforms other data-driven methods by leveraging the

data collected via the classic actuated policy.

Non-trivial future works are remaining for the real-world

applications of the CQL model. Since CQL-like offline RL

approaches have been demonstrated better at leveraging real-

world data than behavioral cloning in many practical appli-

cations like robotics [10], it is possible to use such methods

to learn better signal control policies from human experience

or elaborate rules. Moreover, offline RL can be served as a

module of computational experiments in parallel transportation

systems [1]. The feature of offline policy optimization will

bridge the gap between real and artificial systems.

REFERENCES

[1] F.-Y. Wang, “Parallel control and management for intelligent trans-
portation systems: Concepts, architectures, and applications,” IEEE
Transactions on Intelligent Transportation Systems, vol. 11, no. 3, pp.
630–638, Sep. 2010.

[2] G. F. Newell, “Properties of vehicle-actuated signals: I. one-way streets,”
Transportation Science, vol. 3, no. 1, pp. 30–52, 1969.

[3] P. R. Lowrie, “SCATS, sydney co-ordinated adaptive traffic system: A
traffic responsive method of controlling urban traffic,” Roads and Traffic
Authority NSW, Darlinghurst, NSW Australia, 1990.

[4] P. B. Hunt, D. I. Robertson, R. D. Bretherton et al., “The SCOOT on-line
traffic signal optimisation technique,” Traffic Engineering & Control,
vol. 23, no. 4, Apr. 1982.

[5] P. G. Balaji, X. German, and D. Srinivasan, “Urban traffic signal control
using reinforcement learning agents,” IET Intelligent Transport Systems,
vol. 4, no. 3, pp. 177–188, 2010.

[6] L. Li, Y. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforce-
ment learning,” IEEE/CAA Journal of Automatica Sinica, vol. 3, no. 3,
pp. 247–254, Jul. 2016.

[7] A. Müller, V. Rangras, G. Schnittker et al., “LemgoRL: An open-
source benchmark tool to train reinforcement learning agents for traffic
signal control in a real-world simulation scenario,” arXiv preprint
arXiv:2103.16223.

[8] Q. Guo, L. Li, and X. (Jeff) Ban, “Urban traffic signal control with
connected and automated vehicles: A survey,” Transportation Research
Part C: Emerging Technologies, vol. 101, pp. 313–334, Apr. 2019.

[9] X. Li, P. Ye, J. Jin et al., “Data augmented deep behavioral cloning for
urban traffic control operations under a parallel learning framework,”
IEEE Transactions on Intelligent Transportation Systems, pp. 1–10,
2021.

[10] A. Kumar, A. Zhou, G. Tucker et al., “Conservative Q-learning for
offline reinforcement learning,” in Proceedings of the Advances in
Neural Information Processing Systems, vol. 33, 2020, pp. 1179–1191.

[11] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
second edition ed. The MIT Press, 2018.

[12] P. Varaiya, “Max pressure control of a network of signalized intersec-
tions,” Transportation Research Part C: Emerging Technologies, vol. 36,
pp. 177–195, Nov. 2013.

[13] H. Wei, C. Chen, G. Zheng et al., “PressLight: Learning max pressure
control to coordinate traffic signals in arterial network,” in Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining - KDD ’19, 2019, pp. 1290–1298.

[14] L. Li, Y. Lin, N. Zheng et al., “Parallel learning: A perspective and a
framework,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 3, pp.
389–395, 2017.

[15] A. Kumar, J. Fu, G. Tucker et al., “Stabilizing off-policy Q-learning via
bootstrapping error reduction,” in Proceedings of the 33rd International
Conference on Neural Information Processing Systems, 2019, no. 1055,
pp. 11 784–11 794.

[16] J. Fu, A. Kumar, M. Soh et al., “Diagnosing bottlenecks in deep Q-
learning algorithms,” in Proceedings of the International Conference on
Machine Learning, 2019, pp. 2021–2030.

[17] P. A. Lopez, M. Behrisch, L. Bieker-Walz et al., “Microscopic traffic
simulation using SUMO,” in Proceedings of the 21st International
Conference on Intelligent Transportation Systems, 2018, pp. 2575–2582.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on October 11,2022 at 00:59:37 UTC from IEEE Xplore. Restrictions apply.

