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Estimating the 6D pose of a known object has very important applications in augmented reality and robot operations. This 

problem is challenging because of the clutter of the scene, the diversity of objects, and the complexity of lighting and 

textures. In this work, we propose a deep learning architecture for 6D object pose estimation, and a neural network that can 

predict object movement. By learning to predict the relative pose between the observation of current frame and the 

rendered image of previous prediction, the pose of the object can be tracked robustly for a long time. We have also 

introduced an efficient way of representing object motion, which can reduce the influence of the field of view and object 

scale so that this method has a strong cross-dataset generalization. We have conducted a lot of experiments on the 

LINEMOD dataset, the OccludedLINEMOD dataset, and the YCB dataset to show that this method can provide accurate 

pose estimation using only color images as input while being highly robust to occlusion.  
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1 INTRODUCTION 

Recognizing objects in 3D space and estimating their pose is important in many applications. For example, in 

robot operation tasks, accurate pose estimation provides vital information for grasping and motion planning. In 

augmented reality applications, object pose estimation can realize the interaction between humans and virtual 

objects. This article focuses on tracking the 6-degreeof-freedom (6D or 6DoF) pose of an object from 

continuous RGB images, that is, rotation and translation in 3D space. This problem is challenging because of 
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the complexity of the application scenario, and, objects have different 3D shapes, and their appearance on 

the image is affected by lighting conditions, objects occlusion, and etc [28].  

 

Figure 1: We propose a deep learning architecture for 6d pose tracking, and a novel deep neural network that can learn to 

predict the relative pose between the current observation and the previously predicted synthetic model rendering to track 

the object. 

Traditionally, the problem of 6D object pose estimation is solved by matching the feature points [14] between 

the 3D model and the image or establishing the corresponding relationship between the object model and the 

image contour. Unfortunately, they rely on hand-made features that are not robust to image changes and 

background clutter [26]. The end-to-end neural network is trained based on the deep learning method, which 

takes a single image as input and outputs its corresponding posture. However, most methods do not 

effectively use the information of the image sequence.  

In this work, we propose a data-driven optimization strategy and a novel deep neural network that can learn to 

predict the relative pose between the current observation and the previously predicted synthetic model 

rendering to track objects robustly for a long time, as shown in Figure 1. In addition, we also propose an 

efficient way of representing object motion, which can reduce the influence of the field of view and object 

scale, so that this method has strong cross-dataset generalization.  

We evaluate our approach on LINEMOD [10], Occlusion LINEMOD [3] and YCB-Video datasets [28]. These 

are widely used benchmark datasets for 6D pose estimation. Experimental results show that, within the RGB 

only methods, our method achieves the most advanced performance on the Occlusion Linemod dataset, and 

achieves comparable performance on other datasets.  

This paper is organized as follows. After discussing related work, we introduce RMTrack for 6D object pose 

tracking, followed by experimental results and a conclusion.  

2 RELATED WORK 

In recent years, research on tracking and detection has mainly focused on methods using RGB-D data. 

Although these methods perform better than methods based only on monocular RGB image data, these 

methods are difficult to apply in sunlight, and there are also limitations on the distance of the camera due to 

the limitation of depth sensors. Therefore, in this article, we will not include these works for comparison. 

Methods for estimating the position of objects can be roughly divided into feature point-based methods, 

region-based methods and deep learning-based methods. The method based on feature points first extracts 

local features from the points of interest or each pixel in the image and then matches the features on the 3D 

model to establish a 2D to 3D correspondence, from which the 6DoF pose can be restored [14][20][17][17]. 

Feature-based methods are fast and accurate and can handle occlusion between objects. Most commercial 
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software on Augmented Reality use this method (such as ARKit, ARCore, Vuforia, etc.). However, this 

method requires the object to have sufficient texture to calculate local features [23]. This is because the 

traditional feature point extraction algorithm is at the pixel level and the degree of abstraction is low, so it is 

difficult to effectively track objects with weak surface texture, which makes such commercial software have 

limitations in application scenarios. 

In order to deal with untextured objects, region-based methods are proposed [25]. Generally, the region-

based method distinguishes the foreground area and the background area corresponding to the object. For 

modeling the composition of each pixel, differences in image statistics (such as colour) are used. Based on 

the 3D geometry of the object, the goal is to find the pose that best explains the two areas[9][10][4]. This 

algorithm estimates the pose only based on the contour of the object to be tracked, which effectively solves 

the problem that the algorithm cannot track low textured objects in feature-based methods, but 

correspondingly, this kind of method cannot solve the object with weaker contour features (such as football) 

[24][25]. Besides, this kind of methods cannot handle the occlusion between objects well, because if the 

object is occluded, the similarity score of the area will be lower [12]. In addition, these kinds of methods 

completely discard the part of the image that contains the largest amount of information, resulting in inferior 

performance to the method based on feature points in most cases, so this method is generally used in special 

occasions where objects need to be detected. Most of the traces are weak textures [1]. Combining traditional 

methods may be a good way to learn from each other [22], but in the process of combining multiple methods, 

many hand-designed standards are used, such as when to use feature points, when to use contours, etc. This 

will further reduce the adaptability of the algorithm in complex scenarios and cannot solve the nature of the 

problem. 

Recent approaches apply machine learning, especially deep learning, for 6D pose estimation. The 

common method of deep learning-based methods is to perform semantic segmentation on the image first, and 

fit the pose based on the information of the segmented image and the three-dimensional model. There are 

many ways to fit the pose, some are based on key point matching [18][8], some are based on the center of 

gravity of the object after segmentation [8][28], and some are regression based on pixel-level coordinates 

[27][3][5][2]. The main advantage of this kind of method is that the deep learning method makes judgments 

based on the high-order features of the object. Compared with the hand-crafted likelihood functions and 

features in traditional methods, deep learning is more able to adapt to complex environments and lighting 

conditions [26][21]. Deep learning methods mostly focus on predicting the pose of an object from a single 

picture, which is actually slightly different from tracking [15] [29]. A few methods are to track the object pose 

on the time series of the image, such as DeepIM [13], which can greatly improve the speed, while maintaining 

or even improving the quality of the pose. This type of method uses some classic backbones [7] to prove that 

deep learning can fit relative poses only based on the residuals of the images [32], and is a pioneer in 

applying deep learning for object pose tracking. This article will focus on the research in this direction and 

make improvements on the basis of such methods. 
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3 APPROACH 

3.1 Definition 

To represent the position and posture transformation of an object in a three-dimensional space, we can first 

represent the object as a set of data points X in a three-dimensional coordinate system. 

The 6-degree-of-freedom(6D or 6DoF) transformation of an object can be decomposed into a 3-degree 

translation and a 3-degree rotation. The translation is simple, it represents the change of the position of the 

object in space, just add it to the coordinates of the data point, x’= x + t. 

Rotation is relatively complicated, and there are many kinds of representation methods, such as rotation 

matrix, rotation vector, Euler angle, quaternion, etc. These representation methods have their own adaptive 

application scenarios. The rotation matrix, R, is a 3x3 matrix. You only need to multiply it with the original 

coordinates to get the rotated coordinates, x’= Rx. Because of its simple calculation, it is widely used in 

computer programs for visualization, and it is also the choice of many well-known data sets. 

In this case, the entire 6D attitude transformation can be expressed as x’= Rx + t. It is further extended to 

the form of secondary coordinates. The 6D pose transformation of an object composed of a set of data points 

x can be written as 

[𝑥′
1
] = [

𝑅 𝑡
0 1

] [
𝑥
1
]   (1) 

However, rotation has only 3 degrees of freedom, while the rotation matrix consists of 9 values, which 

means this representation is redundant [16]. For example, the rotation matrix must be an orthogonal matrix. 

Using such an expression as the output of a neural network is obviously an inefficient way. 

The method of using 3 values to represent the rotation is the rotation vector. A three-dimensional vector is 

used to represent the rotation in the three-dimensional space, its direction points to the axis of rotation, and 

the mold length is the angle of rotation, in circumference. 

In order to maximize the calculation efficiency, the neural network in the next section will use the rotation 

vector to represent the rotation, but it will be converted into a rotation matrix when the image is rendered and 

the result is calculated. 

3.2 Neural Network Design 

The neural network takes the image 𝐼𝑡 of the current frame and the rendered image 𝐼𝑡−1 generated based on 

the pose of the previous frame as input, as shown in Figure 2. 

 

The Network has two parts: feature extraction layers that using convolutional neural networks(CNN), and 

backbone using Vision Transformer(ViT). Although many recent works based on the transformer structure 

claim to completely adopt the transformer structure and perform better than the best CNN-based networks 

[6][30][33], they all use a layer of mapping to map image blocks into tokens. Although the activation function is 

not added in this step, it is actually a convolution operation. In other words, in terms of feature extraction, 

convolution is still the most classic structure. Set the image size to 112 × 112, superimpose the real image 

and the rendered image, and get the input data as 112 × 112 × 6. Through 3-layer convolution, the data 

becomes 14 × 14 × 384, and then input it into ViT backbone. 
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Note that there is no pooling layers in the network, because the convolution structure after using pooling 

will lose the sensitivity of the network to position. If the object position has a few pixels of translation, or a 

small rotation caused a small feature Displacement will be completely filtered out under such a structure. 

However, the 6d object pose estimation problem requires very accurate estimation of these contents, 

especially in the first few feature extraction layers, the displacement of a few pixels may have an objective 

impact on the result. 

 

Figure 2: Proposed RMTrack architecture: It takes RGB images as input, return the relative change in posture.  

The structure of the ViT backbone can be expressed as 

𝑇0 = [𝑡𝑐𝑙𝑠; T] + PE  (2) 

𝑇𝑖 = MLP(MSA(𝑇𝑖−1)) (3) 

𝑦 = 𝑓𝑐(𝐿𝑁(𝑇𝑏))  (4) 

where Ti denots one Transformer layer (0 <= i <= b), MSA denotes the multihead self-attention operation 

with layer normalization and “MLP” is the multilayer perceptron with layer normalization in the standard 

Transformer [6]. E is Sinusoidal Position Embedding, LN is layer normalization, fc is one fully-connected layer 

for classification and y is the output prediction.The transformer here uses a deep-narrow structure, with layer 

number b = 14, hidden dim 384, mlp layer 1152, which proved to be very efficient in t2t-vit [30] 

3.3 Image pre-processing 

If the object in the input image is very small, it is difficult to extract useful features for matching. To obtain 

sufficient details for posture matching and reduce unnecessary computational expenses, it is a common 

practice to zoom in the object before sending it into the neural network. This article focuses on the tracking 

problem, so the position of the object in the current frame should be close to the position of the previous 

frame, so it can be directly intercepted at the position of 𝐼𝑡−1 in the previous frame. When the translation of 

the object is 𝑡 = [𝑡𝑥, 𝑡𝑦, 𝑡𝑧 ], under the pinhole camera model, the position of the object on the image can be 

expressed as 

𝑥 = 𝑓
𝑡𝑥

𝑡𝑧
+

𝑋

2
  (5) 
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𝑦 = 𝑓
𝑡𝑦

𝑡𝑧
+

𝑌

2
  (6) 

 

where x, y are the pixels on the image, X, Y are the size of the image, f is the focal length. They are all 

measured in pixels. 

The problem is that due to different camera angles, objects may appear in different positions in the picture. 

Under the pinhole camera model, the imaging of the same object under different camera angles is different, 

as shown in Figure 3. In order to deal with this problem, a further step of view field transformation is required 

before the image is intercepted. 

𝑥 = 𝑥0 + 𝑥′
𝑡𝑥
2+𝑡𝑧

2

𝑡𝑧
2   (7) 

𝑦 = 𝑦0 + 𝑦′
𝑡𝑦
2+𝑡𝑧

2

𝑡𝑧
2   (8) 

where x’, y’ are the pixels on the image after the view field transformation, x, y are the pixels on the original 

image. 

 

Figure 3: Images of the same field of view under different camera angles. It can be seen that the object close to the corner 

is significantly stretched.  

The estimation of object rotation is not determined by the size of the object and the distance of the object 

from the camera, but this is not the case for translation. Different objects have different diameters. Under the 

combined effect of the size of the object and the distance from the camera, objects with a large difference in 

size may appear to be about the same size in the picture. In order to reduce the influence of object scale, we 

divide the change of position t’ by the translation of the z-axis of the previous frame, 𝑡 ′ /𝑡𝑧 as a label to train 

the neural network, which means the neural network can learn the relative value of position change. 
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4 EXPERIMENTS 

4.1 Datasets 

The LineMOD dataset [10] is a widely-used benchmark datasets for 6D pose estimation dataset. The data set 

contains a total of 13 objects, and each object contains approximately 1200 pictures. There are many 

challenges on the LineMOD dataset, such as low resolution, cluttered scenes, untextured objects, and 

changing lighting conditions. 

Occlusion LineMOD [3] is a subset of the LineMOD data set. It contains 1214 pictures, and each picture 

contains 8 objects. The main challenge of this dataset is severe occlusion, especially for small targets. 

The YCB-Video dataset [28] contains 21 objects with rich textures, distributed in 92 RGB-D videos. Usually, 

80 of them are used for training and the remaining 12 videos are used for testing. These videos are slipt into 

frames of images, and each video has about 1500 images. There are many stacking scenes with partially 

occluded objects. 

 

Figure 4: Visualization of some of the results on the Occlusion LINEMOD dataset. 

4.2 Evaluation metric 

We use two standard metrics to evaluate our method: the 2D projection metric [28] and the average 3D 

distance of model points (ADD, ADD-S) metric [10]. 

The most commonly used metrics for object pose estimation are ADD and ADD-S. ADD metric is defined 

as the average Euclidean distance between model points transformed with the ground truth and the predicted 

pose respectively: 

𝐴𝐷𝐷 =
1

𝑁
∑ ||(𝑅𝑝𝑖 + 𝑡) − (𝑅̂𝑝𝑖 + 𝑡̂)||𝑁
𝑖=1   (9) 

where N is the number of model points 𝑝𝑖, R and t are the rotation and translation of ground truth pose, 𝑅̂ 

and 𝑡̂ are the rotation and translation of predicted pose. 

ADD-S metric is designed for symmetric objects and calculates the average distance with the closest point: 

𝐴𝐷𝐷 − 𝑆 =
1

𝑁
∑ 𝑚𝑖𝑛𝑗=1

𝑁 ||(𝑅𝑝𝑖 + 𝑡) − (𝑅̂𝑝𝑗 + 𝑡̂)||𝑁
𝑖=1  (10) 

ADD(-S) means applying ADD for asymmetric objects and ADD-S for symmetric objects. 
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2D Projection metric focuses on the matching of pose estimation on 2D images. This metric is considered 

to be important for applications such as augmented reality. 

𝑃𝑟𝑜𝑗. 2𝐷 =
1

𝑁
∑ ||𝐾(𝑅𝑝𝑖 + 𝑡) − 𝐾(𝑅̂𝑝𝑖 + 𝑡̂)||𝑁
𝑖=1   (11) 

where K denotes the intrinsic parameter matrix of the camera, and K(Rx + t) indicates transforming a 3D 

point onto the image. The unit of measurement here is pixels. 

When calculating the accuracy, a threshold will be set. Generally, the threshold of ADD(-S) is set to be 

10% of the diameter of the object, and the threshold of proj2d is set to be 5 pixels. If the result is less than the 

threshold, it is considered to be correct prediction. 

4.3 Implementation Details 

The training process randomly generates a rendered image with small translation and rotation for each frame 

of real image, so the rendered image will never be exhausted. 

Note that, the Linemod dataset and Occlusion Linemod datasets are not continuous images. In other 

object tracking work, the usual approach is to randomly or use a baseline method to give an initial value. So 

when we verify these data sets, we perform random translation and rotation on the ground truth as the 

initialization of each frame. 

4.4 Results and analysis 

We compare with other state-of-the-art methods which take RGB images as input and output 6D object poses. 

The visualization results are shown in Figure 4. 

Table 1: The accuracies of our method and the baseline methods on the LINEMOD dataset in terms of the ADD(-S) metric, 

where glue and eggbox are considered as symmetric objects. 

Method BB8 PoseCNN PVNet DeepIM DPOD RePose Ours 

Ape 27.9 - 43.62 77 87.7 79.5 79.3 

Benchwise 62 - 99.9 97.5 98.5 100 95.5 

Cam 40.1 - 86.86 93.5 96.1 99.2 93.4 

Can 48.1 - 95.47 96.5 99.7 99.8 95.8 

Cat 45.2 - 79.43 82.1 94.7 97.9 90.4 

Driller 58.6 - 96.43 95 98.8 99 94.4 

Duck 32.8 - 52.58 77.7 86.3 8.03 80.9 

Eggbox 40 - 99.15 97.1 99.9 100 86.9 

Glue 27 - 95.66 99.4 98.7 98.3 97.1 

Holepuncher 42.4 - 81.92 52.8 86.9 96.9 87.8 

Iron 67 - 98.88 98.3 100 100 94.3 

Lamp 39.9 - 99.33 97.5 96.8 99.8 94.7 

Phone 35.2 - 92.41 87.7 94.7 98.9 87.4 

Mean 43.6 62.7 86.3 88.6 95.2 96.1 90.7 

Table 1 shows the comparison of our method with other works on Linemod dataset, including BB8 [19], 

PoseCNN [28], PVNet [18], DeepIM [13], DPOD [31], and RePOSE [11]. It can be seen that, our method 

achieves comparable performance. 
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Table 2: The accuracies of our method and the baseline methods on the Occlusion LINEMOD dataset in terms of the ADD(-

S) metric, where glue and eggbox are considered as symmetric objects. 

Method PoseCnn PVNet RePose Ours 

Ape 9.6 15.81 31.1 47.6 

Can 45.2 63.3 80 49.2 

Cat 0.93 16.68 25.6 36.5 

Duck 19.6 25.24 73.1 56.8 

Driller 41.4 65.65 43 45.9 

Eggbox 22 50.17 51.7 56.5 

Glue 38.5 49.62 54.3 63.4 

Holepuncher 22.1 39.67 53.6 59.9 

Mean 24.9 40.77 51.6 52.8 

Table 2 shows the comparison of our methods with PoseCNN [28], PVNet [18], RePOSE [11] in terms of 

the ADD(-S) metric. It can be seen that among RGB only methods, our method achieves the state-of-the-art. 

Table 3: The accuracies of our method and the baseline methods on the YCBVideo dataset in terms of 2D projection and 

ADD(-S) AUC. 

Method PoseCnn Oberweger PVN Ours 

ADD(-S) 61 72.8 73.4 75.1 

2D Projection 3.72 39.4 47.4 47.2 

Table 3 shows the results on YCB dataset. It can be seen that among RGB only methods, our method 

achieves state-of-the-art under ADD(-S) metric, and very close to the state-of-the-art under 2D Projection 

metric. 

4.5 Applying to out of training objects 

In our method, the algorithm does not rely on memorizing the shape of each object, but returns to the posture 

change based on the feature movement between the two images. Therefore, our algorithm can also achieve 

good performance when applying to out of training objects. Figure 5 shows the performance of each object 

under the cross data set under the Occlusion Linemod data set. Here, for each object, the neural network was 

trained on all other objects in both Linemod dataset and Occlusion Linemod dataset, and then applied to this 

object. The results can prove that even for an untrained object, RMTrack can still return the pose change. 

However, due to the training data is not enough, the result is slightly lower than the trained group, especially 

when the threshold is small. 

4.6 Applying to out of training objects 

On RTX 2070 GPU, RMTrack is running at 21 fps per object.  

Since the rendering of the objects can be implemented in many ways in the application, and further time 

can be saved through multiple processes, the above-mentioned running time does not include the rendering 

time. 
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Figure 5: Performance on out of training dataset on the Occlusion LINEMOD dataset. 

5 CONCLUSION 

In this work, we propose an efficient and robust long-term 6D object attitude tracking framework RMTrack. 

Given the initial 6D pose estimation of an object, we design a new transformer-based deep neural network to 

directly output a relative pose transformation to improve the pose estimation. Experimental results show that 

the combination of learnable features and efficient non-linear optimization can produce accurate 6D object 

poses. In addition, our experiments on the crossdata set verify that the neural network can perform feature-to-

posture fitting, rather than simply remembering the shape of each object. The future direction is to completely 

separate the dependence of the neural network on the training object, so that it can match the trained object 

on the untrained object based only on the characteristics of the image. 
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