
Dynamic Route Guidance using Maximum Flow Theory

and its MapReduce Implementation

Peijun Ye, Cheng Chen and Fenghua Zhu

Abstract— Road traffic load balancing can avoid network
congestion and improve traffic efficiency. This paper proposes
a method of dynamic route guidance based on Maximum Flow
Theory to balance traffic load of road network. A modified
Ford-Fulkerson algorithm is used for searching the optimal
route. In addition, the algorithm is implemented by using
MapReduce primitives, which introduces Cloud Computing
Platform for large-scale traffic network guidance. Computa-
tional experimental environment is built by integrating Artifi-
cial Transportation Systems (ATS) and Hadoop. Results in ATS
and performances on Hadoop show that the method proposed
can improve the traffic situation effectively.

I. INTRODUCTION

With the urbanization development, transportation prob-

lems are increasingly prominent. Intelligent Transportation

System (ITS), composed of the Advanced Traffic Manage-

ment System (ATMS), Advanced Traveler Information Sys-

tem (ATIS), Advanced Vehicular Controlling System (AVCS)

and Advanced Public Transportation System (APTS), is an

efficient means to solve the traffic problem on the premise of

ensuring travel safety. As a crucial part of ATIS, the dynamic

route guidance can reduce travel time, avoid congestion, and

raise road network efficiency. The dynamic route guidance

system can readily release real-time traffic information so

that drivers can choose the optimal route available in time.

Scholars have conducted a lot of research in this area so

far and acquired valuable results. Reinforcement learning

has been used in the dynamic route guidance by Zhang

[1], which is a piece of representative work. In his paper,

time costs were described by Q-factors which were iterated

in order to obtain the optimal route-choice by observing

probe vehicles running in the road network. Later, a natural

algorithm, Particle Swarm Optimization (PSO) algorithm,

was introduced into this filed by Chen [2] for the require-

ment of real-time guidance. Yuan [3] concentrated on the

travel time reliability during the process of route guidance.

However, on a macro level, traffic management must balance

Manuscript received May 15, 2011. This work was supported in part by
NSFC 60921061, 70890084, 90920305, 90924302, 60904057, 60974095;
CAS 2F09N05, 2F09N06, 2F10E08, 2F10E10; 2F11D01.

Peijun Ye is with State Key Laboratory for Intelligent Control and Man-
agement of Complex Systems, Institute of Automation, Chinese Academy
of Sciences, Beijing, 100190, China. (e-mail: dreamflight@163.com).

Cheng Chen is with State Key Laboratory for Intelligent Con-
trol and Management of Complex Systems, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, 100190, China. (e-mail:
chengchen.cas@gmail.com).

Fenghua Zhu is with State Key Laboratory for Intelligent Con-
trol and Management of Complex Systems, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, 100190, China. (e-mail:
fenghua.zhu@ia.ac.cn).

the traffic load to avoid traffic jams in particular roads. And

the traffic volume on each road is an important index to

measure the congestion level. Therefore, guiding the traffic

flow to low-volume roads can contribute to an effective

utilization of road network and balance traffic load. In this

light, the maximum flow theory can be used for traffic

guidance. In addition, it can be more effective to search the

optimal route between any two intersections and publish the

results via broadcasting or Variable Message Signs (VMS).

This enumerates the optimal routes of all node pairs. In

this way, nearly all the calculations converged at the traffic

control center while networked terminal devices (VMS, radio

or vehicle navigation equipment) only need to receive the

optimal results. This method involves massive computation,

which can resort to the Cloud Computing Platform. In fact,

some researchers and engineers have been studying traffic

control on the basis of such a platform and have proposed

the concept of Intelligent Traffic Clouds (ITC) [4]. This

paper aims to introduce some work about this. Section

II briefly reviews the maximum flow theory that is used

during the search of optimal path in graph theory. Then, we

establish a route guidance model according to this theory

and present a modified algorithm. Meanwhile, an example

helps illustrate the computation process. For the massive

computation, section III illustrates the implementation of the

algorithm in the form of MapReduce primitives and shows

the foundation for introducing a Cloud Computing Platform

in an abstracted road network. Section IV offers some

statistical results of computational experiments in Artificial

Transportation System and gives the performance analysis.

Finally, we draw a conclusion and suggest our future work.

II. TRAFFIC GUIDANCE PROCESS BASED ON MAXIMUM

FLOW THEORY

The maximum flow theory enjoys a wide scope of ap-

plications but few of them has to do with traffic route

guidance. Assume that N=(V, A) is a connected directed

network with no loop, where V and A are the sets of vertices

and arcs, with the following requirements met: 1)there is

a subset X of vertices that the in-degree of each is zero;

2)with no mutual vertices of X, there is a subset Y of

vertices that the out-degree of each is zero, too; 3)each

arc has a non-negative weights, known as the arc capacity.

Further, we use N=(V, X, Y, A, C) to represent the network

above, where V is vertex set, A is arc set and X, Y, C

are called source set, convergence set and capacity function

respectively. The maximum flow problem can be described

as seeking the maximum feasible flow in a given network.

2011 14th International IEEE Conference on
Intelligent Transportation Systems
Washington, DC, USA. October 5-7, 2011

978-1-4577-2196-0/11/$26.00 ©2011 IEEE 180

Ford and Fulkerson first proposed the concept of maximum

flow and designed a pseudo-polynomial algorithm in 1957

[5]. Another concept, augmenting path, should be explained

here. We call P as an augmenting path if any arc ~a in P meets

∆f(~a)=c(~a)-f(~a)>0 when~a is a forward arc, and ∆f(~a)=f(~a)>0

when ~a is a backward arc. In the above equations, c(~a), f(~a)

and ∆f(~a) are the capacity, current flow and augmenting flow

of arc a. We define ∆f(P)=min~a∈P∆f(~a) as augmenting flow in

P. Network flow can be increased according to the following

formula:

f̂ (~a) =











f (~a)+∆ f (P), i f ~a is a f orward arc

f (~a)−∆ f (P), i f ~a is a backward arc

f (~a), i f ~a is not in P

(∗)

Generally, the urban road network can be abstracted as a

network in graph theory, with roads and intersections viewed

as arcs and vertices. The maximal flow of each road can be

defined as its capacity that can be calculated according to the

formula in Traffic Engineering [6]. Obviously, according to

the two definitions, the path with maximum augmenting flow

means that the traffic volume can be maximally increased.

Guiding the traffic flow to this path can contribute to an

effective utilization of road network to the maximal extent.

By searching the augmenting paths between each node pair

based on maximum flow theory dynamically, we can achieve

the purpose of traffic guidance by publishing that kind of

paths on traffic networked terminal devices (VMS, radio or

vehicle navigation equipment). However, augmenting path

in graph theory may contain a backward arc which poses a

vital problem: in the actual road network, the backward arc

in an augmenting path is forbidden to drive reversely given

the traffic rule. Thus, the augmenting path which contains

backward arc should not be the guidance route. With this

considered, the rest of this paper defines augmenting path

as those only contain forward arcs. Let f(~a) represent the

original flow of arc~a in the input network. The whole process

of guidance can be illustrated in Figure 1 while the main

searching operation details are as follows:

Fig. 1. Dynamic route guidance process

Input: current volume of each arc in network N(V, A, C);

Output: maximal augmenting path without backward arc

between each node pair;

For each node pair (x, y) begin

Step 0:PA=∅. (PA is set of augmenting paths)

Step 1:for each arc ~a, let ∆f(~a)=c(~a)-f(~a), then we get a

new graph called residual network.

Step 2:let Stack=x, mark x with VISITED while other

vertices with NOT VISITED. (Stack is the record

of a particular path)

Step 3:for the top vertex u in the Stack, if there is a

adjacent vertex v which meets: 1◦ (u, v)∈A; 2◦

v/∈Stack; 3◦ v has not been visited through u; then

go to Step 4, else go to Step 5.

Step 4:push v and go to Step 6.

Step 5:mark the vertices which are visited through u with

NOT VISITED and pop u, then go to Step 6.

Step 6:if y is at the top of the Stack, mark y with NOT

VISITED, copy the path P recorded in the Stack to

PA and pop y.

Step 7:if the Stack is not empty, go to Step 2, else go to

Step 8.

Step 8:if PA=∅, then current flow is the maximum flow

and searching process ends, else for each P∈PA,

calculate augmenting flow ∆f(P)=min~a∈P∆f(~a) and

use P with maximal ∆f(P) as the output and search-

ing process ends.

End.

In this algorithm, steps 2 to 7 are the repeated process of

finding augmenting paths. Step 3 only deals with forward

arc which ensures a path containing no backward ones. Step

8 calculates augmenting flow of each path in PA and sets

the path with the maximal ∆f(P) as the optimal solution.

PA=∅ means there is no augmenting path that any route is

the optimal solution which we will not discuss here. Figure

2 gives a simple example, in which number pair besides each

arc in the original network represents its (capacity, current

flow). The residual network are calculated according to Step

1. Based on the process of computation, it is easy to get the

result that P8 is the optimal solution.

Fig. 2. An example of computation

Here, we need to emphasize that the optimal solution is not

unique, but every possible solution has the same augmenting

flow. In this sense, all the possible solutions are equal. In fact,

181

PA has enumerated all the augmenting paths of the original

graph, which ensures the optimality of our algorithm.

III. IMPLEMENTATION IN MAPREDUCE PRIMITIVES FOR

CLOUD COMPUTING

Although the algorithm above has shed light on searching

augmenting path in theory, some practical problems still

need to be considered. As mentioned in the introduction,

nearly all the calculations converged at the traffic control

center. So we are bound to encounter massive computation

obstacle for a large scale network. Such calculation will

trigger the sharp decrease of the update frequency of the

optimal results, making the dynamic guidance meaningless

for its unacceptable time interval. In this case, calculation

speed is still the bottleneck.

It is believed that this problem can be solved through

the Cloud Computing Platform which has recently aroused

public attention. Google’s use of cloud computing, and the

subsequent open source Hadoop cloud computing infrastruc-

ture are most representative in this field. Since the Google’s

platform is not available to us, we adopt Hadoop to do

our work. Both of these platforms provide data-processing

capability by hosting so-called MapReduce jobs, which work

by sequencing through data stored on disk. The technique

increases scale by having a large number of independent

(but loosely synchronized) computers running their own

instantiations of the MapReduce job components on their

data partition. Actually, having factored a problem in terms

of MapReduce primitives, they are useful for computing in

a streaming environment or on a single computer equipped

with a large disk although its original design is for a cloud

of computers [7]. So it can be concluded that the core issue

of using a Cloud Computing Platform in calculation is to

transform the algorithm into MapReduce primitives. The re-

mainder of this section will expatiate on the implementation

of the algorithm.

The whole process of MapReduce job is shown in Figure

3. Both map and reduce receive a sequence of records

consisted of keys and values, and usually produce records in

response. Input records presented to the mapper by its caller

have no guaranteed order or relationship to one another. The

mapper’s job is to create some records (perhaps none) in

response to each input record. During the partitions phase,

records are sorted and spilt to the disk by key for the reducer.

So those records with a given key are presented as a package

to a reducer which then examines the packages sequentially

through an iterator and gives an output file [8].

Fig. 3. MapReduce process

Due to the limitation of computing resources, the Hadoop

platform in our work only contains 4 nodes (computers),

the CPU and memory of which are all Intel(R) Core(TM)2

Quad Q8400 (2.66GHz) and 2.0 GB. Thus we cannot study

Fig. 4. Input map of Guangzhou

Fig. 5. Input graph

the guidance approach in a large-scale road network given

the size of memory. However, the whole implementation

process can be applied to a larger road network as long as we

have enough nodes without any modification of MapReduce

operation. Figure 4 shows the map of studied area of Tianhe

Sports Center in the city of Guangzhou and Figure 5 is the

input graph abstracted from the map. The two numbers on

each arc represent the capacity and the current traffic volume

of the road respectively, which are derived in a particular

sampling moment from computational experiments in ATS

(see the next section). Figure 6 summarizes the map and

reduce operation intuitively. First, we need to input records

that each holds an arc of the graph and its information (the

rows on the left side in the Map phase). Then, for each

arc record, the map operation emits two records, one keyed

under each of the vertices that form the arc (the rows on

the right side in the Map phase). The value of every record

contains path (in the form of node pair) and augmenting flow

(∆f). Each augmenting flow equals capacity minus volume.

After this process, a series of bins are created, each of which

holds records for every arc adjacent to its associated vertex.

When it comes to the reduce phase, those records with the

same key created in the map phase are put together by

partition to search the path and calculate augmenting flow as

is shown. Up to now, we have worked out all the 2-distance

182

Fig. 6. The first round map and reduce operation

paths between node pairs from the output of the reduce

operation. Then we’ll move on to the second round map and

reduce operation (see Figure 7). We need the combination

of raw arcs and output of the last reduce to be the input

file. Similarly, the map process generates a series of records.

Again, records with the same key are prepared for a particular

reducer. So we have calculated all the 3-distance (not only,

perhaps longer) paths and the augmenting flows after this

round. Similarly, we can begin the third, forth round and so

on. It should be noted that during each round, loops must

be excluded for their interference on obtaining the correct

results. The iteration process is repeated until the outputs

of two reduce operations are identical. This means that the

paths and their augmenting flows between each node pair

are contained in all of the outputs generated by each round

reduce. All we need to do is sorting these results by node

pair and augmenting flow. As mentioned above, MapReduce

framework sorts the records by key before they reach the

reducers but does not sort the values for any particular key.

The sequence by which values appear is not even stable

from one run to the next, since they come from different

map tasks, which may finish at different times. Fortunately,

Fig. 7. The second round map and reduce operation

designers of Haddop must have considered this problem and

provided us with a smart means called Secondary Sort [9].

Here we change the keys to be composite: a combination

of node pair and its augmenting flow. The framework will

sort the order for keys by node pair and then by augmenting

flow (descending) (see Figure 8). By setting a partitioner to

partition by the node pair part of the key, we can ensure

that records for the same node pair go to the same reducer.

In addition, all the records for the same node pair will be

in one reduce group on condition that we group values in

the reducer by the node pair part of the key. Since they are

sorted by augmenting flow in a descending order, the first is

the maximum augmenting flow. So now we can publish the

optimal routes between each node pair by extracting the first

record from each reduce group.

Clearly, this implementation demonstrate that the whole

process of solving this kind of problem is dependent on

the Cloud Computing. In theory, it can be applied to road

network of any size with sufficient hardware support. Results

on Hadoop and its performance analysis will be shown in the

next section.

IV. GUIDANCE RESULTS AND PERFORMANCE ANALYSIS

In this section, we will give the computational results

of the particular input volume in Figure 5 on Hadoop to

verify the correctness for the implementation of MapReduce.

And performance indexes will then be listed to analyze its

calculation speed. At last, computational experiments results

183

Fig. 8. Secondary Sort

in ATS will be shown to investigate the effectiveness in the

level of road network.

Running the program written in Java according to the

implementation on Hadoop, we obtain 6 round iterations and

Table I shows part of its final results which contain 132 node

pairs and paths. Obviously, each path denoted by node pair

with its augmenting volume is shown clearly and its optimal-

ity can be easily verified. In terms of computing performance,

we have averaged run time of map and reduce phases and

number of task distribution on 4 nodes in ten experiments

(Table II and Table III). For the Map phase during iteration,

the maximum and minimum time of executing one task is

3 and 9 seconds (which depends on computer performance),

while the total time is less than 13 seconds. With the number

of task distributed on each node considered, the time needed

for executing one task might be reduced to 9 seconds at

most, if given enough resources to ensure absolute task-node

pairing. By contrast, the situation in Reduce phase is not

so optimistic. As the iterated time increases, the amount of

data sharply increases. Round 5 and round 6 have consumed

1024 and 735 seconds to finish the Reduce operation, which

are evidently the bottleneck in computing. This problem can

be alleviated to some extent by increasing the number of

task in Reduce, which need to be studied further. Generally

speaking, performance indexes have indicated that the total

lapse of time in searching the optimal routes between each

node pair seems a little long due to the small memory and

the scarce cloud nodes. Increasing the number of computers

may accelerate the speed.

To investigate the effectiveness of guidance approach

based on maximum flow, we chose TransWorld, a computa-

tional platform in ATS, to carry out a series of computational

experiments. It is based on ACP theory proposed by Fei-

Yue Wang in 2004 for urban traffic study from the perspec-

tive of complex system [10]-[17]. Communications between

TransWorld and Hadoop have been established regularly to

exchange traffic volume data and optimal routes. In every

TABLE I

PART OF THE GUIDANCE CALCULATION RESULTS

Node Pair Optimal Path
Augmenting

Volume

(101,102) (101,102) 68

(101,103) (101,102)-(102,103) 33

(101,104)
(101,105)-(105,106)-(106,102)-(102,103)

25
-(103,107)-(107,108)-(108,104)

(101,105) (101,105) 40

(101,106) (101,105)-(105,106) 36

(101,107) (101,102)-(102,103)(103,107) 32

(101,108) (101,102)-(102,103)-(103,107)-(107,108) 27

(101,109) (101,105)-(105,106)-(106,109) 36

(101,110) (101,102)-(102,103)-(103,110) 25

(101,111)
(101,105)-(105,106)-(106,102)-(102,103)

25
-(103,110)-(110,111)

(101,112)
(101,105)-(105,106)-(106,102)-(102,103)

25
-(103,110)-(110,111)-(111,112)

(102,101) (102,101) 29

(102,103) (102,103) 33

(102,104) (102,103)-(103,107)-(107,108)-(108,104) 25

...

TABLE II

RUN TIME OF MAP AND REDUCE PHASES

Iterate number
Time of Map (s) Time of Reduce (s)

min max total time min max total time

1 3 3 3 12 12 12

2 3 9 9 18 18 18

3 3 3 7 18 18 18

4 3 3 8 57 57 57

5 3 3 6 1024 1024 1024

6 3 9 13 735 735 735

secondary sort 3 3 31 39 39 39

sampling cycle, TransWorld sends volumes detected from

each link and receives the optimal results from Hadoop. All

the experiments adopted 70000 artificial population consis-

tently and simulated a single day’s traffic (07:00-22:00) in

the road network as in Figure 5. To make it more reliable, we

have set the guidance proportion as 0, 20, 50 and 80 percent.

Experiments at each proportion have been carried out for ten

times. Figure 9 and Figure 10 show the results of statistical

average speed and vehicle number. It is clear that the traffic

condition of the whole road network gradually improves with

guidance proportion increase. This trend is more obvious as

for the non-peak hours, while the effect is not so remarkable

TABLE III

TASK DISTRIBUTION ON 4 NODES

Iterate Task distribution on 4 Task distribution on 4
number nodes in Map phase nodes in Reduce phase

node ID 1 2 3 4 1 2 3 4

1 0 0 0 1 0 0 0 1

2 3 4 2 4 0 1 0 0

3 3 2 4 4 0 0 1 0

4 2 4 4 3 0 1 0 0

5 3 2 4 4 0 0 1 0

6 4 4 3 2 0 1 0 0

secondary sort 18 19 18 18 0 1 0 0

184

in peak hours. The reason for this phenomenon is that

people’s going to work and going back home leads the surge

of travel demand during morning and evening peak hour.

In this case, the maximum capacity of the road network

probably will be challenged or even surpassed, so that any

optimal algorithm cannot improve the indexes obviously. So

it is only through the expansion of road network can we solve

this problem. On the other hand, in some time intervals, two

indexes do not strictly improve with the increase of guidance

proportion. This is because TransWorld adopts random travel

principle and cannot guarantee the same vehicle number and

status at a particular sample time in different experiments.

However, the guidance algorithm for three proportions has

roughly brought about 2.08%, 5.81%, 10.12% increase in the

average speed and 6.17%, 12.70%, 15.98% decrease in the

number of vehicles respectively. This proves that the dynamic

guidance approach mentioned in section 2 is effective.

Fig. 9. Average speed

Fig. 10. Number of vehicles

V. CONCLUSIONS AND FUTURE WORKS

By focusing on the dynamic route guidance, this paper

introduces a new method based on the maximum flow

theory and shows the main steps in searching the optimal

path. Implementation in MapReduce primitives is outlined

to introduce the Cloud Computing Platform so as to solve

massive computation problems. Computational experiments

in ATS have verified the guidance approach. Results and

performance on Hadoop demonstrate the feasibility of cloud

computing. We still have a lot to do in future, among which

we will study how to improve the calculation performance

and test the relationship between cloud and road network

scale.

VI. ACKNOWLEDGMENTS

We would like to express our heartfelt gratitude for pro-

fessor Fei-Yue Wang for his guidance and encouragement as

well as those students without the help of whom this research

cannot be fulfilled.

REFERENCES

[1] Zi Zhang and Jian-min Xu, ”A Dynamic Route Guidance Arithmetic
based on Reinforcement Learning”, in Proceedings of the Fourth

International Conference on Machine Learning and Cybernetics,
Guangzhou, China, 18-21 August 2005, pp. 3607-3611.

[2] Chen Qun, ”Dynamic Route Guidance Method Based on Parti-
cle Swarm Optimization Algorithm”, in 2009 Second International

Conference on Intelligent Computation Technology and Automation,
Changsha, China, 10-11 Oct 2009, pp. 267-270.

[3] Manrong Yuan, Zhaosheng Yang and Shifeng Niu, ”Study on Dynamic
Route Guidance Method of Vehicle Based on Travel Time Reliability”,
in Advanced Computer Control (ICACC), 2010 2nd International

Conference, Shenyang, China, 27-29 March 2010, pp. 292-295.
[4] ZhenJiang Li, Cheng Chen and Kai Wang, Cloud Computing for

Agent-Based Urban Transportation Systems, IEEE Intelligent Systems,
vol. 26, no. 1, 2011, pp. 73-79.

[5] L.R.Ford and D.R.Fulkerson, Maximal flow through a network, Cana-

dian Journal of Mathematics, no. 8, 1956, pp. 399-404.
[6] Research Institute of Highway Ministry of Transport, Road Capacity

Manual, China, 2003.
[7] Jonathan Cohen, Graph Twiddling in a MapReduce World, Computing

in Science & Engineering, vol. 11, no. 4, 2009, pp. 29-41.
[8] J. Dean and S. Ghemawat, ”MapReduce: Simplifed Data Processing

on Large Clusters”, in Proceedings of OSDI’04: 6th Symposium on

Operating System Design and Implementation, San Francisco, CA,
Dec. 2004.

[9] Tom White, Hadoop: The Definitive Guide, O’Reilly Media, Inc. June
2009.

[10] Fei-Yue Wang, Computational theory and methods for complex sys-
tems, China Basic Sci., vol.6, no.41, 2004, pp. 3-10.

[11] Fei-Yue Wang, Artificial societies, computational experiments, and
parallel systems: An investigation on computational theory of complex
social-economic systems, Complex System and Complex Science.,
vol.1, no.4, 2004, pp. 25-35.

[12] Fei-Yue Wang, ”Integrated intelligent control and management for
urban traffic systems,” in Proceedings of the 2003 IEEE International

Conference on Intelligent Transportation Systems, 2003, pp.1313-
1317.

[13] Fei-Yue Wang and Shu-ming Tang, Concepts and frameworks of
Artificial Transportation Systems, Complex Systems and Complexity

Science, vol.1, no.2, 2004, pp. 52-59.
[14] Shuming Tang, ”A preliminary study for basic approaches in Artificial

Transportation Systems,” Ph.D. dissertation, Institute of Automation,
Chinese Academy of Sciences, Beijing, 2005.

[15] Jinyuan Li, Shuming Tang and Xiqin Wang, ”A software architecture
for Artificial Transportation Systems - principles and framework”, in

Proceedings of the 10th IEEE International Conference on Intelligent

Transportation Systems, Seattle, WA, Sept. 30-Oct. 3, 2007, pp.229-
234.

[16] Jinyuan Li, Shuming Tang and Fei-Yue Wang, ”An Investigation on
ATS from the Perspective of Complex Systems”, in Proceedings of

the 11th IEEE International Conference on Intelligent Transportation

Systems, Beijing, China, Oct. 12-15, 2008, pp.20-24.
[17] Fei-Yue Wang, Parallel Control and Management for Intelligent Trans-

portation Systems: Concepts, Architectures, and Applications, IEEE

Transactions on Intelligent Transportation Systems, vol. 11, no. 3,
2010, pp.630-638.

185

