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Abstract. In this paper, a new iterative ADP algorithm is proposed to solve the
finite horizon optimal tracking control problem for a class of discrete-time non-
linear systems. The idea is that using system transformation, the optimal tracking
problem is transformed into optimal regulation problem, and then the iterative
ADP algorithm is introduced to deal with the regulation problem with conver-
gence guarantee. Three neural networks are used to approximate the performance
index function, compute the optimal control policy and model the unknown sys-
tem dynamics, respectively, for facilitating the implementation of iterative ADP
algorithm. An example is given to demonstrate the validity of the proposed opti-
mal tracking control scheme.

Keywords: Adaptive dynamic programming, approximate dynamic program-
ming, optimal tracking control, neural networks, finite horizon.

1 Introduction

The optimal tracking problem of nonlinear systems has always been the key focus in
the control field in the latest several decades. Traditional optimal tracking control is
mostly implemented by feedback linearization [1]. However, the controller designed by
feedback linearization technique is only effective in the neighborhood of the equilib-
rium point. When the required operating range is large, the nonlinearities in the system
cannot be properly compensated by using a linear model. Therefore, it is necessary to
study the direct optimal tracking control approach for the original nonlinear system.
The difficulty for nonlinear optimal feedback control lies in solving the time-varying
HJB equation which is usually too hard to solve analytically. In order to overcome the
difficulty, in [2], the finite-time optimal tracking control problem was solved via trans-
forming the system model into a sequence of “pseudo-linear” systems. In [3], an infinite
horizon approximate optimal tracking controller based on the successive approximation
approach was proposed. However, the literature mentioned above is all restricted in the
continuous-time domain. There are few results discussing the optimal tracking control
problem for discrete-time systems. To the best of our knowledge, only [4] has presented
the optimal tracking control scheme in infinite horizon domain. There are no results on
the finite horizon optimal tracking control for discrete-time nonlinear systems. This
motivates our research.
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As is known, dynamic programming is very useful in solving the optimal control
problems. However, due to the “curse of dimensionality”, it is often computationally
untenable to run dynamic programming to obtain the optimal solution. The approxi-
mate dynamic programming (ADP) algorithm was proposed by Werbos [5] as a way to
solve optimal control problems forward-in-time. ADP combines adaptive critic design,
reinforcement learning technique with dynamic programming. In [5] adaptive dynamic
programming approaches were classified into four main schemes: Heuristic Dynamic
Programming (HDP), Dual Heuristic Dynamic Programming (DHP), Action Depen-
dent Heuristic Dynamic Programming (ADHDP), also known as Q-learning, and Ac-
tion Dependent Dual Heuristic Dynamic Programming (ADDHP). Though in recent
years, ADP has been further studied by many researchers [6, 7, 8, 9, 10, 12, 11], most
results are focus on the optimal regulation problem. In [13], a greedy HDP iteration al-
gorithm to solve the discrete-time Hamilton-Jacobi-Bellman (DT HJB) equation of the
optimal regulation control problem for general nonlinear discrete-time systems is pro-
posed, which does not require an initially stable policy. It has been rigorously proved
in [13] that the greedy HDP iteration algorithm is convergent. To the best of our knowl-
edge, till now only in [4], ADP was used to solve the infinite-time optimal tracking
control problem. There have been no results discussing how to use ADP to solve the
finite-time optimal tracking control problem for nonlinear systems.

In this paper, it is the first time to solve finite horizon optimal tracking control prob-
lem for a class of discrete-time nonlinear systems using ADP. We firstly transform the
tracking problem into an optimal regulation problem, and then a new iterative ADP
algorithm can be properly introduced to deal with this regulation problem.

2 Paper Preparation

Consider the following discrete-time nonlinear system

xk+1 = f(xk) + g(xk)uk (1)

where xk ∈ �n and the input uk ∈ �m. Here assume that the system is controllable. In
this paper, the reference orbit ηk is generated by the n-dimensional autonomous system
as ηk+1 = S(ηk), where ηk ∈ �n, S(ηk) ∈ �n. Therefore we define the tracking error
as:

zk = xk − ηk. (2)

Let vk be an arbitrary finite-horizon tracking control sequence starting at k and let
Uzk

=
{
vk : z(f)

(
zk, vk

)
= 0

}
be the set of all finite-horizon tracking control se-

quences of xk. Let U (i)
zk =

{
vk+i−1

k : z(f)
(
zk, vk+i−1

k

)
= 0,

∣
∣vk+i−1

k

∣
∣ = i

}
be the set

of all finite-horizon admissible control sequences of zk with length i, where the final
state error can be written as z(f)

(
zk, vk+i−1

k

)
= zk+i. Then, Uzk

= ∪1≤i<∞U (i)
zk . By

this notation, a state error zk is controllable if and only if Uzk
�= ∅.

Noticing that the objective in this paper is to design an optimal feedback control
policy vk, which not only renders the state error zk asymptotically tracking the reference
orbit, i.e., zk asymptotically approaches zero, but also minimizes the performance index
function as follow
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J(zk, vN−1
k ) =

∑N−1

i=k

{
zT

i Qzi + vT
i Rvi

}
, (3)

where Q and R are positive-definite matrices. U(k) = zT
k Qzk + vT

k Rvk is the utility
function. In addition, we define

vk = uk − uek, (4)

where uek is the steady control input expressed as

uek = g−1(ηk)(ηk+1 − f(ηk)) (5)

Combining (2) with (5) , we can get

zk+1 = F (zk, vk) = −S(ηk) + f(zk + ηk) + g(zk + ηk) vk

−g(zk + ηk)g−1(ηk)(f(ηk) − S(ηk)). (6)

For any given system state error zk, the objective of the present finite-horizon op-
timal control problem is to find a finite-horizon admissible control sequence vN−1

k ∈
U (N−k)

zk ⊆ Uxk
to minimize the performance index J

(
zk, vN−1

k

)
. The control sequence

vN−1
k has finite length. However, before it is determined, we do not know its length

which means that the length of the control sequence
∣
∣vN−1

k

∣
∣ = N − k is unspecified.

This kind of optimal control problems has been called finite-horizon problems with
unspecified terminal time.

3 Properties of the Iterative Adaptive Dynamic Programming
Algorithm

In this section, a new iterative ADP algorithm is proposed to obtain the finite horizon
optimal tracking control for nonlinear systems. The goal of the proposed iterative ADP
algorithm is to construct an optimal control policy v∗(zk), k = 0, 1, . . ., which makes
an arbitrary initial state error z0 to the singularity 0 within finite time, simultaneously
makes the performance index function reach the optimum V ∗(zk). Convergence proofs
will also be given.

3.1 Derivation of the Iterative ADP Algorithm

In the iterative ADP algorithm, the performance index function and control policy are
updated by recurrent iteration, with the iteration number i increasing from 0. Let the
initial performance index function V0(zk) = 0 and there exists a control vk that makes
F (zk, vk) = 0, where zk is any initial state error. Then, the iterative control v0(zk) can
be computed as follows:

v0(zk) = arg min
vk

{U(zk, vk) + V0(zk+1)} , (7)

s.t. zk+1 = F (zk, vk) = 0
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where V0(zk+1) = 0. The performance index function can be updated as

V1(zk) = U(zk, v0(zk)) + V0(F (zk, v0(zk)). (8)

For i = 1, 2, . . ., the iterative ADP algorithm will iterate between

vi(zk) = arg min
vk

{U(zk, vk) + Vi(zk+1)}
= arg min

vk

{U(zk, vk) + Vi(F (zk, vk))} (9)

and performance index function

Vi+1(zk) = min
vk

{U(zk, vk) + Vi(zk+1)}
= U(zk, vi(zk)) + Vi(F (zk, vi(zk)). (10)

3.2 Properties of the Iterative ADP Algorithm

In the above, we can see that the performance index function V ∗(zk) is replaced by a
sequence of iterative performance index functions Vi(zk) and the optimal control law
v∗(zk) is replaced by a sequence of iterative control law vi(zk), where i ≥ 0 is the
iterative index. As (10) is not an HJB equation for ∀i ≥ 0, generally, the iterative
performance index function Vi(zk) is not optimal. However, we can prove that V ∗(zk)
is the limit of Vi(zk) as i → ∞.

Theorem 1. Let zk be an arbitrary state error vector. Suppose that there is a positive
integer i such that U (i)

zk �= ∅. Then, for U (i+1)
zk �= ∅, the performance index function

Vi(zk) obtained by (7)–(10) is a nonincreasing convergent sequence for ∀ i ≥ 1, i.e.,
Vi+1(zk) ≤ Vi(zk).

Proof. We prove this by mathematical induction. First, we let i = 1. Then, We have

V1(zk) = min
vk

{U(zk, vk) + V0(F (zk, vk))}
= min

vk

{U(zk, vk)} = U(zk, v0(zk)) (11)

where V0(F (zk, v0(zk)) = 0. The finite horizon admissible control sequence vk
k =

(v0(zk)).
Next, let us show that there exists a finite horizon admissible control sequence v̂k+1

k

with length 2 such that V1(zk, vk
k) = V̂2(zk, v̂k+1

k ). Obviously, v0(zk) ∈ U (1)
zk . The

trajectory starting from zk under the control of vk
k is zk+1 = F (zk, v0(zk)) = 0. Then,

we create a new control sequence v̂k+1
k by adding a 0 at the end of sequence vk

k to
obtain the control sequence v̂k+1

k = (vk
k, 0). Obviously, |v̂k+1

k | = 2. The state error
trajectory under the control of v̂k+1

k is zk+1 = F (zk, v0(zk)), zk+2 = F (zk+1, vk+1)
where vk+1 = 0. As zk+1 = 0 and F (0, 0) = 0, we have zk+2 = F (zk+1, vk+1) = 0.
So, v̂k+1

k is a finite horizon admissible control. Furthermore,

V1(zk, v̂k
k) =U(zk, vk)

=U(zk, vk) + U(zk+1, vk+1) = V̂2(zk, v̂k+1
k ). (12)
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On the other hand, we have

V2(zk) =min
vk

{U(zk, vk) + V1(F (zk, vk)} . (13)

According to (11), we have

V2(zk) = min
vk+1

k

{U(zk, vk) + U(zk+1, vk+1)} (14)

where zk+2 = F (zk+1, vk+1) = 0. Then we have

V2(zk) ≤ V̂2(zk, v̂k+1
k ). (15)

So the theorem holds for i = 1. Assume that the theorem holds for any i = l − 1,
where l ≥ 1. We have

Vl(zk) =min
vk

{U(zk, vk) + Vl−1(F (zk, vk))} (16)

where the corresponding finite horizon admissible control sequence is vk+l−1
k .

Then for i = l, we create a control sequence v̂k+l
k =

{
vk+l−1

k , 0
}

with length
l + 1. Then the state error trajectory under the control of v̂ is zk+1 = F (zk, vl(zk)),
zk+2 = F (zk+1, vl−1(zk+1)), . . ., zk+l = F (zk+l, v0(zk+l)) = 0, zk+l+1 = 0. So
v̂k+l

k is finite horizon admissible control. The performance under the control sequence
is

Vl+1(zk, v̂k+l
k ) =U(zk, vl(zk)) + U(zk+1, vl−1(zk+1))

+ . . . + U(zk+l, v0(zk+l)) + U(zk+l+1, 0)

=
l+1∑

j=0

U(zk+j , vi−j(zk+j)) (17)

where vl−j = 0 for all l < j.
On the other hand, we have

Vi+1(zk) = min
vk

{U(zk, vk) + Vi(F (zk, vk)} = min
vk+i

k

⎧
⎨

⎩

i+1∑

j=0

U(zk+j , vi−j(zk+j))

⎫
⎬

⎭
.

(18)

Then, we have

Vl+1(zk) ≤ Vl+1(zk, v̂k+l
k ) = Vl(zk) (19)

The proof is completed.

Lemma 1. Let μi(zk), i = 0, 1 . . . be any sequence of tracking control, and vi(zk) is
expressed as (9). Define Vi+1(zk) as (10) and Λi+1(zk) as

Λi+1(zk) = U(zk, μi(zk)) + Λi(zk+1). (20)

Then if V0(zk) = Λ0(zk) = 0, we have Vi(zk) ≤ Λi(zk), ∀i.
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According to Theorem 1, we know that the performance index function Vi(zk) ≥ 0 is
a nonincreasing bounded sequence for iteration index i = 1, 2, . . .. Then we can derive
the following theorem.

Theorem 2. Let zk be an arbitrary state error vector. Define the performance index
function V∞(zk) as the limit of the iterative function Vi(zk), i.e.,

V∞(zk) = lim
i→∞

Vi(zk). (21)

Then, we have the following HJB equation

V∞(zk) = min
vk

{U(zk, vk) + V∞(zk+1)} (22)

holds.

Proof. Let ηk = η(zk) be any admissible control. According to Theorem 1, for ∀i, we
have

V∞(zk) ≤ Vi+1(zk) ≤ U(zk, ηk) + Vi(zk+1). (23)

Let i → ∞, we have

V∞(zk) ≤ U(zk, ηk) + V∞(zk+1). (24)

So

V∞(zk) ≤ min
vk

{U(zk, ηk) + V∞(zk+1)}. (25)

Let ε > 0 be an arbitrary positive number. Since Vi(zk) is nonincreasing for ∀ i and
limi→∞ Vi(zk) = V∞(zk), there exists a positive integer p such that

Vp(zk) − ε ≤ V∞(zk) ≤ Vp(zk). (26)

Then, we let

Vp(zk) = min
vk

{U(zk, vk) + Vp(zk+1)}
= U(zk, vp−1(zk)) + Vp−1(zk+1). (27)

Hence

V∞(zk) ≥ U(zk, vp−1(zk)) + Vp−1(zk+1) − ε

≥ U(zk, vp−1(zk)) + V∞(zk+1) − ε

≥ min
vk

{U(zk, vk) + V∞(zk+1)} − ε. (28)

Since ε is arbitrary, we have

V∞(zk) ≥ min
vk

{U(zk, vk) + V∞(zk+1)}. (29)

Combining (25) and (29) we have

V∞(zk) = min
vk

{U(zk, vk) + V∞(zk+1)} (30)

which proves the theorem.
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Next, we will prove that the iterative performance index function Vi(zk) converges to
the optimal performance index function V ∗(zk) as i → ∞.

Theorem 3. Let the performance index function Vi(zk) be defined by (10). If the system
state error zk is controllable, then the performance index function Vi(zk) converges to
the optimal performance index function V ∗(zk) as i → ∞, i.e.,

Vi(zk) → V ∗(zk). (31)

Proof. As

V ∗(zk) = min
{
V (zk, vk) : vk ∈ U (i)

zk

}
, i = 1, 2, . . . . (32)

we have

V ∗(zk) ≤ Vi(zk). (33)

Then, let i → ∞, we have

V ∗(zk) ≤ V∞(zk). (34)

Let ε > 0 be an arbitrary positive number. Then there exists a finite horizon admis-
sible control sequence ηq such that

Vq(zk) ≤ V ∗(zk) + ε. (35)

On the other side, according to Lemma 1, for any finite horizon admissible control
ηq , we have

V∞(zk) ≤ Vq(zk) (36)

holds.
Combining (35) and (36), we have

V∞(zk) ≤ V ∗(zk) + ε. (37)

As ε is arbitrary positive number, we have

V∞(zk) ≤ V ∗(zk). (38)

According to (34) and (38), we have

V∞(zk) = V ∗(zk). (39)

The proof is completed.

Then we can derive the following corollary.

Corollary 1. Let the performance index function Vi(zk) be defined by (10). If the sys-
tem state error zk is controllable and Theorem 3 holds, then the iterative control law
vi(zk) converges to the optimal control law v∗(zk).
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3.3 The Procedure of the Algorithm

Now we summarize the iterative ADP algorithm for the time-variant optimal tracking
control problem as:

Step 1. Give x(0), imax , ε, desired trajectory ηk.
Step 2. Set i = 0, V0(zk) = 0.
Step 3. Compute v0(zk) by (7) and V1(zk) by (8).
Step 4. Set i = i + 1.
Step 5. Compute vi(zk) by (9) and Vi+1(zk) by (10).
Step 6. If |Vi+1(zk) − Vi(zk)| < ε then go to step 8, else go to step 7.
Step 7. If i > imax then go to step 8, otherwise go to step 6.
Step 8. Stop.

4 Simulation Study

Consider the following affine nonlinear system

xk+1 = f(xk) + g(xk)uk (40)

where xk =
[
x1k x2k

]T
, uk =

[
u1(k) u2(k)

]T
,

f(xk) =
[
0.2x1k exp(x2

2k)
0.3x3

2k

]
, g(xk) =

[−0.2 0
0 −0.2

]
.

( )z k

( )z k

ˆ( 1)z k

( )z k

ˆ( ( ))V z k

ˆ( ( 1))V z k utilityˆ( )v k

Fig. 1. The structure diagram of the algorithm
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The desired trajectory is set to η(k) = [ sin(k + π
2 ) 0.5 cos(k) ]T . We use neural

network to implement the iterative ADP algorithm. We choose three-layer neural net-
works as the critic network, the action network and the model network with the structure
2-8-1, 2-8-2 and 6-8-2 respectively. The initial weights of action network, critic network
and model network are all set to be random in [−1, 1]. It should be mentioned that the
model network should be trained first. For the given initial state x(0) = [1.5 1]T , we
train the model network for 10000 steps under the learning rate αm = 0.05. After the
training of the model network completed, the weights keep unchanged. Then the critic
network and the action network are trained for 5000 steps so that the given accuracy
ε = 10−6 is reached. In the training process, the learning rate βa = αc = 0.05. The
structure diagram of the algorithm is shown in Fig. 1.

The convergence curve of the performance index function is shown in Fig.2(a). The
state trajectories are given as Fig. 2(b) and Fig. 2(c). The corresponding control curves
are given as Fig. 2(d).
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Fig. 2. The results of the algorithm

5 Conclusions

In this paper we propose an effective algorithm to solve the optimal finite horizon track-
ing control problem for a class of discrete-time systems. First, the tracking problems are
transformed as regulation problem. Then the iterative ADP algorithm is introduced to
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deal with the regulation problem with rigorous convergence analysis. Three neural net-
works are used as parametric structures to approximate the performance index function,
compute the optimal control policy and model the unknown system respectively, i.e. the
critic network, the action network and the model network. The construction of model
network make the scheme can be use to control the plant with unknown dynamics. The
simulation study have successfully demonstrated the upstanding performance of the
proposed tracking control scheme for various discrete-time nonlinear systems.
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