
Received: April 24, 2022. Revised: July 14, 2022. Accepted: August 2, 2022
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Cerebral Cortex, 2023, 33, 4248–4261

https://doi.org/10.1093/cercor/bhac340
Advance access publication date 7 September 2022

Original Article

The development of cortical functional hierarchy is
associated with the molecular organization of
prenatal/postnatal periods
Yuxin Zhao 1,2,†, Meng Wang 1,2,†, Ke Hu 1,2, Qi Wang 1,2, Jing Lou 3, Lingzhong Fan 1,2,4, Bing Liu 3,5,*

1Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China,
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China,
3State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China,
4CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China,
5Chinese Institute for Brain Research, Beijing 102206, China

*Corresponding author: State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China. Email: bing.liu@bnu.edu.cn
†Yuxin Zhao and Meng Wang contributed equally to the work.

The human cerebral cortex conforms to specific functional hierarchies facilitating information processing and higher-order cognition.
Prior studies in adults have unveiled a dominant functional hierarchy spanning from sensorimotor regions to transmodal regions,
which is also present in younger cohorts. However, how the functional hierarchy develops and the underlying molecular mechanisms
remain to be investigated. Here, we set out to investigate the developmental patterns of the functional hierarchy for preschool
children (#scans = 141, age = 2.41–6.90 years) using a parsimonious general linear model and the underlying biological mechanisms
by combining the neuroimaging developmental pattern with two separate transcriptomic datasets (i.e. Allen Human Brain Atlas and
BrainSpan Atlas). Our results indicated that transmodal regions were further segregated from sensorimotor regions and that such
changes were potentially driven by two gene clusters with distinct enrichment profiles, namely prenatal gene cluster and postnatal
gene cluster. Additionally, we found similar developmental profiles manifested in subsequent developmental periods by conducting
identical analyses on the Human Connectome Projects in Development (#scans = 638, age = 5.58–21.92 years) and Philadelphia
Neurodevelopment Cohort datasets (#scans = 795, age = 8–21 years), driven by concordant two gene clusters. Together, these findings
illuminate a comprehensive developmental principle of the functional hierarchy and the underpinning molecular factors, and thus
may shed light on the potential pathobiology of neurodevelopmental disorders.
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Introduction
The human cerebral cortex consists of functionally distinct
regions intrinsically organized along multiple large-scale hier-
archical axes (hierarchies) that reflect continuous variations of
cortical properties and mediate higher-order cognitive functions
in response to environmental and physiological stimuli (Burt
et al. 2018; Huntenburg et al. 2018; Raut et al. 2020). Importantly,
these complex and large-scale functional hierarchies of the adult
human cerebral cortex have been well characterized by dimen-
sionality reduction of the functional connectome (Margulies et al.
2016). Notably, the functional hierarchy along the sensorimotor-
to-transmodal (S-T) axis (S-T functional hierarchy), corresponding
to the intrinsic cortical geometry and paralleling anatomical
(Burt et al. 2018) as well as evolutionary hierarchies (Hill et al.
2010; Buckner and Krienen 2013), has received great concern.
Anchored by, at one end, sensorimotor cortical regions, and at the
other end, transmodal cortical regions (i.e. the default network
in humans), the S-T functional hierarchy is assumed to guide
the information propagation of sensory inputs and to further
facilitate the advanced mental processes in the transmodal
cortical regions (Mesulam 2012), as the functional distance from
sensory inputs strongly enables the establishment of higher-
order cognitive states (Murphy et al. 2018). More interestingly,

the S-T functional hierarchy is gradually believed to be involved
in multiple neurocognitive processes (Huntenburg et al. 2018;
Sydnor et al. 2021) as well as neurodevelopmental disorders
(Hong et al. 2019; Dong, Yao, et al. 2021). In addition, studies have
shown that the S-T functional hierarchy undergoes a connectome
gradient between the sensorimotor and transmodal regions of
the brain during developmental processes of late-childhood to
adolescents (Nenning et al. 2020; Xia et al. 2022). The predecessor
of S-T functional hierarchy has also been detected in neonates
(Larivière et al. 2020), however, how the S-T functional hierarchy
matures during early developmental stages remains enigmatic
and can be a crucial developmental phase when the atypical
neurodevelopmental processes may trigger chronic neurological
disorders such as the autism spectrum disorder (ASD).

Studies have demonstrated that the maturation and differen-
tiation processes of the functional organization in the cortex are
driven by complex molecular and cellular mechanisms involving
heritable genetic factors (Glahn et al. 2010; Silbereis et al. 2016;
Bertolero et al. 2019; Reineberg et al. 2020). Twin-based analyses
have revealed that the genetic patterning of cortical thickness and
surface area is consistent with functionally defined boundaries
(Chen et al. 2012, 2013), supporting the genetic determining role
in cortical functional organization. Moreover, gene expression
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profiles are also concordant with the spatial topography of the cor-
tex (Hawrylycz et al. 2012). Furthermore, functional organization
of the cortex mainly depends on the combinatorial proportion of
distinct cell types. For example, projection neurons mainly serve
as forming long-range cortical circuits, laying structural foun-
dation for the functional connectome (Custo Greig et al. 2013).
However, the molecular signatures underlying the macroscale
cortical functional hierarchy development remains poorly under-
stood. Therefore, understanding the developmental principles of
the cortical functional organization and the underlying molec-
ular mechanisms might be the key to delineating the patho-
mechanisms of major neurodevelopmental disorders.

Based on the intriguing evidence, we hypothesized that the
cortical S-T functional hierarchy might gradually develop from
early childhood to adulthood and largely depend on the canonical
molecular signatures for the timely segregation of the functional
hierarchy. Here, we set out to investigate the developmental pat-
tern of the S-T functional hierarchy in young children (aged 2.41–
6.90 years) by applying a parsimonious general linear model (GLM)
onto the Calgary Preschool dataset (Reynolds et al. 2020). To
accurately elucidate the molecular signatures underlying the S-
T functional hierarchy development, we employed the imaging
transcriptomic analyses strategy, as in previous studies (Grothe
et al. 2018; Morgan et al. 2019; Romero-Garcia et al. 2019; Martins
et al. 2021), to dissect the disease, gene ontology (GO), and cell-
type enrichment profiles, in reference to the whole-brain tran-
scriptome derived from the Allen Human Brain Atlas (AHBA). A
concern may arise for the age mismatch phenomenon between
the early childhood neuroimaging dataset (i.e. Calgary Preschool
dataset) and the adulthood transcriptome dataset (i.e. AHBA).
However, recent evidences have demonstrated that gene expres-
sion changes slow markedly after entering into early childhood
with the fastest changes before birth, followed by infancy periods
(Colantuoni et al. 2011; Kang et al. 2011). Since currently there is
no early childhood whole-brain transcriptome dataset available,
here, we assume that the adulthood transcriptome dataset may
characterize the essentially similar gene expression profile of
childhood and adolescents. To further functionally categorize the
genes related to the development of the S-T functional hierar-
chy, we performed cluster analysis of the relevant genes iden-
tified based on their temporal expression profiles in the cortex,
with respect to the BrainSpan Atlas (http://www.brainspan.org),
followed by the enrichment analysis for each cluster of genes.
Finally, to confirm our hypothesis could also be applied to sub-
sequent developmental stages, we conducted similar analyses
using the Human Connectome Projects in Development (HCP-D)
(Harms et al. 2018) and Philadelphia Neurodevelopment Cohort
(PNC) (Satterthwaite et al. 2014) with subject age ranges of 5.58–
21.92 years and 8–21 years, respectively.

Materials and methods
Neuroimaging data acquisition
To investigate the developmental pattern of the S-T functional
hierarchy, we exploited three independent developmental
datasets collectively spanning a large age range. Details of these
three datasets are described in the following text:

Calgary Preschool dataset
The Calgary Preschool magnetic resonance imaging (MRI) dataset,
released by the Developmental Neuroimaging Lab at the Univer-
sity of Calgary, was aimed to characterize typical development
during early childhood (Reynolds et al. 2020). Here, n = 169 passive

viewing functional MRI (fMRI) scans were initially drawn from
the Calgary Preschool MRI dataset, for which the correspond-
ing T1 images were available. The passive viewing fMRI scans
were acquired with a gradient-echo, echo-planar imaging (GE-
EPI) sequence (3.59 × 3.59 × 3.6 mm3 resolution, 36 slices, time
repetition [TR]/time echo [TE] = 2,000/30 ms), when children were
watching a movie of their choice (movie choice was not avail-
able). Each child was scanned multiple times at approximately
6-month intervals. Thus, multiple scans were available for each
child. Herein, n = 141 scans (age = 2.41–6.90 years, sex = 65F/76M,
from n = 60 subjects) remained for further analysis after quality
control (QC). See “Data exclusion criteria” for details of QC. For
convenience, the passive viewing fMRI scans were referred to
throughout the text as resting-state fMRI (rs-fMRI) scans as well.

HCP-D dataset
The HCP-D study (Harms et al. 2018) was committed to chart-
ing the typical developmental pattern of human brain connec-
tome during childhood and the transition through puberty to
young adulthood. Here, all rs-fMRI scans were initially down-
loaded from the HCP-D release 2.0 dataset. The rs-fMRI scans
were acquired with a 2D multiband gradient-recalled echo, EPI
sequence (2 × 2 × 2 mm3 resolution, 72 slices, TR/TE = 800/37 ms),
with the subjects being awake and fixating at the displayed
crosshair. Notably, the downloaded rs-fMRI scans already under-
went the HCP minimal preprocessing pipelines (Glasser et al.
2013) and the FMRIB Software Library FIX (Salimi-Khorshidi et al.
2014) denoising procedure. Four scans were available for the older
subjects (8–21 years) and 6 scans were available for the younger
subjects (5–7 years). The officially concatenated scans for each
subject (n = 652 scans) were used in our study. And, n = 638 scans
(age = 5.58–21.92 years, sex = 346F/292M) remained for further
analysis after QC. See “Data exclusion criteria” for details of QC.

PNC dataset
The PNC (Satterthwaite et al. 2014) is a large-scale study funded by
the National Institute of Mental Health to characterize the typical
development and delineate the abnormal neurodevelopmental
mechanisms associated with psychiatric disorders. Here, n = 1391
rs-fMRI scans from the PNC dataset were initially included in
our study, for which the corresponding T1 images were available.
The rs-fMRI scans were acquired with a single-shot, interleaved
multislice, GE-EPI sequence (3 × 3 × 3 mm3 resolution, 46 slices,
TR/TE = 3,000/32 ms), with the subjects instructed to stay awake
and fixate at the displayed crosshair. The n = 795 scans (age = 8–
21 years, sex = 429F/209M) remained for further analysis after QC.
See “Data exclusion criteria” for details of QC.

Rs-fMRI processing
Preprocessing
For the Calgary Preschool and PNC datasets, rs-fMRI scans were
preprocessed by C-PAC (https://fcp-indi.github.io/) for slice-time
correction, head motion correction, skull skipping, and intensity
normalization, followed by nuisance regression with effects of
head motion (including linear/quadratic trends), white matter sig-
nals, and cerebrospinal fluid signals as regressors, and the band-
pass filtering (0.01–0.1 Hz). The band-passed rs-fMRI scans were
then coregistered to a pediatric Montreal Neurological Institute
(MNI) template derived from 324 individuals aged 4.5–18.5 years
(Fonov et al. 2011). For the HCP-D dataset, all rs-fMRI scans were
subjected to the HCP minimal preprocessing pipelines (Glasser
et al. 2013) and FIX (Salimi-Khorshidi et al. 2014) denoising
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procedure. Additionally, we band-passed (0.01–0.1 Hz) and
normalized the concatenated scans for each subject.

Data exclusion criteria
To mitigate the effects of poor data quality on our results, we
screened the above-mentioned neuroimaging datasets according
to the following data exclusion criteria:

(1) Poor medical condition (for PNC dataset only): PNC dataset
provided a medical rating score indicating the severity of
a patient’s medical condition. The score ranged from 0 to
5 (0 = no medical problems; 1 = minor, no central nervous
system impact; 2 = moderate; 3 = significant; and 4 = major).
Here, we excluded subjects with a score ≥ 2. The n = 547 scans
were excluded in this step for the PNC dataset.

(2) Poor image quality for preprocessing: n = 3 scans from the
Calgary Preschool dataset were discarded at the image pre-
processing step due to poor image quality.

(3) Large head motion: For the Calgary Preschool and PNC
datasets, we selected the mean relative root mean square
(RMS) framewise displacement (FD) of a rs-fMRI scan as
head motion metric. For the HCP-D dataset, as all the rs-
fMRI scans were in the form of the concatenation of multiple
scans, we regarded the mean of mean relative RMS FD of the
concatenated scans as the overall head motion metric in this
study. The scan was excluded if the head motion metric was
>0.2 mm. Here, n = 8, n = 14, and n = 48 scans were further
excluded, respectively, for the Calgary Preschool, HCP-D, and
PNC datasets.

(4) Functional connectome disconnection: To facilitate the S-T
functional hierarchy analysis, we excluded the scans with
disconnected functional connectivity (FC) matrix (refer to
“Functional connectivity calculation”). Here, n = 17 and n = 1
scans were further excluded for the Calgary Preschool and
PNC datasets, respectively.

Finally, n = 141, n = 638, and n = 795 scans, respectively, for Cal-
gary Preschool, HCP-D, and PNC datasets, were used for further
analysis.

FC calculation
After the preprocessing procedure, we calculated the FC matrix.
Specifically, for the Calgary Preschool and PNC datasets, the pre-
processed rs-fMRI time-series were resampled onto the conte69
surface space using workbench command (Marcus et al. 2013).
We then averaged the time-series into 1,000-parcel cortical par-
cellation, as proposed by Schaefer et al. (2018). Notably, among
the 1,000 parcels, two parcels were not available in the originally
released label file. Then for each rs-fMRI scan, we calculated the
FC matrix using Pearson’s correlation, resulting in a 998 × 998 FC
matrix. For the HCP-D dataset, we first extracted cortical time-
series from the preprocessed data. As the surface time-series were
already in conte69 surface space, we applied the same cortical
parcellation scheme (Schaefer et al. 2018) directly to it for each
subject. After that, we calculated the FC matrix the same as above,
and a 998 × 998 FC matrix was obtained for each rs-fMRI scan.

S-T functional hierarchy and its developmental
pattern
For each FC matrix calculated above, an affinity matrix was
further calculated using a cosine similarity kernel and then
went through a row-wise 90% thresholding, followed by non-
linear dimensionality reduction implemented by diffusion map

embedding as in previous work (Margulies et al. 2016; Hong et al.
2019). Herein, we calculated the first 10 embeddings, resulting
in a low-dimensional representation (998 × 10) for the original
FC matrix (998 × 998) of each rs-fMRI scan. These embeddings
were also known as functional hierarchies along different axes
among which the S-T functional hierarchy of adults had been
well characterized in a number of studies, including both healthy
(Margulies et al. 2016) and psychiatric cohorts (Hong et al. 2019).
The S-T functional hierarchy was anchored at one end by primary
sensorimotor regions and default mode network (DMN) regions
at the opposite end (Margulies et al. 2016). The above-mentioned
procedure was conducted by the Brainspace toolbox (Vos de Wael
et al. 2020).

We then aimed at investigating how the S-T functional hier-
archy might develop with increasing age. Given that the adult
cortical functional topography develops during the first 2 years of
life (van den Heuvel et al. 2015), we aligned the low-dimensional
representation of the functional connectome of the younger sub-
jects to that of adults derived from an independent dataset (i.e.
HCP 100 unrelated young adults (Hodge et al. 2016), age = 22–
36 years, sex = 54F/46M) using the Procrustes alignment method
(Langs et al. 2015). We focused on the first embedding (i.e. S-T
functional hierarchy) after alignment. The GLM was then used to
investigate age-related changes of the S-T functional hierarchy.
For each of 998 parcels, we established a GLM with age as the
independent variate, value of the S-T functional hierarchy as the
dependent variate, and sex as a covariate. Notably, we observed
that the head motion was negatively correlated with age, as was
reported in Dong, Margulies, et al. (2021). Hence, the head motion
was not included in the GLM in the main analysis. Besides, we
evaluated the head motion effects by including head motion in
the GLM as a covariate. The procedure provided us an age-related
T statistical map for the following analysis.

Functional annotation using the NeuroSynth
database
Specific NeuroSynth terms were used to investigate the cogni-
tive associates of the age-related T statistical map. NeuroSynth
database (Yarkoni et al. 2011) contained 1,334 terms; however,
the terms were restricted to those overlapped with the Cognitive
Atlas (Poldrack et al. 2011) here, resulting in n = 123 terms for
further analysis as in the previous studies (Shafiei et al. 2020;
Hansen et al. 2021). See Supplementary File 1 for all the 123
terms used in this study. We used the “association test” volumetric
maps, which were resampled to the conte69 surface space using
workbench command (Marcus et al. 2013) and summarized across
the 1,000-parcel cortical parcellation (Schaefer et al. 2018). This
procedure yielded 123 (# of terms) × 998 (# of cortical parcels)
maps. The age-related T statistical map was spatially correlated
to the 123 NeuroSynth terms using Spearman’s correlation, and
the significance was determined by the permutation test (age
permutated).

Imaging transcriptomic analyses
Leveraging AHBA, we attempted to investigate microscale molec-
ular mechanisms underlying the macroscale neuroimaging phe-
notype (i.e. developmental pattern of the S-T functional hier-
archy). Since only the adult whole-brain transcriptome dataset
is available, we evaluated the biological plausibility of spatial
correlation between the adult gene expression map and the brain
developmental pattern during childhood. Recently, Colantuoni
et al. has reported that no dramatic changes of gene expres-
sion occur in the prefrontal cortex (PFC), after early childhood,
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compared with that before birth and during infancy (Colantuoni
et al. 2011). In this study, using the BrainSpan Atlas (refer to
“Gene clustering based on developmental transcriptomic data
from the BrainSpan Atlas” section), we further evaluated the gene
expression temporal dynamics for other cortical areas (11 cortical
regions, including PFC), and the results across multiple cortical
areas were consistent with those of Colantuoni et al. (2011).
See Supplementary File 2 and Supplementary Fig. 1 for further
information.

Transcriptomic data from the AHBA
AHBA is a high-resolution microarray transcriptomic dataset,
including >20,000 gene expressions of 3,702 tissue samples
obtained from 6 healthy adult donors (Hawrylycz et al. 2012).
We downloaded the data from the AHBA website (http://human.
brain-map.org/) and applied the abagen toolbox (Markello et al.
2021) to process and project the data into the 1,000-parcel
cortical parcellation (Schaefer et al. 2018) using the default
parameters. Briefly, microarray probe-to-gene mappings were
reannotated with information from Arnatkeviciute et al. (2019).
The reannotated probes were then filtered by an intensity-based
filtering method (i.e. only probes exceeding background noise in
50% of all tissue samples were retained). Then, among multiple
probes corresponding to the same gene, the probe with the
highest differential stability was selected. The above procedure
yielded 15,631 genes. Following correction of the MNI coordinates
(https://github.com/chrisgorgo/alleninf), the tissue samples were
assigned to 998 parcels of the Schaefer’s parcellation scheme
(Schaefer et al. 2018) by matching the nearest parcel (tolerance
was 2 mm). The n = 649 parcels were assigned with at least 1
tissue sample. Tissue samples were then averaged separately for
each donor and then averaged across the donors, resulting in a
649 (# of cortical parcels) × 15,631 (# of genes) gene expression
matrix.

Gene ranking
A total of 15,631 genes were ranked in descending order according
to their expression correlations (Spearman’s correlation) with the
S-T functional hierarchy developmental pattern (i.e. age-related
T statistical map), resulting in the ranked gene list acting as the
input for the subsequent enrichment analyses. See Supplemen-
tary File 3 for the sorted gene list of Calgary Preschool, HCP-D,
and PNC datasets.

Definition of top-ranked genes
For the Calgary Preschool dataset, the top 5% of genes were
selected as the top-ranked genes (n = 782). For the HCP-D and PNC
datasets, we selected the overlapping genes of the 2 datasets’
top 10% genes as the top-ranked genes (n = 452) considering the
age-range similarity and overall generalizability among these 2
datasets. Among the top-ranked genes from the Calgary Preschool
dataset (n = 782), n = 687 genes were overlapped with the genes
in the BrainSpan Atlas, while for the HCP-D and PNC datasets,
n = 406 of the top-ranked genes (out of n = 452) were available in
the BrainSpan Atlas. Notably, both the top 5% genes of Calgary
Preschool dataset and the top 10% genes of HCP-D dataset sur-
vived FDR-BH procedure (PFDR < 0.05).

Disease enrichment analysis
The Gene-Disease Associations (GDA), downloaded from the Dis-
GeNET database (https://www.disgenet.org/; Piñero et al. 2020),
were used to characterize the underlying disease enrichment
profiles. We filtered GDAs based on the following 3 aspects:

(1) Evidence index (EI): EI is an index that indicates the existence
of contradictory results in the publications (e.g. EI = 1 indi-
cates that all publications support the GDA). Herein, only the
GDAs with EI = 1 were conserved.

(2) Psychiatric disorders: If the disease of a GDA was marked as
“Mental or Behavioral Dysfunction,” then this GDA was used
for the disease enrichment analysis.

(3) Availability in AHBA: If the gene of a GDA was not in the list
of AHBA genes, then this GDA was removed.

After the procedure, 34,034 GDAs were retained, involving 747
psychiatric disorders. Finally, the disease enrichment analysis was
conducted through fast preranked gene set enrichment analysis
(FGSEA; Korotkevich et al. 2021) implemented by “clusterProfiler”
R package (Wu et al. 2021), with the ranked gene list and 34,034
GDAs as the input.

GO enrichment analysis
The top-ranked genes were submitted to ToppGene (https://
toppgene.cchmc.org/) (Chen et al. 2009) to identify potentially
relevant biological processes. The most significant twenty
biological processes surviving the FDR-BH procedure (PFDR < 0.05)
were displayed in our main results.

Cell-type enrichment analysis
Two single-cell datasets were used in this study as follows:

(1) Lake dataset: This single-nucleus droplet-based sequencing
dataset (6 donors), reported by Lake et al. (2018), was derived
from the postmortem adult human visual and frontal cortex
samples. Notably, lateral cerebellar samples of the dataset
were not considered in our analyses, as this study focused
on the cerebral cortex.

(2) Allen Brain Institute (ABA) dataset: This single-nucleus
ribonucleic acid (RNA) sequencing dataset (8 donors) was
developed by the ABA (Hodge et al. 2019) from intact nuclei
derived from frozen brain specimens of adult human middle
temporal gyrus.

Using the Seurat R package (Stuart et al. 2019), we applied the
same preprocessing steps as previously published by Anderson
et al. (2020) to the above-mentioned datasets. Specifically, genes
expressed in <3 cells and cells with expressed genes of <200
were removed. Then, the expression values were log-normalized,
followed by covariates (i.e. sequencing platform and processing
batch) regression and data scaling. Predefined 8 cell types of the
Lake dataset (excitatory neurons [Exc], inhibitory neurons [Inh],
astrocyte [Ast], oligodendrocyte [Oli], pericyte [Per], endothelial
[End], microglia [Mic], and oligodendrocyte precursor cell [OPC])
and 7 cell types of ABA dataset (Exc, Inh, Ast, Oli, End, Mic,
and OPC) were used for the following cell enrichment analysis
separately. Gene markers for each cell type were determined via
the Wilcoxon Rank-Sum test (Bonferroni correction, PBonf < 0.05).

A hypergeometric test was used to further investigate the cell-
type enrichment profiles of the top-ranked genes. See Supplemen-
tary File 2 for further information.

Gene clustering based on developmental transcriptomic
data from the BrainSpan Atlas
After exploring the GO, disease, and cell-type enrichment profiles
of the top-ranked genes, we were interested in examining whether
these genes, based on their temporal expression trajectories,
could be classified into specific clusters, where each cluster was
attached with specific GO terms, disease, and cell-type. To do
so, we used the cortical RNA-sequencing (RNA-seq) data from
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the BrainSpan Atlas (http://www.brainspan.org) to characterize
the developmental trajectories of the top-ranked genes. The
BrainSpan Atlas dataset is an RNA-seq gene expression dataset
with high temporal resolution (31 ages, ranging from 8 post-
conception weeks to 40 years; n = 11 cortical regions). The gene
expression was averaged across the 11 cortical regions, followed
by log2 transformation and scaling. This provided us with a 31
(# of ages) × 52,376 (# of genes) gene expression matrix. Based on
this developmental gene expression matrix, the top-ranked genes
were clustered using mixed-effects models with nonparametric
smoothing spline fitting implemented in the TMixClust R package
(Golumbeanu 2021). Silhouette width (Rousseeuw 1987) was
utilized to determine the optimal number of clusters (from K = 2
to K = 6). The optimal clustering solution was then determined
by 20 iterations, and agreements between the iterations were
evaluated by the rand index (Hubert and Arabie 1985). See
Supplementary File 2 for details of definition/denotation of
the resulting gene clusters. Following that, for each cluster of
the top-ranked genes, we conducted the identical enrichment
analyses as described above (i.e. “Disease enrichment analysis”,
“GO enrichment analysis”, and “Cell-type enrichment analysis”).
Notably, as the genes of interest were a subset of the ranked
gene list, the disease enrichment analysis was conducted using
a hypergeometric test as described in the “Cell-type enrichment
analysis” section and Supplementary File 2.

Statistical analyses
Age-related T map was generated by the GLM implemented in the
python package statsmodels (Seabold and Perktold 2010). Specif-
ically, the T value for each parcel was calculated as the slope (i.e.
βage) divided by its standard error. The significance for the associ-
ations between the S-T functional hierarchy developmental pat-
tern and the NeuroSynth term maps were evaluated by randomly
permutating the ages 1,000 times (Pperm < 0.05), which reflected
the age-related effects on our findings as well. The significance
of disease and GO enrichment was evaluated by applying the
FDR-BH multiple correction procedure (PFDR < 0.05). Gene markers
for each cell type were determined via the Wilcoxon Rank-Sum
test (Bonferroni correction, PBonf < 0.05), and a hypergeometric test
was utilized to test the significance of the overlap between the
gene sets in the cell-type enrichment analysis (Phyper < 0.05).

Results
Developmental pattern of the S-T functional
hierarchy in preschool children
We first examined the developmental pattern of S-T functional
hierarchy in 141 passive viewing fMRI scans (age = 2.41–6.90 years)
from the Calgary Preschool dataset by using the GLM model with
value of S-T functional hierarchy as the dependent variate, age as
the independent variate, and sex as a covariate. The age-related
T statistical map from the GLM model (Fig. 1A) showed that the
S-T functional hierarchy values corresponding to the transmodal
regions increased and that those of the sensorimotor regions
decreased with increasing age in preschool children. These results
were consistent when head motion was included as a covariate in
GLM (Spearman’s r = 0.97, Pperm < 0.001, age permutated 1,000
times, Supplementary Fig. 2). Then, we investigated the age-
related changes in the functional brain networks by collapsing the
age-related T statistical map into Yeo-7 networks, which showed
that changes in the higher-order transmodal networks (e.g. DMN)
hierarchy were positive and those in the primary sensorimotor
networks (e.g. somatosensory network) were negative during

early development (Fig. 1C), further supporting the fact that the
functional segregation of brain networks occurred during this
developmental period. Median values of S-T functional hierarchy
between the older and the younger groups across the Yeo-7
networks showed that the “preschool older group” occupied more
wide-spread values at the terminals (i.e. higher values in the
transmodal networks and lower values in the somatosensory
networks) compared with the “preschool younger group” (Fig. 1D).
Moreover, we investigated the relevant cognitive profiles of the
S-T functional hierarchy developmental pattern by analyzing the
associations between the age-related T map and NeuroSynth
term maps, which revealed that the development of the S-T
functional hierarchy was positively associated with higher-order
cognitive functions, such as memory retrieval, decision making,
and inference, while being negatively associated with motion
and sensation in particular (all terms survived permutation test
Pperm < 0.05 are shown in Fig. 1B, age permutated 1,000 times).
Together, these results supported our hypothesis that the S-
T functional hierarchy in preschool children could gradually
develop into a more distinct and complex hierarchy, with the
higher-order transmodal regions further segregated from the
primary sensorimotor regions under healthy conditions.

Transcriptomic characteristics of the S-T
functional hierarchy developmental pattern
To understand the underlying mechanisms driving the develop-
mental pattern of S-T functional hierarchy, we ranked the genes
in descending order by Spearman’s correlation coefficient val-
ues between the age-related T map and their expression maps
from the AHBA dataset (Fig. 2A) and subsequently performed
disease, GO, and cell-type enrichment analyses on the ranked
gene list (15,631 genes). GSEA for psychiatric disorders resulted
in 16 significantly enriched disorders (Fig. 2B), consisting of ASD,
cocaine-related disorders, etc. We found that the normalized
enrichment scores (NESs) of these 16 disorders were all positive,
suggesting that top-ranked genes might play more critical roles in
neurodevelopmental disorders compared with the bottom-ranked
genes. We then selected the top 5% genes (n = 782) to conduct
overrepresentation analysis (ORA) for GO terms using Toppgene
(Chen et al. 2009). Our results showed that cellular process-
related terms (e.g. synaptic signaling and signal release) and
developmental process-related terms, like neuron differentiation,
were significantly enriched for these genes (all FDR-BH-corrected
PFDR < 0.05; the top twenty enriched items are shown in Fig. 2C and
all significantly enriched GO items are listed in Supplementary
File 4). By contrast, the bottom 5% genes were not significantly
enriched in any GO terms. We then conducted ORA for 8 cell
types, defined by Lake et al. (2018), and found that the top 5%
genes were enriched in the Exc and Inh (Exc: hypergeometric test
Phyper = 3.77 × 10−5; Inh: hypergeometric test Phyper = 0.02). These
findings were recapitulated in the case of 7 cell types predefined
in the ABA dataset (see Supplementary Fig. 3 for the Lake dataset
and Supplementary Fig. 4 for the ABA dataset).

Clustering of the S-T functional hierarchy
development-related genes
It has been well established that the gene expression patterns
are prone to dynamic changes over time, especially at different
developmental stages (Colantuoni et al. 2011; Kang et al. 2011). To
characterize the gene expression dynamics, we clustered the top
5% genes according to their temporal expression trajectories into
two groups (Fig. 3A). See Supplementary File 2 and Supplementary
Figs. 6–9 for the definition procedure of the two gene clusters.
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Fig. 1. Developmental pattern of the S-T functional hierarchy in preschool children. A) Age-related T statistical map derived from the GLM. Age-
related increases were primarily clustered in the transmodal regions, while the decreases were in the sensorimotor regions. Here, the head motion
was not included in the GLM. See Supplementary Fig. 2 for the results when including the head motion in the GLM. B) Functional annotation of
the age-related statistical T map (A) using the NeuroSynth database. The length of the bars indicated the absolute correlation values (Spearman’s)
between the age-related statistical T map and the NeuroSynth terms. Red: positive correlation, blue: negative correlation. Positive correlations occurred
mainly in the cognition/mood-related terms; negative correlations were held primarily in the motion-/sensation-related terms. All terms that survived
the age permutation test (Pperm < 0.05) are shown. See Supplementary File 1 for all NeuroSynth terms used in this study (n = 123). C) Age-related T
statistical map (A) collapsed into Yeo-7 functional networks. The box plot was ordered by median values. D) The lollipop plot displayed the median of
S-T functional hierarchy values across Yeo-7 functional networks for the “> 4.6Y” group (“preschool older group,” indicated by a pentagram) and “≤ 4.6Y”
group (“preschool younger group,” indicated by a circle). Note: 4.6Y was the median age of the Calgary Preschool dataset. The “SomMot” and “Default”
networks showed an extending trend during development. SomMot: somatomotor network, DorsAttn: dorsal attention network, Vis: visual network,
SalVentAttn: salience ventral attention network, Limbic: limbic network, Cont: frontoparietal control network, Default: default network.

Intriguingly, we noticed that genes of one cluster (denoted as “pre-
natal”, the blue line in Fig. 3A) were preferentially expressed dur-
ing the prenatal periods, while genes of another cluster (denoted
as “postnatal”, the red line in Fig. 3A) were expressed at the
highest level during the postnatal periods. We then performed
the identical enrichment analyses for the two clusters separately.
Disease enrichment analysis showed that the prenatal cluster
(Fig. 3B, blue line) was enriched in ASD, while the postnatal clus-
ter (Fig. 3B, red line) was enriched in various addiction disor-
ders, such as cocaine dependence. Furthermore, GO enrichment
analysis revealed that the prenatal cluster was mostly associ-
ated with the developmental process-related terms (e.g. neuron
differentiation and neurogenesis), while the postnatal cluster was
mostly enriched in cellular process-related terms (e.g. synaptic
signaling and chemical synaptic transmission; in Fig. 3C, and the

20 terms shown are the same as those of Fig. 2C. See Supplemen-
tary File 5 for all significantly enriched GO terms of the prenatal
cluster and Supplementary File 6 for the postnatal cluster). Cell-
type enrichment analysis (Fig. 3D) indicated that the prenatal
cluster was enriched in Inh (hypergeometric test, Phyper = 0.02),
while the postnatal cluster was enriched in Exc (hypergeometric
test, Phyper = 7.22 × 10−6).

In addition, these findings were independently replicated in the
ABA dataset (see Supplementary Fig. 5). Collectively, our results
suggested that the two clusters of genes with distinct develop-
mental expression trajectories were involved in different diseases,
GO terms, and cell types. Thus, the consideration of temporal
gene expression trajectories could be critical for identifying the
potential genetic factors in neurodevelopmental diseases apart
from spatial gene expression profiles.
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Fig. 2. Transcriptomic characteristics of the S-T functional hierarchy developmental pattern. A) Schematic workflow combining the neuroimaging
developmental pattern with the AHBA dataset. A total of 15,631 genes were sorted by correlation (Spearman’s) between their respective gene
expression patterns from AHBA and the age-related T statistical map in descending order. Genes with the more positive correlation ranked topper.
See Supplementary File 3 for the sorted gene list of Calgary Preschool, HCP-D, and PNC datasets. B) Disease enrichment profiles of the ranked gene list.
All significantly enriched diseases were shown. All the diseases were positively enriched, suggesting the importance of the top-ranked genes. C) GO
enrichment profiles of the top 5% genes from the ranked gene list. The most significant twenty GO terms were displayed. See Supplementary File 4 for
all significantly enriched GO terms.

Extrapolation to consecutive developmental
stages
We then attempted to examine whether the observed patterns
and relevant molecular profiles of the S-T functional hierar-
chy development in preschool children were developmental

stage-dependent by conducting the identical analyses in two
independent developmental datasets, including the HCP-D
(n = 638 scans, age = 5.58–21.92 years, sex = 346F/292M) and
PNC datasets (n = 795 scans, age = 8–21 years, sex = 429F/209M).
As expected, we found that the age-related T statistical map
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Fig. 3. Clustering of the S-T functional hierarchy development-related genes. Note: for all subfigures of this figure, blue represents the prenatal cluster,
while red indicates the postnatal cluster. A) Gene expression trajectories for the top 5% genes (n = 687) from the ranked gene list. The LOESS fitted lines
were shown, and the color represented cluster assignment. B) Radar plot showed the disease enrichment profiles for the prenatal cluster (blue) and
the postnatal cluster (red), with the dashed circle indicating that the hypergeometric −log10 (Phyper) = 1.30 (i.e. Phyper = 0.05). Diseases surviving the
hypergeometric test (Phyper < 0.05) were those exceeding the dashed circle. C) GO enrichment profiles for the prenatal cluster and the postnatal cluster.
The displayed twenty terms were the same as those in Fig. 2C. Dashed line represents that -log10 (PFDR) = 1.30 (i.e. PFDR = 0.05). See Supplementary File 5
for all significantly enriched GO terms for the prenatal cluster and Supplementary File 6 for the postnatal cluster. D) Cell-type enrichment profiles for the
prenatal cluster and the postnatal cluster using the Lake dataset. Dashed line represented that −log10 (Phyper) = 1.30 (i.e. Phyper = 0.05). See Supplementary
Fig. 5 for results from the ABA dataset.

for the S-T functional hierarchy of the two datasets were
significantly correlated with that of the Calgary Preschool
dataset (HCP-D: r = 0.39, Pperm = 0.002, age permutated 1,000
times, Fig. 4A; PNC: r = 0.35, Pperm = 0.003, age permutated 1,000

times, Fig. 4B), suggesting that the S-T functional hierarchy
may gradually develop at a similar pace in children and
adolescents compared with preschool children. (Notably, the
spatial association between the developmental patterns derived
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from HCP-D and PNC datasets was more prominent [r = 0.47,
Pperm < 0.001, Supplementary Fig. 10], suggesting the existence of
some early childhood-specific changes. See Supplementary File 2,
Supplementary Fig. 11 for further information.) The ranked gene
lists for these 2 datasets were first obtained by independently
performing imaging transcriptomic analyses, which was followed
by the disease enrichment analysis revealing that the NESs of
enriched diseases for both the HCP-D and PNC datasets were
positive (see Supplementary File 7 for the HCP-D dataset and
Supplementary File 8 for the PNC dataset), suggesting that the
top-ranked genes should be selected for further analysis. Using
the temporal expression profiles extracted from the BrainSpan
Atlas, we then clustered the new top-ranked genes into two
groups (Fig. 4C) and characterized them as prenatal genes’ and
postnatal genes’ groups as found in the Calgary Preschool dataset.
Notably, the functional annotations of the 2 clusters were also
highly concordant with those of the Calgary Preschool dataset
(Fig. 4D and E). Specifically, the prenatal cluster was enriched in
the developmental process-related GO terms, such as “neuron
differentiation,” while the postnatal cluster was enriched in the
cellular process-related GO terms, such as “response to toxic
substance” and “signal release.”

Discussion
Our findings showed that the hierarchical organization of the
functional connectome could be a highly dynamic and complex
system, which exhibited a broad range of maturation and dif-
ferentiation processes in both unimodal and transmodal cortical
regions, as established in terms of the S-T functional hierarchy
segregation along the various neurodevelopmental stages. Lever-
aging the imaging transcriptomic analyses of spatio-temporal
expression patterns of the neurodevelopment-related genes, we
intriguingly found two independent gene clusters with high pre-
natal or postnatal expression profiles, which might drive the long-
term development of the S-T functional hierarchy as compared
among three independent datasets. These findings provided a
comprehensive developmental principle of cortical S-T functional
hierarchy and helped us understand the underlying molecular
mechanisms that might play pivotal roles in the complex func-
tional segregation processes of the hierarchical cortical networks.

One of the major findings of the present study was the gradual
development of cortical S-T functional hierarchy from the age
of 2 years to early adulthood by embedding the functional brain
network analysis across three independent datasets. Previous
anatomical and functional evidence has supported the fact that
cortical topography found in adults is (partly) present in the very
early developmental stage, as the initiation point to develop the
brain circuit into a more “adult-like” state during the subsequent
developmental processes (Hagmann et al. 2010; Li et al. 2015;
van den Heuvel et al. 2015). Specifically, sensorimotor networks
are largely established even before birth and undergo subtle
changes later, while the transmodal networks, present at birth
in an immature form, are similar to those of adulthood in a 2-
year-old as well (Gao et al. 2009; Gao, Alcauter, Elton, et al. 2015).
Therefore, these findings suggest the existence of the fundamen-
tal organization of functional brain networks by the age of 2
years. Interestingly, we found the most significant changes in age-
related S-T functional hierarchy at the two extreme ends, namely,
sensorimotor regions and transmodal regions, indicating that
transmodal regions were further segregated from sensorimotor
regions during the development. Studies have highlighted the
segregation of the cortical functional networks as an important

process for complex cognitive functions (Dosenbach et al. 2010;
Gu et al. 2015). In our study, a similar developmental pattern
of the S-T functional hierarchy was observed in the subsequent
development periods (i.e. late-childhood and early adulthood) in
both HCP-D and PNC datasets, which was in agreement with
previous findings (Nenning et al. 2020; Xia et al. 2022). Besides,
Dong, Margulies, et al. (2021) have reported that the S-T functional
hierarchy gradually shifts to be the principal hierarchy, suggest-
ing that this specific functional hierarchy explained much more
variance of the functional connectome during the developmental
reorganization of the functional networks in the brain, further
supporting our results. Furthermore, the functional annotations
using the NeuroSynth database (Yarkoni et al. 2011) were con-
sistent with the roles of functional networks, like positive asso-
ciations (dominant in the transmodal regions) with cognition-
/mood-related terms and negative associations (dominant in the
sensorimotor regions) primarily with sensation-/motion-related
terms, thus emphasizing the segregation of brain networks.

Our findings based on imaging transcriptomic analyses
revealed the critical molecular mechanisms underlying the
cortical S-T functional hierarchy development. Specifically,
disease enrichment analysis suggested that the top-ranked genes
associated with the S-T functional hierarchy development were
enriched primarily in the ASD, cocaine-related disorders, etc.
Intriguingly, Hong et al. have found that the S-T functional
hierarchy in the ASD cohorts, although manifested similar
bimodal distribution, was globally contracted compared with
the healthy controls (Hong et al. 2019), further supporting the
importance of segregation between sensorimotor and transmodal
regions during typical brain development. Additionally, at the
cellular level, our cell-type specific enrichment analyses revealed
that these S-T functional hierarchy development-related genes
were significantly enriched in Exc and Inh, the interaction of
which is crucial for typical cortical development, potentially
pointing to the excitation:inhibition (E:I) ratio imbalance in
neurodevelopmental disorders (Rubenstein and Merzenich 2003).
For example, a recent study has verified typical reductions of the
E:I ratio during typical cortical development, which are associated
with individual differences in mood disorder symptomatology as
well (Larsen et al. 2022). The developmental reductions in E:I
ratio result in an increase in the signal-to-noise ratio of neural
circuits, facilitating more efficient information processing. The
abnormal increase of E:I ratio, in contrast, leading to the reduction
of signal-to-noise ratio, has been linked to neurodevelopmental
disorders such as ASD and schizophrenia (Canitano and Pallagrosi
2017; Sohal and Rubenstein 2019; Markicevic et al. 2020). At the
molecular level, the GO enrichment analyses suggested that
the S-T functional hierarchy development-related genes were
enriched in developmental process-related and cellular process-
related GO terms, such as “neuron differentiation” and “synaptic
signaling,” consistent with the evidence that the orchestration
activity of genes related to such biological processes is crucial for
typical cortical development (Richiardi et al. 2015; Subramanian
et al. 2020), and any disruptions may lead to neurodevelopmental
disorders such as ASD (Zoghbi and Bear 2012; Parenti et al. 2020).
Moreover, recent studies on cortical thickness developmental
patterns combined with the gene enrichment analysis have
also reported the involvement of similar GO terms and specific
neurons (Ball et al. 2020; Patel et al. 2021), suggesting the
possible overlapping molecular mechanisms underlying cortical
structural and functional development.

Another intriguing finding in the present study was that the
cortical S-T functional hierarchy development-related genes
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Fig. 4. Extrapolation to consecutive developmental periods. A) Age-related T statistical map for HCP-D dataset (left) and the scatter plot showed its
correlation (Spearman’s) with that of the Calgary Preschool dataset (right). B) Age-related T statistical map for PNC dataset (left) and the scatter plot
showed its correlation (Spearman’s) with that of the Calgary Preschool dataset (right). C) Gene expression trajectories for the overlapped genes between
the top 10% genes from HCP-D and PNC datasets. The LOESS fitted lines were shown and the color represented cluster assignment. Blue represents
the prenatal cluster, while red represents the postnatal cluster. D) GO enrichment profiles for the prenatal cluster. See Supplementary File 9 for all
significantly enriched GO terms. E) GO enrichment profiles for the postnatal cluster. See Supplementary File 10 for all significantly enriched GO terms.

perfectly fell into two categories (preferentially prenatal or post-
natal expressed gene clusters) according to their developmental
expression profiles. Previous studies have indicated that the gene
expression discrepancies between the prenatal and postnatal
periods explain as much as 2/3 of the global expression variance
(Silbereis et al. 2016), suggesting that the prenatal and postnatal

genes might express differentially, making mutually exclusive
and critical contributions to the functional segregation during the
cortical development. Specifically, the prenatal gene cluster was
found to be enriched in the developmental process-related GO
terms, such as “neurogenesis” and “neuron differentiation,” con-
sistent with the biological characteristics of the prenatal period
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(i.e. more intrinsically regulated). Such biological processes were
important for cortical wiring early in life (Metcalfe et al. 1990),
subtle perturbations of which may cascade onto the long-term
impact on function of the brain and further result in an increased
susceptibility to many neurodevelopmental disorders in later life
(O’Donnell and Meaney 2017). Notably, prenatal disruptions of
cortical circuits have already been verified, in previous animal
studies, to be associated with neurodevelopmental disorders
such as ASD, schizophrenia, and intellectual disability (Lavin
et al. 2005; Lodge and Grace 2009; Kozol 2018). Interestingly, our
disease enrichment analyses also indicated that the prenatal gene
cluster was enriched in ASD, verifying the previous postmortem
findings that risk genes of neurodevelopment disorders such
as ASD are relatively upregulated in prenatal periods as well
(Birnbaum et al. 2014). Moreover, we also found that the prenatal
genes were enriched in Inh, conforming to the increasingly
supported hypothesis that disruptions of inhibitory interneurons
underlie neurodevelopmental disorders (Chen et al. 2020) as the
E:I ratio balance is critical for the cortical circuits’ maintenance
(Sohal and Rubenstein 2019). Given that atypical S-T functional
hierarchy has been reported in ASD (Hong et al. 2019), our
findings may shed light on the potential underlying molecular
mechanisms. Taken together, we hypothesize that the prenatal
genes may mainly regulate cortical patterning at the very begin-
ning, establishing the backbone for subsequent typical cortical
development.

By contrast, the postnatal genes were enriched in cellular
process-related GO terms, such as “synaptic signaling” and “chem-
ical synaptic transmission.” Such biological processes, reflect-
ing processes important in the postnatal cortical development,
have been associated with the functional connectome in the
human brain (Richiardi et al. 2015). Moreover, analogous biological
processes serve as the basis for synapse pruning (Sakai 2020;
Faust et al. 2021). The synapse pruning, largely facilitating the
remodeling of cortical circuits, is a highly experience-driven pro-
cess (Tierney and Nelson 2009). Interestingly, our disease enrich-
ment analyses revealed that the postnatal genes were enriched
in various addiction disorders, such as cocaine abuse, which was
more specific to and can be eliminated by daily experiences and
environmental factors (Solinas et al. 2008), possibly reflecting the
plasticity of cortical circuits in postnatal periods. Moreover, we
found that the postnatal cluster was enriched in Exc, which is
consistent with the view that excitatory synapses were important
for environmental response-related activities such as learning
and memory (Froemke 2015). Furthermore, previous studies have
also demonstrated that the uncontrollable desire for drugs in
addiction arises from pathological manifestations of neuroplas-
ticity in excitatory transmission (Thomas et al. 2001; Winder
et al. 2002). In summary, we speculate that the postnatal genes,
involved in plasticity-related processes, may be crucial in cortical
remodeling in postnatal periods.

Although our findings are likely to provide potential clues
about the complex processes of cortical development and the
underlying molecular mechanisms, the involvement of certain
limitations should be carefully considered. First, using the
microarray gene expression data (i.e. AHBA) from six adult
postmortem brains to infer associations with neuroimaging
developmental phenotypes in early childhood harbored some
scientific uncertainty and could be confounded by age-related
changes in gene expressions. Our current findings are under the
hypothesis that the gene expression profiles in early childhood
may be analogous to that in adulthood, as in previous studies

(Ortiz-Terán et al. 2017). Future studies using age-matched gene
expression data, if available, should seek to replicate our findings.
Second, cortical functional development is a complex process,
which may not necessarily be fully captured by a linear model.
Here, we selected the linear model, considering statistical power
following previous studies (Gao, Alcauter, Smith, et al. 2015;
Nenning et al. 2020). Other nonlinear models may be applied
in future studies to further validate these results. Moreover, the
S-T functional hierarchy is one simplified representation, among
many others, of the cortical functional connectome. For example,
another hierarchy, where cortical features are differentiated
between the sensorimotor modalities (e.g. visual regions vs. motor
regions), has also been described in previous studies (Margulies
et al. 2016; Huntenburg et al. 2018). Further investigations of
other cortical features over time are warranted to advance our
understanding of cortical development. Third, our findings were
derived from three independent cross-sectional datasets. The
cross-sectional datasets, however, are limited in the ability to
examine within-individual variabilities (King et al. 2018). Thus,
further validation in the longitudinal developmental cohorts is
warranted. Fourth, for the pediatric cohorts, the head motion
was a critical concern. During the evaluation of the impact of
brain development stages on neuroimaging phenotypes, head
motion was significantly correlated with increasing age in general.
Therefore, untangling the motion effects was difficult. Moreover,
Zeng et al. have found that motion-related differences reflect a
neurobiological trait instead of pure motion artifacts and that
the trait remains stable across time (Zeng et al. 2014). Therefore,
we explored the developmental pattern with and without the
inclusion of head motion in the model separately and found
that the patterns were correlated significantly with each other.
However, how to reasonably deal with the head motion remains
elusive. Besides, the brain template for preprocessing pipeline
for very young subjects needs more focus. Use of the MNI152
template, usually utilized for adults, could induce technical
biases. Therefore, a pediatric template derived from n = 324
subjects of 4.5–18.5 years (Fonov et al. 2011) of age range was
used in our study. In the future, leveraging finer templates may
be helpful in capturing the age-related changes while reserving
the age-specific features. Fifth, as is common with previous
imaging transcriptomic studies (Whitaker et al. 2016; Ortiz-
Terán et al. 2017; Morgan et al. 2019), our cross-scale findings
are correlational in nature. Although imaging transcriptomic
analyses have been verified, to some extent, in terms of its
validity (Martins et al. 2021), our associative conclusions should
be cautiously interpreted and biologically validated in the future.
Moreover, the clinical relevance of the prenatal/postnatal gene
clusters may be further explored in future studies, aiding in early
screening and intervention for neurodevelopment disorders.

Conclusion
In summary, the main findings of our work were twofold.
First, from the macroscale neuroimaging perspective, we found
consistent functional segregated characteristics of the S-T func-
tional hierarchy during development, using three developmental
datasets across a large age interval. Second, from the cross-
scale perspective (i.e., by integrating macroscale neuroimaging
pattern and microscale molecular information), leveraging
spatiotemporal transcriptomic datasets, we found the above-
mentioned macroscale pattern may be potentially driven by
two distinct molecular profiles manifested in prenatal/postnatal
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periods (trait-like versus activity-dependent). Such findings
may reveal intrinsic cortical developmental principles and
provide critical insights into the etiology of neuropsychiatric and
neurodevelopmental disorders such as ASD.

Supplementary material
Supplementary material is available at Cerebral Cortex online.
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