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Abstract
Iris presentation attack detection (PAD) is still an unsolved problem mainly due to the
various spoof attack strategies and poor generalisation on unseen attackers. In this paper,
the merits of both light field (LF) imaging and deep learning (DL) are leveraged to
combine 2D texture and 3D geometry features for iris liveness detection. By exploring
off‐the‐shelf deep features of planar‐oriented and sequence‐oriented deep neural net-
works (DNNs) on the rendered focal stack, the proposed framework excavates the
differences in 3D geometric structure and 2D spatial texture between bona fide and
spoofing irises captured by LF cameras. A group of pre‐trained DL models are adopted
as feature extractor and the parameters of SVM classifiers are optimised on a limited
number of samples. Moreover, two‐branch feature fusion further strengthens the
framework's robustness and reliability against severe motion blur, noise, and other
degradation factors. The results of comparative experiments indicate that variants of the
proposed framework significantly surpass the PAD methods that take 2D planar images
or LF focal stack as input, even recent state‐of‐the‐art (SOTA) methods fined‐tuned on
the adopted database. Presentation attacks, including printed papers, printed photos, and
electronic displays, can be accurately detected without fine‐tuning a bulky CNN. In
addition, ablation studies validate the effectiveness of fusing geometric structure and
spatial texture features. The results of multi‐class attack detection experiments also verify
the good generalisation ability of the proposed framework on unseen presentation
attacks.

1 | INTRODUCTION

Iris liveness detection is an indispensable module of any iris
recognition system that blocks spoof attacks from malicious
entities. With the continuous development of the iris PAD
arms race, diverse presentation attack instruments (PAIs) are
constantly evolving, which puts more pressure on guaranteeing
the security of iris recognition systems.

In the literature, software‐based iris liveness detection
methods usually rely on subtle differences in colour, texture,
and context to distinguish bona fide and spoofing iris samples.
The spectral domain [1] and iris quality criteria [2] are first
investigated. Various local‐based descriptors are employed to
detect spoofing iris samples such as LBP [3], BSIF [4, 5], and
GLCM [6]. Higher detection accuracy was achieved by fusing

multiple local features [7, 8]. In addition, the spatial pyramid
and relational measures are employed by RegionalPAD [7] to
extract the features from local neighbourhoods. Other recent
SOTA methods can be reviewed in the recent competition of
iris liveness detection, that is, LivDet‐Iris 2020 [9]. In this
competition, some convolutional neural network (CNN)‐based
methods are introduced into iris liveness detection. For
instance, MTCNN [10] is employed by Chen and Ross [11].
They modified it and proposed MTPAD for an automatic iris
presentation attack detection solution. D‐NetPAD [12] adopts
DenseNet161 [13] as the backbone architecture, which out-
performs other methods in this competition, and its perfor-
mance was not satisfactory on proprietary test data. In Ref.
[14], a cascade of MobileNetV2 [15] modifications were trained
from scratch and utilised to recognise PAIs, which achieved
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promising performance on the LivDet‐Iris 2020 competition
database. The bottleneck of these methods is that the missing
stereoscopic characteristics of human eyes in 2D planar images
make it intractable to consider the discrepancy in 3D geometric
structure between bona fide and presentation attack iris sam-
ples. On the other hand, extra equipment could be utilised in
hardware‐based iris liveness detection methods to analyse the
inherent properties of the living iris. For example, Daugman [1]
investigated Purkinje reflection of the cornea and lens in the
eye. Lee et al. [16] solved the liveness detection task through
reflectance changes between the sclera and iris under different
near‐infrared light. Czajka [17] detected the living iris by the
dynamic changes of the pupil for different illuminations.
However, these approaches need to add an extra device, which
usually costs much and requires capturing iris dynamics.
Hence, they are often infeasible in practical use.

On the other hand, with the aid of an internal microlens
array (MLA), LF cameras are able to capture 4D spatial‐angular
information in a single photographic exposure, which contains
huge information on the 3D geometric structure and reflec-
tance property of the object surface. Actually, the differences in
the 3D surface geometry and reflectance between bona fide
and presentation attack iris samples are the intrinsic properties
that PAD methods can exploit. Flat iris PAIs including printed
papers, printed photos, and electronic displays exhibit limited
distinctions in the depth layout of ocular regions. PAIs that
simulate 3D geometric structure, such as prosthetic eye balls,
are thus more challenging when considering only depth/
disparity analysis. However, these 3D‐simulation PAIs inevi-
tably transform the iris texture as a consequence of changes in
the shadows and contrast gradients. In other words, light field
imaging gains huge advantages over other hardware‐based
solutions in exploring intrinsic features for iris PAD. Ragha-
vendra and Busch [18] first introduced LF imaging into iris
liveness detection. They captured real and artificial iris images
under the visible wavelength (VW) spectrum from 104 unique
samples using a commercial Lytro camera and exploited the
variation of focus between multiple digitally refocussing im-
ages. Some approaches have been proposed to adopt LF im-
aging for face anti‐spoofing by designing specific handcrafted
features [19–24], and more related work can be reviewed in
Ref. [25]. Recently, Liu et al. [26] began to utilise a CNN in
LF‐based face liveness detection. Song et al. [27] built a
middle‐sized dataset containing 504 bona fide and spoofing
near‐infrared (NIR) iris samples using a lab‐made microlens‐
based LF camera. The focal stack is rendered from LF im-
ages by refocussing at a group of depth layers. They combined
the focus energy value and LPQ feature extracted from LF
focal stack to defend iris spoof attacks. Obviously, the number
of LF images in the public domain is far from sufficient to
fine‐tune or retrain data‐hungry deep learning frameworks for
iris liveness detection.

In this paper, we investigate intrinsic features of iris PAD
by exploring 3D geometry and 2D texture differences in the
LF focal stack. Differences in depth layout and texture are
internally reflected in the defocus blur and local patterns be-
tween different rendered slices of the focal stack. Additionally,

we attempt to handle the PAD dilemma without collecting
more data on spot, which focusses on a general off‐the‐shelf
solution for iris liveness detection. The proposed framework
adopts a sequence‐oriented model to extract 3D geometric
structure and a planar‐oriented model to extract 2D spatial
texture feature from LF focal stack, respectively. The adopted
sequence‐oriented model includes C3D [28] model pre‐trained
on Sports 1M [29] and P3D [30] model pre‐trained on Kinetics
400 [31]. The input of the sequence‐oriented model is the
sequence of focal stack slices refocussing at different depth
layers. The adopted planar‐oriented model includes ResNet50
[32], InceptionV3 [33], and MobileNetV2 [15] pre‐trained on
ImageNet [34]. The input of planar‐oriented model is the
sharpest slice selected from the focal stack via focus level
assessment. Although these two models are specifically trained
for other vision tasks and have not seen any LF iris data, it is
experimentally verified that the off‐the‐shelf CNN features are
discriminative for iris liveness detection. Classified by a support
vector machine (SVM) classifier, both the off‐the‐shelf deep
features yielded from planar and sequence oriented pre‐trained
models can achieve better performance than the handcrafted
methods with the same input. Various presentation attacks,
including printed papers, printed photos, and electronic dis-
plays, can be accurately detected. Furthermore, these features
are fused in a two‐branch manner. Ablation studies prove that
3D geometric structure and 2D spatial texture features are
complementary in iris liveness detection. By fusing two kinds
of features, the proposed framework can not only obtain
higher accuracy but also gain superiority in resisting the
degradation caused by motion blur, noise, and other low‐
quality factors. In summary, the proposed method is of
considerable reliability and robustness, which can be directly
transplanted to iris recognition systems and defend against
various presentation attacks.

2 | FRAMEWORK

An overview of the proposed framework is depicted in
Figure 2, and the details will be elaborated in this section.

2.1 | Light field focal stack

4D light field data can be decoded from LF images
and expressed as the two‐plane parameterisation model
Lðu; v; s; tÞ. The traditional 2D planar image can be obtained
by integrating the LF function as Iðs; tÞ:

Iðs; tÞ ¼ ∬ Lðu; v; s; tÞ ⋅ du ⋅ dv ð1Þ

LF cameras can simultaneously capture the light intensity
and directional information in a single exposure. Therefore, the
focus plane can be changed at any depth layers by the digital
refocussing method proposed by Ng et al. [35]. L0 represents
the synthetic film plane, and L is the original microlens plane. α
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indicates the relative locations of these two planes: α = F 0/F.
The schematic of digital refocussing is depicted in Figure 1 and
can be derived as (2):

L0ðu; v; s0; t0Þ ¼ L
�

u; v;
s0

α
þ uð1 − αÞ;

t0

α
þ vð1 − αÞ

�

ð2Þ

2.2 | 2D spatial texture feature

The 2D spatial texture feature extracted from the best focus
slice of the iris region in the focal stack is more appropriate
than other slices for liveness detection because the differences
in texture details between bona fide and presentation attack iris

images are more significant. The Tenengrad gradient variance
(TGV) [36] is employed here as the focus measure function
FTGV.

The computation of the TGV value of each slice Iα in the
focal stack is given as in (3):

Iαðs; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðIαðs; tÞ ∗ EsÞ2 þ ðIαðs; tÞ ∗ EtÞ2
q

m¼
1
ST

XS

s¼1

XT

t¼1
Iαðs; tÞ

FTGV ðIαÞ ¼
XS

s¼1

XT

t¼1

�
I∗

αðs; tÞ −m
�2

ð3Þ

The spatial resolution of each slice in the focal stack is
S � T. The Sobel operators Es and Et are used to extract edge
information. The focus energy of the sharpest slice of the iris
region is the maximum in the focal stack, and the focus energy
curve usually presents a single peak. The best focus plane of
the iris region is thus obtained via (4), and the sharpest iris
image is expressed as Iα∗ .

α∗ ¼ argmax
α∈½δ1;δ2�

fFTGV ðIαÞg ð4Þ

A simple coarse‐to‐fine strategy is applied to search the
best focus plane. Specifically, [δ1, δ2] in Equation (4) is first set
to a large range and then a coarse selection α† is derived. Next,
the search range is narrowed down to [α† − ɛ, α† + ɛ] where ɛ
is a small value. In this manner, the best focus location α* can
be determined more precisely. A planar‐oriented model is
utilised to extract 2D spatial texture feature from the sharpest
iris image Iα∗ as given in (5):

f2D ¼ F2DðIα∗Þ ð5Þ

F I GURE 2 Overview of the proposed framework

F I GURE 1 The schematic of digital refocussing

422 - LUO ET AL.
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2.3 | 3D geometric structure feature

After α* is determined, a LF focal stack {Iα} that is uniformly
distributed within a certain depth range in the vicinity of α* is
obtained by digital refocussing. The best focus slice of the iris
region in the focal stack is set as the centre, which is presented
as α ∈ [α* − 0.2, α* + 0.2]. The step is Δα = 0.0028, and the
number of slices in the rendered focal stack is Nfs = 145.

The focal stack reveals the 3D geometric structure of the
imaged objects. Different parts of the iris region will exhibit
different focussing levels as α varies. Even though the forged
2D texture details of presentation attack irises can be similar to
genuine iris samples, it is nearly impossible to fabricate the 3D
geometric structure identical to real iris physiology. On the
other hand, the entities of current presentation attacks such as
printed papers, printed photos and electronic screen are usually
flat or curved, which exhibit an almost constant amount of
defocus blur between adjacent slices unlike bona fide images.
The distinctions can be reflected in the difference between two
adjacent slices in the focal stack as given in Equation (6):

IΔαðs; tÞ ¼ IαþΔαðs; tÞ − Iαðs; tÞ

≈
ð ð

−Δα
�� s

α2 þ u
� ∂
∂s
þ
� t

α2 þ v
� ∂
∂t

�

� L
�
u; v;

s
α
þ uð1 − αÞ;

t
α
þ vð1 − αÞ

�i
dudv

ð6Þ

Currently, the accuracy of pixel‐wise depth or disparity
estimation from an LF focal stack is limited. Instead, a
sequence‐oriented model is used to extract the 3D geometric
structure feature of the iris region from the focal stack as given
in (7). The pre‐trained model is employed here to implicitly
model the 3D geometric information in the focal stack, slightly
analogous to exploiting spatiotemporal features from video
clips for action recognition in Ref. [28].

f3D ¼ F3DðfIαgÞ ð7Þ

2.4 | Two‐branch feature fusion

Texture and geometric structure are two dominant factors of
the difference between bona fide and spoofing irises. Nearly all
presentation attacks have flaws in either or both of these two
aspects when forging genuine iris. For instance, a spoofing iris
displayed on an iPad screen may exhibit high resolution and
clear texture details, but the geometric properties and re-
flections of human eyes are very different. The geometric
structure of the prosthetic iris is close to that of the genuine
iris, but the forged texture details and sharpness levels are
dissimilar. Thus, it makes sense to fuse both 2D spatial texture
and 3D geometric structure features for better iris liveness
detection. The fusion of these two complementary features can

enable the proposed framework to reliably defend more types
of presentation attacks. Furthermore, it is experimentally
verified that the robustness of the framework can be enhanced
on resisting the degradation factors during data collection.

The 3D geometric structure feature vector f3D and 2D
spatial texture feature vector f2D are first extracted by the
respective branch, respectively. The dimension of f3D
extracted from C3D [28] and P3D [30] is 512. Meanwhile,
the dimension of f2D extracted from ResNet50 [32] and
InceptionV3 [33] is 2048 while that of MobileNetV2 [15] is
1280. For consistency, the dimension of f2D is reduced from
its original length to 512 as f 02D through principal component
analysis (PCA), the length of which is thus the same as f3D.
Otherwise, the inconsistency of the dimensions will cause an
imbalance in the contributions of each feature. After that, f3D
and f 02D are concatenated together, and an SVM classifier is
applied to classify the fused features into bona fide or pre-
sentation attack irises. In addition, the performance of f3D
only, f 02D only, feature‐level and score‐level fusion are also
validated as shown in the right side of Figure 2. The results
of these ablation experiments are detailed in Section 3.3.

3 | DATASET AND EXPERIMENTS

3.1 | Dataset

The experiments are conducted on the dataset collected by
Song et al. [27]. The dataset was captured using a lab‐produced
microlens‐based LF camera and a commercial device IKUSB‐
E30 (http://www.irisking.com/pron.php?id=523) under NIR
illumination. The setup of dataset collection was shown in
Figure 3. The types of presentation attacks include printed
papers, printed glossy photos, and electronic displays. The
high‐quality iris samples were first captured by IKUSB‐E30,
and then these high‐quality samples were printed on papers
and photos or displayed on the screen of iPad mini 4 to
generate the artefacts. The main lens of the lab‐produced LF
camera was tuned to be in focus at a position of 1.6 m.
Simultaneously, both bona fide and presentation attack iris
samples were captured when the subjects and PAIs were
standing at or be placed at three distances, that is, 1.5, 1.6, and
1.7 m. The dataset contains 504 samples from 14 subjects,
consisting of 230 LF images of bona fide iris and 274 LF
images of spoofing iris. The respective sample number of the
PAIs, that is, printed papers, printed photos, and electronic
display are 18, 122, and 134. The serious data imbalance among
these PAIs intensifies the difficulty of PAD task. An example
of raw LF image containing both eyes printed on photos is
shown in Figure 4. Hexagonal microlens images can be
observed from the close‐up of iris in the raw LF image. The
toolbox released by Dansereau et al. [37] was utilised to decode
raw LF images into 4D LF data. The eye regions were cropped
from the same location of each SAI. The spatial resolution of
each SAI after cropping is 128 � 96, and the angular resolution
is 7 � 7. Examples from the same subject's right eye in the
dataset are shown in Figure 5. As described in Section 2.3, the
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rendered focal stack via digital refocussing has 145 slices
around the best focus plane. The details of the adopted data-
base is listed in Table 1. We have got the authority from the
authors of Song et al. [27] and released the LF focal stack data
on our website (http://www.cripacsir.cn/dataset/).

3.2 | Evaluation metrics

According to ISO/IEC IS 30107‐3 [38], the evaluation metrics
of iris liveness detection are:

I. Attack presentation classification error rate (APCER).
APCER is the rate at which spoofing iris samples are
mistakenly identified as bona fide samples.

II. Bona fide presentation classification error rate (BPCER).
BPCER is the rate at which bona fide iris samples are
identified as spoofing attacks erroneously.

III. Average classification error rate (ACER). ACER is the
arithmetic mean of APCER and BPCER. The smaller the
ACER, the better the performance of the iris liveness
detection method. Although ACER has been deprecated
in the latest publication of ISO/IEC 30107‐3, it is still
computed for the purpose of comparing with other
former iris PAD methods.

F I GURE 3 Setup of dataset collection. (a) The commercial device IKUSB‐E30, in‐person image capture and exemplar high‐quality iris image. (b) The lab‐
produced light field (LF) camera, image capture of bona fide samples, and image capture of spoofing samples printed on glossy photos

F I GURE 4 An example of raw light field (LF) image containing both
eyes printed on photos. Hexagonal microlens images can be observed from
the close‐up of iris in the raw LF image

F I GURE 5 Examples from the same subject's right eye in the dataset.
(a) Bona fide iris sample. (b) A4 paper printed iris sample. (c) Glossy photo
printed iris sample. (d) Electronically displayed iris sample

424 - LUO ET AL.
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IV. BPCER10 and BPCER20. BPCER10 is the BPCER when
the APCER is fixed at 10% and BPCER20 is the BPCER
when the APCER is fixed at 5%.

V. Equal Error Rate (EER) is the operational point when the
APCER is equal to the BPCER in the Detection Error
Trade‐off (DET) curve.

3.3 | Experiments

To verify the efficacy of the proposed method, four groups of
experiments are conducted: 1) The proposed framework is
compared with several iris liveness detection methods that
operate on a 2D planar image or LF focal stack. 2) In ablation
study, SVM classifiers with different kernels are tested on
different fusion strategies, including 2D texture features only,
3D geometry features only, feature‐level fusion and score‐level
fusion. The purpose is to verify the effectiveness of feature
fusion. 3) A multi‐class classification experiment verifies that
the proposed framework can distinguish different presentation
attacks. 4) The last experiment verifies the robustness of the
fused features against degradation factors, such as motion blur
and random noise.

K‐fold cross‐validation is adopted to optimise the SVM
classifiers, where K = 5. In each cross‐validation, 20% of the
data with a mix of all artefact types available in the database are

used to tune the parameters of SVM classifiers, and the other
80% of the data are used to validate the performance. Both the
mean and standard deviation of evaluation metrics are reported
according to the results of 5‐fold cross validation. The SVM
package of Scikit‐learn [39] and MindSpore platform (https://
www.mindspore.cn/) were adopted in the implementations.
Some hyperparameters of the SVM classifier are selected
through grid search and then set as tol = 1e − 6 and
C = 1000.0. In addition, the kernels of the SVM classifier are
selected as RBF. To reproduce the results in this paper, the
source codes have been released on Github (https://github.
com/luozhengquan/LFLD).

Comparative Experiment Table 2 tabulates the com-
parisons between variants of the proposed framework and
several recent iris liveness detection methods that operate on
2D planar images or LF focal stacks, along with the results of
the single texture or geometry branch. The DET curves of the
proposed framework and other iris PAD methods are also
plotted in Figure 6. In Table 2, APCER and BPCER were
determined at a threshold of 0.5. BPCER10, BPCER20 and
EER are independent of decision thresholds. Note that the
results of BPCER10, BPCER20 and EER of some compared
methods are NaN. It is due to that the source codes of these
methods are not available and we directly adopt the nominal
results from Ref. [27]. Besides, the mean and standard devia-
tion of the evaluations are listed upon 5‐fold cross validation.
The variants of the proposed framework utilised different pre‐
trained DL models for off‐the‐shelf deep feature extraction,
and only the parameters of SVM classifiers were optimised
under the same dataset splitting. They are donated as ResNet50
+ C3D, ResNet50 + P3D, InceptionV3 + C3D, InceptionV3
+ P3D, MobileNetV2 + C3D and MobileNetV2 + P3D.
Specifically, ResNet50 [32], InceptionV3 [33] and MobileNetV2
[15] are pre‐trained on ImageNet [34]. C3D [28] is pre‐trained
on Sports 1M [29] while P3D [30] is pre‐trained on Kinetics
400 [31]. Note that ResNet50, InceptionV3 and MobileNetV2
also denote 2D texture branch while C3D and P3D denote 3D
geometry branch. For fairness, DIIVINE [40] and LPQ [41]
take the clearest iris image in the focal stack as input. DII-
VINE [40] is based on image quality evaluation, and its ACER
is 11.43%. LPQ is a local phase quantisation descriptor for
texture analysis, and its ACER is 9.63%. The performance of
Ref. [18] declines sharply on the NIR dataset because it only
employs one empirically determined threshold to distinguish
the bona fide and various PAIs. Ref[27] utilised manually
crafted feature descriptors of the focus energy curve for LF‐
based iris liveness detection, and its ACER is 3.69%. In
addition, we compared two recent SOTA methods, that is,
MTPAD [11] and D‐NetPAD [12], which achieved superior
performances on the LivDet‐Iris 2020 [9] database. The per-
formance of MTPAD [11] and D‐NetPAD [12] without fine‐
tuning on the dataset is very poor because the model trained
on other PAD datasets is highly correlated with the corre-
sponding data distribution. To further prove this statement, D‐
NetPAD [12] was fine‐tuned on the same portion of the
adopted database and tested on the rest. The fine‐tuned
version of the D‐NetPAD [12] model is named as FT_D‐

TABLE 1 Details of the adopted database

Setup of image collection

High‐quality iris samples IKUSB‐E30

Bona fide and spoofing samples Lab‐produced LF camera

Focus location of LF camera 1.6 m

Distances of subjects or PAIs 1.5, 1.6, and 1.7 m

Illumination NIR

Statistics of the database

Spatial resolution of SAI 128 � 96

Angular resolution of LF sample 7 � 7

Length of LF focal stack 145

Number of subjects 14

Kinds of PAIs 3

Number of bona fide samples 230

Number of spoofing samples 274

Total number of images 73,080

Image distribution

Bona fide 230

Printed papers 18

Printed photos 122

Electronic display 134

Abbreviations: NIR, near‐infrared; PAIs, presentation attack instruments.
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NetPAD. Not surprisingly, its mean EER decreases from
45.64% to 4.17%. Dependence on training data greatly hinders
the generalisation ability of DL‐based iris PAD methods.

Compared with these methods, the best‐performing
variant of the proposed framework, that is, MobileNetV2 +
C3D achieves a mean ACER of 1.19% and a mean EER of
1.05%. The proposed method outperforms other approaches
by a large margin and even obviously surpasses FT_D‐NetPAD
in Table 2. It is also demonstrated by the DET curve depicted
in Figure 6(a). It should be emphasised that the proposed
method only utilises a small portion of the dataset (i.e. 20%) to
adjust several hyperparameters of the SVM classifier. The
process of optimising the SVM classifier is much more time‐
efficient and resource‐friendly than training millions of
weight parameters in FT_D‐NetPAD.

Ablation study It can also be seen from Table 2 that the
overall performance of two‐branch fusion is obviously better
than either of the single branches. Take MobileNetV2 + C3D
for instance, the mean EER of MobileNetV2 and C3D are
1.81% and 4.25%, respectively. Apparently, C3D is inferior in
extracting discriminative representations for detecting iris
PAIs. But fusion of these off‐the‐shelf deep features along
with SVM classifier optimisation, that is, MobileNetV2 + C3D,
obtains a mean EER of 1.05%. Undoubtedly, it indicates that
the complementarity of 2D texture and 3D geometric features
can be effectively explored by feature‐level fusion. Laterally,

the variants that combine C3D with 2D texture features
significantly outperform those that combine P3D with 2D
texture features.

In addition, the score distributions of the bona fide and
spoofing iris samples output by ResNet50 + C3D are depicted
in Figure 7. In Figure 7, texture feature means the output of
ResNet50 and geometry feature means the output of C3D.
Feature fusion means the output of ResNet50 + C3D, which
combines the two branches at feature level. Score fusion means
the average of the outputs of ResNet50 and C3D, which fuses
the two branches at score level. It reveals that both feature‐
level and score‐level fusion can provide more separate
boundaries for classification. These results verify that both
feature‐level or score‐level fusion of two branches can
improve the performance of detecting PAIs.

Robustness analysis Figure 8 shows the curve of per-
formance fluctuation of MobileNetV2 + C3D as a result of
adding diagonal motion blur or zero‐mean Gaussian noise. In
the robustness analysis, the maximum degree of added mo-
tion blur Dblur is chosen from [50, 100, 150] in order. Then
each slice in the focal stack is motion blurred diagonally with
a randomly selected degree in the range of (0, Dblur]. Simi-
larly, the maximum variance of added zero‐mean Gaussian
noise DGaussian is chosen from [0.025, 0.050, 0.075]. Then,
the variance of Gaussian noise is determined by randomly
selecting from (0, DGaussian]. Finally the zero‐mean and

TABLE 2 Comparisons between variants of the proposed framework and several recent iris presentation attack detection (PAD) methods that operate on
2D planar images or light field (LF) focal stacks, along with the results of single texture or geometry branch.

APCER (%) BPCER (%) ACER (%) BPCER10 (%) BPCER20 (%) EER (%)

DIIVINE [40] 5.95 16.91 11.43 / / /

LPQ [41] 11.90 7.35 9.63 / / /

Raghavendra et al. [18] 32.14 50.74 41.44 / / /

Song et al. [27] 2.98 4.41 3.69 / / /

MTPAD [11] 40.01 39.78 39.90 / / /

D‐NetPAD [12] 17.89 � 4.75 66.96 � 6.52 45.43 � 5.64 73.48 � 10.87 78.26 � 15.22 45.64 � 4.99

FT_D‐NetPAD [12] 3.62 � 4.52 5.78 � 4.57 4.70 � 4.55 0.91 � 0.45 3.96 � 2.67 4.17 � 2.26

ResNet50 [32] 1.48 � 1.18 0.96 � 0.38 1.22 � 0.78 0.06 � 0.50 0.19 � 0.27 1.24 � 0.50

InceptionV3 [33] 2.21 � 1.02 3.88 � 3.00 3.05 � 2.01 0.93 � 1.04 2.18 � 2.05 2.90 � 1.50

MobileNetV2 [15] 2.19 � 1.82 1.52 � 0.87 1.85 � 1.34 0.02 � 0.02 0.33 � 0.43 1.81 � 1.05

P3D [30] 4.71 � 0.68 1.78 � 0.60 3.25 � 0.64 0.29 � 0.38 1.54 � 0.82 3.29 � 0.60

C3D [28] 4.07 � 1.87 3.72 � 3.09 3.90 � 2.48 0.52 � 0.65 3.82 � 2.66 4.25 � 1.22

ResNet50 + P3D 4.62 � 0.73 1.78 � 0.65 3.20 � 0.69 0.26 � 0.38 1.52 � 0.81 3.23 � 0.82

InceptionV3+P3D 4.65 � 0.68 1.78 � 0.64 3.22 � 0.66 0.28 � 0.38 1.50 � 0.38 3.25 � 0.64

MobileNetV2+P3D 4.65 � 0.73 1.76 � 0.65 3.21 � 0.69 0.26 � 0.38 1.61 � 0.98 3.27 � 0.59

ResNet50 + C3D 1.44 � 1.18 0.76 ± 0.70 1.10 ± 0.94 0.04 � 0.10 0.13 � 0.27 1.15 � 0.46

InceptionV3+C3D 2.11 � 1.00 3.70 � 2.99 3.01 � 1.99 0.43 � 0.33 2.17 � 2.06 2.88 � 1.49

MobileNetV2+C3D 0.99 ± 1.28 1.39 � 1.79 1.19 � 1.54 0.02 ± 0.02 0.03 ± 0.03 1.05 ± 0.73

Note: Best results are in bold values.
Abbreviations: ACER, Average classification error rate; APCER, Attack presentation classification error rate; BPCER, Bona fide presentation classification error rate; EER, Equal Error
Rate.
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variance‐determined Gaussian noise is added to each slice in
the focal stack. The performance fluctuation of the proposed
framework against motion blur and Gaussian noise on the

adopted dataset under 5‐fold cross validation is depicted in
Figure 8.

With the addition of motion blur or Gaussian noise, the
performance drop of MobileNetV2 + C3D is rather smooth.
As the level of added blur or noise level increases, the fluc-
tuation of the mean EER of MobileNetV2 + C3D stays stable.
The results demonstrate the robustness of the proposed
framework against the degradation factors, which is usually a
necessity of real‐world applications.

Multi‐class attack analysis A major concern in deploying
an iris PAD solution is that there is no way to know what type
of attacks will be performed beforehand. To further validate
the proposed framework, the multi‐class attack classification
experiment applies the proposed framework to classify various
presentation attacks. The leave‐one‐out protocol is employed
to verify the efficacy of the proposed framework on unseen
attacks. Specifically, all the samples belonging to one kind of
PAIs and half of the bona fide iris samples are retained for
testing, while all the other spoofing samples and the remaining
bona fide samples are used for training. The best‐performing
variant MobileNetV2 + C3D is validated. The mean evalua-
tion metrics of the PAIs are also reported.

F I GURE 6 (a) Detection Error Trade‐off (DET) curve of the best‐
performing variant, that is,MobileNetV2 + C3D and other iris presentation
attack detection (PAD) methods. (b) DET curve of the variants of the
proposed framework

F I GURE 7 The score distribution of bona fide (genuines) and spoofing (impostors) iris images output by ResNet50 + C3D. Texture feature means the
output of ResNet50 and geometry feature means the output of C3D. Feature fusion means the output of ResNet50 + C3D, which combines the two branches at
feature level. Score fusion means the average of the outputs of ResNet50 and C3D, which fuses the two branches at score level

F I GURE 8 The performance fluctuation of the proposed framework
against motion blur and Gaussian noise on the adopted dataset under 5‐
fold cross validation
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As shown in Table 3, unknown PAIs can also be accu-
rately detected by MobileNetV2 + C3D with a mean EER of
4.27%. The performance of MobileNetV2 + C3D is overall
satisfactory, only slightly worse in detecting unseen attack of
electronic display. The good generalisation ability on unseen
presentation attacks is quite necessary for real‐world
applications.

4 | CONCLUSION

In the proposed framework, 2D texture and 3D geometric
structure are extracted from LF focal stack and fused in a
two‐branch manner for iris PAD. To overcome the problem
of LF data limitation, the off‐the‐shelf CNN features and
optimised SVM classifier are integrated to combine the merits
of LF imaging and DL frameworks for iris liveness detection.
A group of pre‐trained DL models oriented for dealing with
2D planar images and 3D sequences are adopted as feature
extractor. Experimental results demonstrate that variants of
the proposed framework outperform recent iris PAD
methods that take 2D planar images or LF focal stacks as
input in terms of standard evaluation metrics. The best‐
performing variant even beats fine‐tuned SOTA models.
The ablation experiments also verify that the fusion of 3D
geometry and 2D texture features can achieve better detec-
tion performance than either of the single branches. In
addition, the proposed framework exhibits good generalisa-
tion ability on unseen attacks and has considerable robustness
against degradation factors such as motion blur and noise.
The proposed framework may be embedded into an iris
recognition system only equipped with an LF camera. It can
be deployed in a resource‐efficient manner without retraining
bulky CNNs and collecting massive data on the spot. In
future work, we will collect large‐scale LF image databases
with the lab‐produced LF camera and consider to develop
DL models tailored for iris PAD task.
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