
Modeling Open Source Software Bugs with Complex Networks
Cheng Nie!, Daniel Zeng!,2, Xiaolong Zheng!, Fei-Yue Wang!, Huimin Zhao3

I The Key Lab of C�mplex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, China

Department of Management Information Systems, The University of Arizona, USA
3Sheldon B. Lubar School of Business, University of Wisconsin-Milwaukee, USA

Abstract-A major concern in open source software
development is regarding bugs emerging during the life circle

of a software project. Understanding the topological

characteristics of interrelated bugs can provide useful insights
into software project management and potentially facilitate
the development of new complex network models. In this
paper, we analyze the bug network in Gentoo Linux, one of

the most popular Linux distributions. We model software
bugs as nodes and the blocking relationships among them as
edges. As the resulting Gentoo bug network cannot be
adequately explained by some commonly-used complex

network models, we propose a new model, which can better
explain this network.

I. INTRODUCTION

C
omplex networks research has attracted a lot of

attention from researchers in a variety of fields [1-2].

Examples of complex networks that have been studied
include the World Wide Web [3-7], citation networks [8],

and collaboration networks among movie actors [9],
scientists [10] , or authors of Wikipedia [11]. Some recent

work has also applied network analysis to such domains as

music [12] and transportation systems [13-14].
Software systems represent an important kind of

man-made systems, which could be investigated using the

framework of complex network analysis [15-16]. Due to
the popularity of open source software and the free access

to the software source code, much work has been conducted
on open source software from the perspective of software

engineering [17-23]. However, research on analyzing open

source software from the network point of view is still
rather limited.

As software systems grow more complex, bugs become
more common and more difficult to fix. Programmers may
even have to spend more time and effort finding and fixing

bugs than writing new code. The National Institute of
Standards and Technology concluded that software bugs

cost the US economy an estimated $59 billion armually,

which constitutes 0.6 percent of the gross domestic product
[24].

Understanding the relationship among software bugs
would potentially lead to better software project

management practice and increased software reliability. In

this paper, we analyze the bug network in Gentoo Linux,
one of the most popular Linux distributions, treating bugs

as nodes and the blocking relationships among the bugs as
edges. Based on findings from some empirical studies on

the Gentoo bug network, we develop a new model to

simulate the growth process of this network. Experimental
results show that our model can better explain the Gentoo
bug network than some commonly-used existing models.

978-1-4244-7119-51101$26.00 ©2010 IEEE

The rest of the paper is organized as follows. In Section II,

we present some background of open source software
development. In Section III, we provide a survey of some

related work. In Section IV, we describe the data we have
collected and the preprocessing step. Next, we show our

empirical study results in Section V. We then present our
new model and computational study in Section VI. Finally,

we summarize our findings and discuss possible future

research directions in Section VII.

II. BACKGROUND

Open source software projects need users and developers
to help improve the quality of the developed software so
that every user can enjoy bug-free packages. Generally, an

open source software project needs two systems to manage
the development process: a version control system and a

bug tracking system. Version control systems, such as CVS
and SVN, are used to share source code files among

developers and users. Bug tracking systems, such as

Bugzilla and ITracker, are used to track the bugs that

emerge during the life circle of a project. During the

development process, a large amount of data is recorded in
the version control systems and bug tracking systems. Such
data provide valuable resources for scientific research.

During the development of an open source software
package, the source code is constantly changing. The

general procedure for bug resolution can be explained

informally as follows. First, a bug is reported into a bug
repository when a user finds the software is not performing

correctly or when a user thinks the software can be
enhanced by adding some new features. The former

situation results in a traditional bug, meaning a software

flaw, while the latter situation indicates an enhancement
request [25]. Here we use the term "bugs" to refer to

traditional bugs as well as enhancement requests. The
reported bug will then emerge on the bug-to-fix list of the

developers, who will contribute to fix the bug. Developers

would commit the new source code to the version control
system after they get the bug fixed. An interesting

phenomenon during the debugging process is that some

reported bugs are interrelated with each other. For example,
when debugging, a developer may find that a bug carmot be

fixed until another bug has been fixed first. The developer
would then add a blocking relationship between these two

bugs, i.e., bug A blocking bug B means that fixing bug B

requires fixing bug A first.
The Gentoo Linux project uses CVS and SVN at the same

time to manage the source code files, while using Bugzilla
as the bug tracking system. We can get information about

the bugs and the blocking relationships among them from

the Gentoo Bugzilla system [26].

375

III. RELATED WORK

The "open" characteristic of open source software has

facilitated profound research in software related areas.
Software engineers are interested in the possibility of

automatic bug fixing [17] and the error proneness of a
software component or an individual developer [18].

Viewing bug reports as text messages has also provided

some insights into software engineering, including
predicting the time needed to fix a bug [21], duplicate bug
detection [22], and locating potential bugs [23].

Analyzing open source software systems from the
perspective of complex networks is an emerging field,

which has not yet received wide-spread attention. Myers
investigated the software collaboration graphs in several

open source software projects and found them to form

scale-free and small-world networks [15]. Zheng et al.

analyzed the package dependency network in open source

software and discovered that the probability of a new
package connecting to an existing one depends not only on

the degree but also on the age of the existing package [16].

A major distinction of our research from these past studies
is that we apply network analysis in another important

aspect, namely, open source software bugs.

IV. DATA PREPROCESSING

Gentoo Bugzilla [26] is the bug tracking system of the
Gentoo Linux project, storing all the reported bugs of the

project. The first bug emerged in the repository on January

4, 2002. From then on, the bug repository keeps on growing

with more and more bugs reported by geographically

dispersed developers and users all over the world. As of
January 2009, when we collected the data, 220,576 bugs

had been reported. Information about each bug is composed

of mainly two parts, an XML file and an activity log. A
bug's XML file records the bug ID, the reporter of the bug,

the time when it is reported, and a description. The activity
log of a bug records who has changed what and when.

Reported bugs are connected if developers found

relationships among them, for example, bug A cannot be
fixed until bug B has been fixed first. We treat bugs as

nodes and their relationships as undirected edges in a
complex network. Fortunately, we can acquire the exact
time of nodes' and edges' arrival by analyzing the XML

files and activity logs. Of the 220,576 bugs in the collected
dataset, 7,386 (3.3%) bugs with 7,884 edges formed the

largest connected component, which constitutes our focus

of study. We refer to this network as the Gentoo bug

network.

V. EMPIRICAL STUDY

A. Growth of nodes and edges

The nodes and edges kept on growing during the 84

months from January 2002 to January 2009. We plot the
number of edges versus the number of nodes in Fig. 1. Each
point in Fig. 1 corresponds to (N; , M;), where N; is the

number of nodes and M; is the number of edges in the i-th

month.
The ratio between the number of edges and the number

of nodes in the Gentoo bug network can be viewed as

roughly a constant. Thus, we can safely assume that the
edges' increase resulted from the same number of new

nodes is about the same (this will be further discussed in

Section VI).

80��--�--�--�--�--�----r---�.-,

70�

60�

'" 50�
8-i '0 4�O
E
� '" 30�

20�

1000

20� 30� 4�0 SOOO 11000 7000 80�
sum of nodes

Fig. 1. Increase in the number of edges versus increase in the number
of nodes in the Gentoo bug network.

Degree k
Fig. 2. The degree distribution of the Gentoo bug network on a log-log
scale.

B. Degree distribution

Degree distribution P(k) is also useful in characterizing

complex networks. It denotes the probability that a
randomly selected node has k edges. Power-law distribution

(p(k)�ka) is a dominant feature of many real-world

networks [6]. Such networks are said to be scale-free. We
plot the degree distribution of the Gentoo bug network on a

log-log scale in Fig. 2. It shows a heavy-tail distribution

with a lot of fluctuations in the tail. This signifies that the
Gentoo bug network does not follow a power-law

distribution often found in other related work.

C. Joint degree distribution

The joint degree distribution p(d\, d2) captures

information of which nodes are connected to which others.
It is defined as the relative frequency with which the two

nodes at the end of an arbitrarily picked edge have a given

pair of degrees. As the bug network is undirected, we first
sort the nodes in all edges in the network so as to have the

form (V\,V2), where the degree of node VI is no more than

that ofv2. Then, we get the joint degree distribution by the
following definition [27]:

376

(1)

where M denotes the total number of edges and #(d\, d2) is

the number of edges with degree pair (d\, d2).

Fig. 3 shows the joint degree distribution of the Gentoo

bug network. There is a noticeable tendency for

high-degree nodes to be connected to low-degree nodes,
while nodes with similar degrees do not tend to be
connected with one another in the Gentoo bug network.

D. Clustering Coefficient

The degree k; of a node i measures the number of

neighbors of this node, and the clustering coefficient of a
node C; is defmed as 2e;l(k;*(k;-1)), where e; is the number

of edges among the k; neighbors of node i. The clustering

coefficient C of a network is the average of C; over all
nodes in the network. Note that the clustering coefficient

for a node with degree zero or one is set to zero. The

clustering coefficient of a random graph (i.e., a graph in
which nodes are randomly connected) with 7,386 nodes and

7,884 edges would be about 0.00029 [1]. However, the
clustering coefficient of the Gentoo bug network is

0.02199, which is 76 times that of a random graph with the

same number of nodes and edges. This shows that the
Gentoo bug network significantly deviates from a random

graph.

10,---�--�--�--�---,

• • ••• • • •

• • • •

•

I . · .. • •

• •
• •

. . • •

1 = 1. · .,. •

· •
• •• •• •

• •

: II·· ..

..

. , •

:.1;" • • • .
• . . • •

h:·:l' oJ· U'I.
• • ••

•
•

• •
• •• •• • • • •• •• ••

. _- · . - ••• • •

.. .. _--_ . . . _ . . • ••

• • •• _ . . _ . . • ••

00 10

Fig. 3. Image representation of the joint degree distribution. Colors
range from blue (low frequency) to red (high frequency), with white
indicating areas with no data.

VI. MODEL DEVELOPMENT

As shown in the empirical analyses presented in the

previous section, the Gentoo bug network has a large

clustering coefficient and a heavy-tail degree distribution.
To explain the evolution of the Gentoo bug network, we

start with reviewing some existing network growth models.

A. Fit of existing models

The random graph model proposed by Erdos and Renyi,

referred to as the ER model, has a Poisson degree
distribution and the clustering coefficient is just 1/76 of the

Gentoo bug network [28]. The WS model, proposed by

Watts and Strogatz, would possess a high clustering

10· r-----�-T--�������==�
Gentoo Bugs Network

..... BAmodel

10' 10' 10' Degree k

(a)

Gentoo Bugs Network
....... KRL 1.17
c c KRL 1.32

\.
\.

'�.

10� ���������··O�''-�'�'''�'.�''��'''�'''�A C�� C�

10· 10' 102 10' 10" Degree k

(b)
Fig. 4. The degree distributions predicted by two models and that of
the Gentoo bug network. (a) The BA model. (b) The KRL model.

coefficient. However, it loses its efficacy in explaining the

incremental growth of bugs in the Gentoo bug network
because the number of nodes is fixed at the very beginning

[9]. As Barabasi and Albert stated in [6], most man-made
networks are naturally connected in a scale-free manner.

The model they proposed, referred to as the BA model, is

based on two mechanisms, incremental growth and
preferential attachment. Starting from mo nodes with no

edge, the network grows by adding one new node with m

edges (mSmo) at each time step. The probability that an

existing node would be connected to the new node is

proportional to the existing node's degree, which could be

expressed by TIi = kif Lj kj. Krapivsky, Rendner, and

Leyvraz (KRL) extended the BA model into a more flexible
version by adding a parameter into the preferential

attachment probability: TIi = kf / Lj kt, where a is a

tunable parameter [7].

As stated in Section V.A, the edges' increase resulted
from the same number of new nodes can be viewed as about
the same. However, due to the sparsity of the Gentoo bug

network, the resulting edges' increase for each new node is
only around 1.07. For the incremental growth in BA and

KRL models, in which each new node arrives with m new
edges, the number m should be an integer. To make the BA

and KRL models applicable to the Gentoo bug network, we

introduce the mechanism proposed in [16]. Each node
arrives with m edges, where m is drawn from the set {l, 2}

377

with corresponding probability {p], P2}. Suppose the
number of new nodes with one edge is N] and the number of
nodes with two edges is N2. Then, N] + N2 = Nand N] + 2N2

= M, where N is the number of nodes and M is the number
of edges. Then, p]=N/N=0.93258 and P2 =N/N=0.06742.

Fig. 4 shows the degree distributions predicted by the BA
and KRL models. As we can see in Fig. 4 (a), the actual

degree distribution decreases faster than the simulation

result of the BA model. Moreover, the largest degree
predicted by the BA model is just one third that of the actual

value. The clustering coefficient averaged over 50 times of
simulation is 0.00039, which is far smaller than the Gentoo

bug network's 0.02199. Fig. 4 (b) shows the results of KRL
simulations when a equals to 1.17 and 1.32 respectively. In
the case of 1.17, the maximum degree predicted is close to

the actual value. However, the absolute value of the slope of

the degree distribution is smaller than the actual value and
the clustering coefficient is 0.0023, which is only about one

tenth that of the Gentoo bug network. When a equals to
1.32, although the clustering coefficient of 0.0197 is close

to that of the Gentoo bug network, the degree distribution

deviates a lot from that of the Gentoo bug network when
degree k is larger than 5. In addition, the maximum degree

of this model exceeds the actual maximum degree
substantially.

B. Proposed model modification

As we noted in the empirical analyses in Section V, nodes

with similar degrees do not tend to connect with each other.
In the incremental growth procedure of traditional BA and

KRL models, a new node has a fixed degree and the degree
difference between the new node and the existing nodes

would be included in the degrees of the existing nodes

implicitly. However, since the incremental growth has been
modified and a new node here may bring with it one or two

edges, we believe that including the degree difference
would refme the simulation result. We therefore introduce
such a factor into the model by modifYing the probability of

preferential attachment to TIi = kf df / L j kt df, where d;

is the absolute value of the degree difference between the
new node and an existing node i.

Degree Dis
10· I������,========::::::::;"]

Gentoo Bugs Network
...... alpha_l.lO_beta_O.00092

104 �--�����������·�··; ···�···�·"��� 100 lot 102 103 10· Degree k
Fig. 5. Simulation result of the new model when a is 1.10 and f3 is
0.00092.

The simulation result when a is 1.1 0 and P is 0.00092 is

shown in Fig. 5. The degree distribution of this model is
similar to that of the Gentoo bug network in general.

Moreover, the clustering coefficient is 0.02193, which is
quite close to the actual value of 0.02199 with a tiny

deviation of 0.27%. We tested various settings of a and P

in experiments, and the result shown here seems to have a
reasonably good tradeoff between the match of clustering

coefficients and the match of degree distributions.
Although there are still some problems in the simulation

result (for example, the largest degree predicted by our

model is still larger than the actual value,) our model
outperforms the BA and KRL models in general.

VII. CONCLUSION

In this paper, we analyzed open source software bugs with

complex networks, treating bugs as nodes and the
relationships among bugs as edges. Our empirical analyses

show that the Gentoo bug network has a heavy-tail degree

distribution and a large clustering coefficient. Besides
analyzing the topological characteristics of the Gentoo bug

network, we found that the traditional BA and KRL models
are not so satisfactory in explaining the high clustering

coefficient and heavy-tail degree distribution of this

network. Based on the fact that nodes with similar degrees
in the Gentoo bug network do not tend to connect with each

other, we introduced the factor of degree difference by
modifYing the probability of preferential attachment. Our

experiments show that the Gentoo bug network can be

better explained using the new model.
Besides the bug network we analyzed, there are many

other interesting phenomena that exist in the development

process of open source software projects. An interesting
topic for future research would be to investigate the

co-evolution of different networks, for example, the
developer network, the package network, and the software

bug network. This would be beneficial to software
engineering as well as complex system analysis and
modeling. Another possible future research direction would

be to analyze more open source software projects to help
build a better model for explaining the open source

software development process.

ACKNOWLEDGMENT

The authors would like to thank Youzhong Wang, Yuan
Luo, Zhidong Cao, Huiqian Li, and Fen Xia for valuable

discussions and suggestions. This work was supported by
the National Natural Science Foundation of China under

grants No. 60875049, 60921061, and 90924302, and by the

Chinese Academy of Sciences under grants No. 2F07COI

and 2F09N06.

REFERENCES

[I] M. Newman, "The structure and function of complex networks,"
SIAM Rev., vol. 45, pp. 167-256,2003.

[2] R. Albert and A. Barabasi, "Statistical mechanics of complex
networks," Reviews of modern physics, vol. 74, pp. 47-97, 2002.

[3] A. Barabasi, R. Albert, and H. Jeong, "Diameter of the World Wide
Web," Nature, vol. 401, pp. 130-131,1999.

[4] 1. Liu, Y. Dang, Z. Wang, and T. Zhou, "Relationship between the
in-degree and out-degree of WWW," Physica A: Statistical
Mechanics and its Applications, vol. 371, pp. 861-869,2006.

[5] B. Tadic, "Dynamics of directed graphs: the world-wide Web,"
Physica A: Statistical Mechanics and its Applications, vol. 293, pp.
273-284,2001.

378

[6] A. Barabasi and R. Albert, "Emergence of scaling in random
networks," Science, vol. 286, pp. 509-512, 1999.

[7] P. Krapivsky and S. Redner, "Organization of growing random
networks," Physical Review E, vol. 63, p. 66123,2001.

[8] M. Wang, G. Yu, and D. Yu, "Effect of the age of papers on the
preferential attachment in citation networks," Physica A: Statistical
Mechanics and its Applications, vol. 388, pp. 4273-4276, 2009.

[9] D. Watts and S. Strogatz, "Collective dynamics of 'small-world'
networks," Nature, vol. 393, pp. 440-442,1998.

[10] M. Newman, "The structure of scientific collaboration networks,"
Proceedings of the National Academy of Sciences, vol. 98, pp.
404-409,2001.

[11] U. Brandes, P. Kenis, 1. Lerner, and D. van Raaij, "Network
Analysis of Collaboration Structure in Wikipedia," in Proc. 18th
1nternational World Wide Web Conference, Madrid, Spain, 2009,
pp. 731-740.

[12] X. F. Liu, C. K. Tse, and M. Small, "Complex network structure of
musical compositions: Algorithmic generation of appealing music,"
Physica A: Statistical Mechanics and its Applications, vol. 389, pp.
126-132,2010.

[13] Y. Hu and D. Zhu, "Empirical analysis of the worldwide maritime
transportation network," Physica A: Statistical Mechanics and its
Applications, vol. 388, pp. 2061-2071, 2009.

[14] L. Lacasa, M. Cea, and M. Zanin, "Jamming transition in air
transportation networks," Physica A: Statistical Mechanics and its
Applications, vol. 388, pp. 3948-3954, 2009.

[15] C. Myers, "Software systems as complex networks: Structure,
function, and evolvability of software collaboration graphs,"
PhYSical Review E, vol. 68, p. 46116, 2003.

[16] X. Zheng, D. Zeng, H. Li, and F. Wang, "Analyzing open-source
software systems as complex networks," Physica A: Statistical
Mechanics and its Applications, vol. 387, pp. 6190-6200,2008.

[17] A. Andrea, "On the automation of fixing software bugs," in Proc. the
30th international conference on Software engineering, Leipzig,
Germany, 2008, pp. 1003-1006.

[18] Z. Andreas, "Where Do Bugs Come From?," Electron. Notes Theor.
Com put. Sci., vol. 174, pp. 55-59,2007.

[19] H. Israel, M. G. Daniel, M. G.-B. Jesus, and R. Gregorio, "Towards a
simplification of the bug report form in eclipse," in Proc. the 2008
international working coriference on Mining software repositories,
Leipzig, Germany, 2008.

[20] G. Tibor, F. Rudolf, and S. Istvan, "Empirical Validation of
Object-Oriented Metrics on Open Source Software for Fault
Prediction," 1EEE Trans. Softw. Eng., vol. 31, pp. 897-910,2005.

[21] W. Cathrin, P. Rahul, Z. Thomas, and Z. Andreas, "How Long Will
It Take to Fix This Bug?," in Proc. the Fourth International
Workshop on Mining Software Repositories, 2007.

[22] W. Xiaoyin, Z. Lu, X. Tao, A. John, and S. Jiasu, "An approach to
detecting duplicate bug reports using natural language and execution
information," in Proc. the 30th international conference on Software
engineering, Leipzig, Germany, 2008, pp. 461-470.

[23] H. David and P. William, "Finding bugs is easy," in Proc. the 19th
annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, Vancouver,
BC, CANADA, 2004, pp. 92-106.

[24] G. Tassey, "The economic impacts of inadequate infrastructure for
software testing," National Institute of Standards and Technology,
Gaithersburg, MD May 2002.

[25] G. Canfora and L. Cerulo, "Impact analysis by mining software and
change request repositories," in Proc. 11th International Symposium
on Software Metrics, 2005, pp. 259-267.

[26] Gentoo Bugzilla. Available:
[27] E. D. Kolaczyk, "Statistical Analysis of Network Data," ed New

York: Springer, 2007.
[28] P. Erdos and A. Renyi, "On random graphs," Publications

Mathematics, vol. 6, pp. 290-297, 1959.

379

