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Abstract-A major concern in open source software 
development is regarding bugs emerging during the life circle 

of a software project. Understanding the topological 

characteristics of interrelated bugs can provide useful insights 
into software project management and potentially facilitate 
the development of new complex network models. In this 
paper, we analyze the bug network in Gentoo Linux, one of 

the most popular Linux distributions. We model software 
bugs as nodes and the blocking relationships among them as 
edges. As the resulting Gentoo bug network cannot be 
adequately explained by some commonly-used complex 

network models, we propose a new model, which can better 
explain this network. 

I. INTRODUCTION 

C
omplex networks research has attracted a lot of 

attention from researchers in a variety of fields [1-2]. 

Examples of complex networks that have been studied 
include the World Wide Web [3-7], citation networks [8], 

and collaboration networks among movie actors [9], 
scientists [10] , or authors of Wikipedia [11]. Some recent 

work has also applied network analysis to such domains as 

music [12] and transportation systems [13-14]. 
Software systems represent an important kind of 

man-made systems, which could be investigated using the 

framework of complex network analysis [15-16]. Due to 
the popularity of open source software and the free access 

to the software source code, much work has been conducted 
on open source software from the perspective of software 

engineering [17-23]. However, research on analyzing open 

source software from the network point of view is still 
rather limited. 

As software systems grow more complex, bugs become 
more common and more difficult to fix. Programmers may 
even have to spend more time and effort finding and fixing 

bugs than writing new code. The National Institute of 
Standards and Technology concluded that software bugs 

cost the US economy an estimated $59 billion armually, 

which constitutes 0.6 percent of the gross domestic product 
[24]. 

Understanding the relationship among software bugs 
would potentially lead to better software project 

management practice and increased software reliability. In 

this paper, we analyze the bug network in Gentoo Linux, 
one of the most popular Linux distributions, treating bugs 

as nodes and the blocking relationships among the bugs as 
edges. Based on findings from some empirical studies on 

the Gentoo bug network, we develop a new model to 

simulate the growth process of this network. Experimental 
results show that our model can better explain the Gentoo 
bug network than some commonly-used existing models. 
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The rest of the paper is organized as follows. In Section II, 

we present some background of open source software 
development. In Section III, we provide a survey of some 

related work. In Section IV, we describe the data we have 
collected and the preprocessing step. Next, we show our 

empirical study results in Section V. We then present our 
new model and computational study in Section VI. Finally, 

we summarize our findings and discuss possible future 

research directions in Section VII. 

II. BACKGROUND 

Open source software projects need users and developers 
to help improve the quality of the developed software so 
that every user can enjoy bug-free packages. Generally, an 

open source software project needs two systems to manage 
the development process: a version control system and a 

bug tracking system. Version control systems, such as CVS 
and SVN, are used to share source code files among 

developers and users. Bug tracking systems, such as 

Bugzilla and ITracker, are used to track the bugs that 

emerge during the life circle of a project. During the 

development process, a large amount of data is recorded in 
the version control systems and bug tracking systems. Such 
data provide valuable resources for scientific research. 

During the development of an open source software 
package, the source code is constantly changing. The 

general procedure for bug resolution can be explained 

informally as follows. First, a bug is reported into a bug 
repository when a user finds the software is not performing 

correctly or when a user thinks the software can be 
enhanced by adding some new features. The former 

situation results in a traditional bug, meaning a software 

flaw, while the latter situation indicates an enhancement 
request [25]. Here we use the term "bugs" to refer to 

traditional bugs as well as enhancement requests. The 
reported bug will then emerge on the bug-to-fix list of the 

developers, who will contribute to fix the bug. Developers 

would commit the new source code to the version control 
system after they get the bug fixed. An interesting 

phenomenon during the debugging process is that some 

reported bugs are interrelated with each other. For example, 
when debugging, a developer may find that a bug carmot be 

fixed until another bug has been fixed first. The developer 
would then add a blocking relationship between these two 

bugs, i.e., bug A blocking bug B means that fixing bug B 

requires fixing bug A first. 
The Gentoo Linux project uses CVS and SVN at the same 

time to manage the source code files, while using Bugzilla 
as the bug tracking system. We can get information about 

the bugs and the blocking relationships among them from 

the Gentoo Bugzilla system [26]. 
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III. RELATED WORK 

The "open" characteristic of open source software has 

facilitated profound research in software related areas. 
Software engineers are interested in the possibility of 

automatic bug fixing [17] and the error proneness of a 
software component or an individual developer [18]. 

Viewing bug reports as text messages has also provided 

some insights into software engineering, including 
predicting the time needed to fix a bug [21], duplicate bug 
detection [22], and locating potential bugs [23]. 

Analyzing open source software systems from the 
perspective of complex networks is an emerging field, 

which has not yet received wide-spread attention. Myers 
investigated the software collaboration graphs in several 

open source software projects and found them to form 

scale-free and small-world networks [15]. Zheng et al. 

analyzed the package dependency network in open source 

software and discovered that the probability of a new 
package connecting to an existing one depends not only on 

the degree but also on the age of the existing package [16]. 

A major distinction of our research from these past studies 
is that we apply network analysis in another important 

aspect, namely, open source software bugs. 

IV. DATA PREPROCESSING 

Gentoo Bugzilla [26] is the bug tracking system of the 
Gentoo Linux project, storing all the reported bugs of the 

project. The first bug emerged in the repository on January 

4, 2002. From then on, the bug repository keeps on growing 

with more and more bugs reported by geographically 

dispersed developers and users all over the world. As of 
January 2009, when we collected the data, 220,576 bugs 

had been reported. Information about each bug is composed 

of mainly two parts, an XML file and an activity log. A 
bug's XML file records the bug ID, the reporter of the bug, 

the time when it is reported, and a description. The activity 
log of a bug records who has changed what and when. 

Reported bugs are connected if developers found 

relationships among them, for example, bug A cannot be 
fixed until bug B has been fixed first. We treat bugs as 

nodes and their relationships as undirected edges in a 
complex network. Fortunately, we can acquire the exact 
time of nodes' and edges' arrival by analyzing the XML 

files and activity logs. Of the 220,576 bugs in the collected 
dataset, 7,386 (3.3%) bugs with 7,884 edges formed the 

largest connected component, which constitutes our focus 

of study. We refer to this network as the Gentoo bug 

network. 

V. EMPIRICAL STUDY 

A. Growth of nodes and edges 

The nodes and edges kept on growing during the 84 

months from January 2002 to January 2009. We plot the 
number of edges versus the number of nodes in Fig. 1. Each 
point in Fig. 1 corresponds to (N; , M;), where N; is the 

number of nodes and M; is the number of edges in the i-th 

month. 
The ratio between the number of edges and the number 

of nodes in the Gentoo bug network can be viewed as 

roughly a constant. Thus, we can safely assume that the 
edges' increase resulted from the same number of new 

nodes is about the same (this will be further discussed in 

Section VI). 
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Fig. 1. Increase in the number of edges versus increase in the number 
of nodes in the Gentoo bug network. 

Degree k 
Fig. 2. The degree distribution of the Gentoo bug network on a log-log 
scale. 

B. Degree distribution 

Degree distribution P(k) is also useful in characterizing 

complex networks. It denotes the probability that a 
randomly selected node has k edges. Power-law distribution 

(p(k)�ka) is a dominant feature of many real-world 

networks [6]. Such networks are said to be scale-free. We 
plot the degree distribution of the Gentoo bug network on a 

log-log scale in Fig. 2. It shows a heavy-tail distribution 

with a lot of fluctuations in the tail. This signifies that the 
Gentoo bug network does not follow a power-law 

distribution often found in other related work. 

C. Joint degree distribution 

The joint degree distribution p(d\, d2) captures 

information of which nodes are connected to which others. 
It is defined as the relative frequency with which the two 

nodes at the end of an arbitrarily picked edge have a given 

pair of degrees. As the bug network is undirected, we first 
sort the nodes in all edges in the network so as to have the 

form (V\,V2), where the degree of node VI is no more than 

that ofv2. Then, we get the joint degree distribution by the 
following definition [27]: 
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(1) 

where M denotes the total number of edges and #( d\, d2) is 

the number of edges with degree pair (d\, d2). 

Fig. 3 shows the joint degree distribution of the Gentoo 

bug network. There is a noticeable tendency for 

high-degree nodes to be connected to low-degree nodes, 
while nodes with similar degrees do not tend to be 
connected with one another in the Gentoo bug network. 

D. Clustering Coefficient 

The degree k; of a node i measures the number of 

neighbors of this node, and the clustering coefficient of a 
node C; is defmed as 2e;l(k;*(k;-1)), where e; is the number 

of edges among the k; neighbors of node i. The clustering 

coefficient C of a network is the average of C; over all 
nodes in the network. Note that the clustering coefficient 

for a node with degree zero or one is set to zero. The 

clustering coefficient of a random graph (i.e., a graph in 
which nodes are randomly connected) with 7,386 nodes and 

7,884 edges would be about 0.00029 [1]. However, the 
clustering coefficient of the Gentoo bug network is 

0.02199, which is 76 times that of a random graph with the 

same number of nodes and edges. This shows that the 
Gentoo bug network significantly deviates from a random 

graph. 

10,---�--�--�--�---, 

• • ••• • • • 

• • • • 

• 

I . · .. • • 

• • 
• • 

. . • • 

1 = 1. · .,. • 

· • 
• •• •• • 

• • 

: II·· ..

.. 

. , • 

:.1;" • • • . 
• . . • • 

h:·:l' oJ· U'I. 
• • •• 

• 
•

• • 
• •• •• • •  • •• •• •• 

. . .. . .. _- · . - ••• • • 

.. .. _--_ . . . _ . . • •• 

• • •• _ . . _ . . • •• 

00 10 

Fig. 3. Image representation of the joint degree distribution. Colors 
range from blue (low frequency) to red (high frequency), with white 
indicating areas with no data. 

VI. MODEL DEVELOPMENT 

As shown in the empirical analyses presented in the 

previous section, the Gentoo bug network has a large 

clustering coefficient and a heavy-tail degree distribution. 
To explain the evolution of the Gentoo bug network, we 

start with reviewing some existing network growth models. 

A. Fit of existing models 

The random graph model proposed by Erdos and Renyi, 

referred to as the ER model, has a Poisson degree 
distribution and the clustering coefficient is just 1/76 of the 

Gentoo bug network [28]. The WS model, proposed by 

Watts and Strogatz, would possess a high clustering 
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(b) 
Fig. 4. The degree distributions predicted by two models and that of 
the Gentoo bug network. (a) The BA model. (b) The KRL model. 

coefficient. However, it loses its efficacy in explaining the 

incremental growth of bugs in the Gentoo bug network 
because the number of nodes is fixed at the very beginning 

[9]. As Barabasi and Albert stated in [6], most man-made 
networks are naturally connected in a scale-free manner. 

The model they proposed, referred to as the BA model, is 

based on two mechanisms, incremental growth and 
preferential attachment. Starting from mo nodes with no 

edge, the network grows by adding one new node with m 

edges (mSmo) at each time step. The probability that an 

existing node would be connected to the new node is 

proportional to the existing node's degree, which could be 

expressed by TIi = kif Lj kj. Krapivsky, Rendner, and 

Leyvraz (KRL) extended the BA model into a more flexible 
version by adding a parameter into the preferential 

attachment probability: TIi = kf / Lj kt, where a is a 

tunable parameter [7]. 

As stated in Section V.A, the edges' increase resulted 
from the same number of new nodes can be viewed as about 
the same. However, due to the sparsity of the Gentoo bug 

network, the resulting edges' increase for each new node is 
only around 1.07. For the incremental growth in BA and 

KRL models, in which each new node arrives with m new 
edges, the number m should be an integer. To make the BA 

and KRL models applicable to the Gentoo bug network, we 

introduce the mechanism proposed in [16]. Each node 
arrives with m edges, where m is drawn from the set {l, 2} 
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with corresponding probability {p], P2}. Suppose the 
number of new nodes with one edge is N] and the number of 
nodes with two edges is N2. Then, N] + N2 = Nand N] + 2N2 

= M, where N is the number of nodes and M is the number 
of edges. Then, p]=N/N=0.93258 and P2 =N/N=0.06742. 

Fig. 4 shows the degree distributions predicted by the BA 
and KRL models. As we can see in Fig. 4 (a), the actual 

degree distribution decreases faster than the simulation 

result of the BA model. Moreover, the largest degree 
predicted by the BA model is just one third that of the actual 

value. The clustering coefficient averaged over 50 times of 
simulation is 0.00039, which is far smaller than the Gentoo 

bug network's 0.02199. Fig. 4 (b) shows the results of KRL 
simulations when a equals to 1.17 and 1.32 respectively. In 
the case of 1.17, the maximum degree predicted is close to 

the actual value. However, the absolute value of the slope of 

the degree distribution is smaller than the actual value and 
the clustering coefficient is 0.0023, which is only about one 

tenth that of the Gentoo bug network. When a equals to 
1.32, although the clustering coefficient of 0.0197 is close 

to that of the Gentoo bug network, the degree distribution 

deviates a lot from that of the Gentoo bug network when 
degree k is larger than 5. In addition, the maximum degree 

of this model exceeds the actual maximum degree 
substantially. 

B. Proposed model modification 

As we noted in the empirical analyses in Section V, nodes 

with similar degrees do not tend to connect with each other. 
In the incremental growth procedure of traditional BA and 

KRL models, a new node has a fixed degree and the degree 
difference between the new node and the existing nodes 

would be included in the degrees of the existing nodes 

implicitly. However, since the incremental growth has been 
modified and a new node here may bring with it one or two 

edges, we believe that including the degree difference 
would refme the simulation result. We therefore introduce 
such a factor into the model by modifYing the probability of 

preferential attachment to TIi = kf df / L j kt df, where d; 

is the absolute value of the degree difference between the 
new node and an existing node i. 

Degree Dis 
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Fig. 5. Simulation result of the new model when a is 1.10 and f3 is 
0.00092. 

The simulation result when a is 1.1 0 and P is 0.00092 is 

shown in Fig. 5. The degree distribution of this model is 
similar to that of the Gentoo bug network in general. 

Moreover, the clustering coefficient is 0.02193, which is 
quite close to the actual value of 0.02199 with a tiny 

deviation of 0.27%. We tested various settings of a and P 

in experiments, and the result shown here seems to have a 
reasonably good tradeoff between the match of clustering 

coefficients and the match of degree distributions. 
Although there are still some problems in the simulation 

result (for example, the largest degree predicted by our 

model is still larger than the actual value,) our model 
outperforms the BA and KRL models in general. 

VII. CONCLUSION 

In this paper, we analyzed open source software bugs with 

complex networks, treating bugs as nodes and the 
relationships among bugs as edges. Our empirical analyses 

show that the Gentoo bug network has a heavy-tail degree 

distribution and a large clustering coefficient. Besides 
analyzing the topological characteristics of the Gentoo bug 

network, we found that the traditional BA and KRL models 
are not so satisfactory in explaining the high clustering 

coefficient and heavy-tail degree distribution of this 

network. Based on the fact that nodes with similar degrees 
in the Gentoo bug network do not tend to connect with each 

other, we introduced the factor of degree difference by 
modifYing the probability of preferential attachment. Our 

experiments show that the Gentoo bug network can be 

better explained using the new model. 
Besides the bug network we analyzed, there are many 

other interesting phenomena that exist in the development 

process of open source software projects. An interesting 
topic for future research would be to investigate the 

co-evolution of different networks, for example, the 
developer network, the package network, and the software 

bug network. This would be beneficial to software 
engineering as well as complex system analysis and 
modeling. Another possible future research direction would 

be to analyze more open source software projects to help 
build a better model for explaining the open source 

software development process. 
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