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Narrowing the Gap: Improved Detector Training
With Noisy Location Annotations

Shaoru Wang ™, Jin Gao", Bing Li*“, and Weiming Hu", Senior Member, IEEE

Abstract— Deep learning methods require massive of annotated
data for optimizing parameters. For example, datasets attached
with accurate bounding box annotations are essential for modern
object detection tasks. However, labeling with such pixel-wise
accuracy is laborious and time-consuming, and elaborate labeling
procedures are indispensable for reducing man-made noise,
involving annotation review and acceptance testing. In this paper,
we focus on the impact of noisy location annotations on the
performance of object detection approaches and aim to, on the
user side, reduce the adverse effect of the noise. First, noticeable
performance degradation is experimentally observed for both
one-stage and two-stage detectors when noise is introduced to
the bounding box annotations. For instance, our synthesized
noise results in performance decrease from 38.9% AP to 33.6%
AP for FCOS detector on COCO test split, and 37.8% AP to
33.7%AP for Faster R-CNN. Second, a self-correction technique
based on a Bayesian filter for prediction ensemble is proposed
to better exploit the noisy location annotations following a
Teacher-Student learning paradigm. Experiments for both syn-
thesized and real-world scenarios consistently demonstrate the
effectiveness of our approach, e.g., our method increases the
degraded performance of the FCOS detector from 33.6% AP
to 35.6% AP on COCO.

Index Terms— Object detection, label,

estimation, teacher-student learning.

noisy Bayesian

I. INTRODUCTION

OBJECT detection aims at localizing individual objects
and recognizing their categories. The imaginary bound-
ing boxes are usually adopted to represent the object locations
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for the sake of simplicity. Considerable large-scale datasets,
including PASCAL VOC [1], COCO [2], and Objects365 [3],
contribute to rapid advances in modern CNN-based object
detection [4], [5], [6], [7], [8], [9] greatly. These datasets focus
on pre-defined categories, and all object instances belonging
to these categories are labeled with bounding boxes together
with the corresponding categories.

These objects’ boundary coordinates are typically anno-
tated with pixel-wise accuracy, which means annotation skills
training for annotators is required before starting annotating
and an explicit verification step is indispensable for achieving
fine-grained annotation quality [2]. What’s more, zoom-in
operations are sometimes required for annotators to watch the
distinct small objects better, which makes such labor-intensive
annotations even more time-consuming. So the inevitable
negligence while annotating a huge dataset like COCO (which
contains 143k images and 860k object annotations) may
cause man-made noise involved in the annotations. Since
detection has been widely applied in many different varieties
of niche and emerging areas, there have been large amounts of
public and private datasets for different Al-driven applications.
However, not all teams can afford such huge labor or time cost
and organize such a professional processing line for annotation
as the COCO team has done. In some cases, one may possess a
limited budget or face an impending deadline. The question is
whether such fine-grained annotations like COCO are essential
for the detection task, what will happen to the detectors
when the annotations are corrupted by some noise due to the
limited budget or impending deadline, and whether appropriate
relaxation on the strict annotation standard is acceptable. Some
existing studies have focused on learning with noisy category
labels ([10], [11], [12], and [13]), and the adverse effects
on both synthesized and real-world noisy datasets have been
vastly investigated. In these studies, massive effective methods
are also proposed to learn robust classification models against
label noise. Nevertheless, there are seldom studies focused
on the noise in the location annotations for the detection
tasks. How the quality of location annotations affects the
performance of detectors is rarely studied.

In this paper, we first investigate the impact of noisy
location annotations in the detection task, and non-negligible
performance degradation is observed (see Fig. 1) when
the very plain Gaussian noise is injected into the location
annotations of detection datasets. We conduct all of these
benchmark-simulated label noise evaluations on COCO [2] for
its popularity, which involves about 118k images for training
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Fig. 1. Noticeable degradation of performance is observed when the location
annotations of the dataset used for training are corrupted by noise. The bottom
figures illustrate the location annotations under different noise levels.

(train), 5k for validation (minival) and 20k reserved
for testing (test-dev). We simply add Gaussian noise to
each of the box’s boundary coordinates independently for
each instance in the train split. We choose FCOS [9] and
Faster R-CNN [5], two of the representative single-stage and
two-stage detectors respectively, for evaluation. We adopt the
original default training configuration of these methods, except
the replacement of the annotations of the train split with
our corrupted ones. In Fig. 1, the impact of different noise
levels in terms of performance degradation is evaluated on the
original COCO test-dev split, where y is a parameter used
to control the level of the noise and the higher one indicates
more severe noisy corruption. Details of the way to generate
the noise are presented in Sec. III-B. The results indicate
that the detection approaches without particular treatment
possibly have a poor ability to learn robust models against
the noise in location annotations. We attribute it to the fact
that most of these methods blindly assume the annotations
to be accurate and credible. To further show the impact in
the real-world scenario, we manually labeled a subset of the
COCO dataset, up to 12k images, with a rather loosened
label standard, contributing to about 90k rough bounding-box
annotations. Performance degradation is also observed on this
real-world annotation-noise subset, as shown in Sec. III-B.
Based on the above analyses, we insist that fine-grained
location annotations with pixel-wise accuracy are crucial to
the real-world applications of these detectors.

However, noise corruption is inevitable or incurred yet in
some cases. So it is vital to study and develop effective
methods to alleviate the adverse effect of the noisy location
annotations in the detection task. In this paper, a simple
and efficient method is proposed to make effective use of
noisy annotations among large datasets. It is known that the
ensemble methods [14] may have the ability to integrate
multiple predictions from different models and get closer
to the real noise-free labels. We extend this idea to the
ensemble of predictions from an individual detector. To this
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end, an ensemble method based on a Bayesian filter is
proposed, which can correct the noisy box annotations by
the predictions of the detectors themselves. This integration
considers both the probability of the prediction belonging
to the corresponding object and its classification confidence.
Furthermore, to avoid the trivial solution during the direct use
of this self-correction process in training, a Teacher-Student
learning framework is adopted. Specifically, a teacher detector
is first trained on the noisy dataset and then used to correct
box coordinate noise by prediction ensemble. The student
detector is then trained based on the corrected annotations
and we achieve better performance as expected in comparison
with the frozen teacher detector. In other words, we boost
the student detector’s locating performance by exploiting the
self-correction ability of the noisy teacher detector.

In summary, our contributions are three-fold:

« Some insightful analyses on the impact of noisy location
annotations for the detection task are presented and
noticeable performance degradation is observed in both
synthesized and real-world scenarios.

e« A novel prediction ensemble approach based on a
Bayesian filter is proposed, which enables better exploita-
tion of noisy annotations in a Teacher-Student learning
framework.

o Our method provides a simple baseline for the study of
noisy location annotations, which is expected to advance
the research related to localization tasks, e.g., object
detection, tracking, efc.

The code and our newly-annotated noisy subset will be

made publicly available at https://github.com/wangsr126/NDet
to promote the study on this topic.

II. RELATED WORKS
A. Object Detection

Modern deep-learning-based methods for object detection
can be generally formulated as multi-region classification and
regression tasks. First, a large number of anchors are tiled
on the image, and each of them is assigned to one of the
ground-truth objects in the image or just the background.
Then the category and relative coordinates to the specified
nearby ground-truth object (if exists) are predicted for each
anchor [5], [6], [7]. A class of methods cascades the above
procedures several times to refine predictions, which are
commonly known as two-stage methods [5], [15]. Another
interesting direction simplifies the anchor from the box to
a single point, leading to a simpler paradigm and more
potential in terms of generalization ability [9], [16], namely
anchor-free methods. In this paper, we focus on the regression
branch for the above detectors. Relative coordinates from the
anchor! to the ground-truth box of the assigned object are
predicted in the regression branch. The L ,-norm-based loss
(e.g., smooth Lj loss [5], Ly loss [4], [17], Ly loss [18]) and
IoU-based loss (e.g., IoU loss [19], GIoU loss [20]) are usually
adopted for supervision. However, these methods assume
the annotations of location are absolutely accurate, without

! Anchor box and anchor point are collectively referred to as anchor in the
following part without loss of generality.
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modeling the noise in the annotations, which shows poor
anti-noise performance. KL-loss [21] considers the inherent
ambiguities of the ground-truth bounding boxes, but it also
assumes the annotations are accurate for most instances, which
is thus orthogonal to our case.

B. Label Noise

Corrupted labels are ubiquitous in many real-world col-
lected and annotated datasets, and can severely impair the
performance of deep neural networks especially when the
dataset is annotated with a limited budget. The label noise may
arise upon mistakes of human annotators or automatic label
extraction tools. For classification tasks, several approaches
have sought to promote the robustness of classifiers to label
corruption. One representative class of methods aims to
reduce noisy samples’ impact with carefully designed losses
[12], [22], [23], regularization terms [24], [25] or adaptive
sample re-weighting [13], [26], [27], [28]. Another direction
focuses on improving the label quality by correcting the noisy
labels [10], [11], [29], [30]. Most of the above studies usually
conduct experiments on noisy datasets generated from CIFAR-
10, CIFAR-100 by artificially corrupting the true labels. Few
of them [12], [22] conduct extensive experiments on real-world
noisy datasets for classification tasks.

Departing from them, our approach mainly focuses on
correcting the noisy location annotations in object detection
tasks, which bears some similarities to the above trend of
correcting noisy labels. Some of the methods designed for
classification tasks can be naturally extended to detection
tasks [10], [31] to solve noisy category labels, e.g., mis-
taken labels or missing labels. But little attention has been
paid to the noise in location annotations. Some works for
detection focus on semi-supervised settings, where only a
subset of data are annotated while others remain unlabeled
[32], [33], [34], or weakly-supervised settings, where only
image-level category tags are available [35], [36], [37], [38].
All of these paradigms show significant differences to our
settings. The most related works to ours are the noisy location
annotation study conducted by Mao et al. [39] and some
followers [40], [41]. In contrast to these works, we additionally
analyze the pattern of human-made label noise and the gen-
eralization performance to the real-world noisy dataset, which
shows more practical significance.

C. Teacher-Student Learning

Teacher-Student learning is a learning paradigm that uses a
teacher network to train a student network for various vision
tasks. The idea is introduced in knowledge distillation [42],
in which a teacher model is generally pre-trained on a specific
task and kept frozen during distillation. Knowledge distilla-
tion is widely adopted in various tasks, e.g., classification
[42], [43], [44], [45], detection [46], [47], and segmenta-
tion [48], [49]. The Teacher-Student learning framework is
also adopted in semi-supervised learning [34], [50], [51]. For
instance, Mean Teacher [50] constructs the teacher network as
a moving average of student network and the predictions of
the teacher are seen as pseudo labels for the student to learn
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against. Besides, it is also widely used in self-supervised learn-
ing [52], domain adaptation [53], etc. Our Teacher-Student
framework bears some similarities to knowledge distillation.
However, the improvement of the student in distillation comes
from the additional knowledge of the teacher, while the
teacher itself in our method may not show superiority to the
student. The improvement in our method is derived from our
newly-designed annotation correction module, which can serve
as a better supervision for the student detector. Hopefully,
our framework is compatible with other distillation methods,
though it is beyond the scope of this paper.

III. METHODOLOGY

In this section, we first briefly describe the modern detectors
as preliminary. Then some experimental analyses on the
impact of noisy location annotations are conducted. Finally,
a simple yet effective self-correction technique is proposed
based on the prediction ensemble paradigm, which can effec-
tively improve the quality of location annotations. Along
with the Teacher-Student learning framework, our method can
practically narrow the performance gap between detectors with
and without noisy location annotations.

A. Preliminary on Object Detection

Most modern detectors [5], [6], [7], [9] follow a dense
prediction paradigm. First, a large number of anchors are tiled
on the image. During the training phase, each of them is
assigned to one of the objects in the image or just to the
background, and fancy losses are designed to guide them to
predict the right category and regress the relative coordinates
to the specified nearby ground-truth object (if exists). The
above process can be formulated as follows.

For each anchor a;, classification scores p; and param-
eterized coordinates #; are predicted, where, p; is usually
a C-dimension vector, representing probabilities of belonging
to the predefined C categories, and ¢#; is a 4-dimension vector,
usually representing the relative offsets from the anchor to the
predicted bounding box. Then a; is assigned to one of the
objects in the image or just to the background, consequently
constructing the class label ¢ and regression target ¢;. The
latter is encoded based on the assigned ground truth box bj‘
and b;‘- = [I*, r¥, t;f‘, b;f] for four object bound coordinates. The

following training loss function is applied on these predictions:

L{p:} ) = hets D Lets(pi )
i
+hreg D NiersoyLreg(tin t]), (1)
i

where L is for category classification task, and cross entropy
loss [5] and focal loss [6] are usually adopted. L, is
for bounding box regression task and smooth L; loss [5],
Ly loss [4], [17], Ly loss [18], IoU loss [19], GloU loss [20],
etc., can be adopted. ]I{C;ﬂ>0} is the indicator function, being 1
if c;" > 0 (foreground) and O otherwise (background). A
and A, are both the factors used for normalization and
re-weighting simultaneously. The above procedure can be
cascaded several times to further refine the predictions through
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Fig. 2. Examples of our newly labeled images from the COCO train split. In each pair, the left one is the original annotation, and the right one is ours.

regarding the predicted boxes from the previous stage as the
anchors for the current stage [5], [15].

During the inference phase, p; and ¢; are predicted for each
anchor a;, and non-maximum suppression (NMS) is applied
as post-processing to remove the redundant predictions at last.

B. Analyses on the Impact of Noise

In most previous works, the location annotations in datasets
for evaluation are, most commonly and tacitly, treated as
accurate ground truth labels without considering the possible
man-made errors, which means the regression target ¢ in
Equation (1) is considered to be accurate. Such conditions
can be satisfied for some publicly available datasets thanks
to the elaborate labeling effort [1], [2], [3], whereas they are
usually not held for some private and self-collected datasets.
If the location annotations are not accurate enough due to the
limited budget, how much is the impact on the performance
of modern detectors? To answer this question, experiments
for both synthesized and real-world scenarios are conducted
in this paper.

At the beginning of our analyses, we vastly labeled a subset
of COCO train split, up to 12k images with relaxed label
restrictions. The only request for annotators is that they should
make it possible for others to retrieve the right object according
to their labeled bounding box. Besides, we provide annotators
with another indicator from COCO annotations to ensure our
new annotations share almost the same mistaken and missing
errors to COCO. In this way, the only difference between
COCO annotations and ours is that the location annotations
from COCO are relatively fine-grained and accurate while ours
are coarse and noisy. Some examples are shown in Fig. 2.
We further analyze the pattern of the man-made noise in
the location annotations by considering COCO as the clean
ones, as shown in Fig. 3. We mainly have three observations
as follows: 1) the variance of the noise is roughly linear to
the object scale; 2) relative errors (obtained by normalizing
the absolute coordinate errors with respect to corresponding
object widths or heights) are mostly centered around 0; 3)
the correlation coefficients between relative errors of different
boundary coordinates are at a relatively low level.

Despite that we have labeled such a noisy subset in the sense
of real-world noisy conditions, its small scale (i.e., only 10%
of COCO dataset) and lack of ability to manually control the
level of noise hold us back to deliver a deeper analysis. So we

absolute error
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Fig. 3. Analyses of man-made noise in location annotations. Top: scatter
diagram for absolute error of each boundary annotation with respect to
corresponding object width or height. Bottom left: the distribution of relative
error; the solid curves illustrate the distributions of our synthesized ones.
Bottom right: correlation coefficients between relative errors of different
boundary coordinates.

manually corrupt the location annotations by synthesized
noise, following the above observations. Specifically, we add
Gaussian noise to each box boundary coordinate separately
for each instance in the train split. Take the left boundary
(denoted as [*) for example, the new coordinate could be
[* = [* + Nj«. The noise is set to be zero-mean with standard
deviation linear to the object scale, ie., Ny ~ N(O, aﬁ),
where A denotes Gaussian distribution. We introduce the root
mean squared relative error as the metric to measure the level
of the noise, which is defined as, e.g., ¥y = +/E[(N;+ /w*)?] for
the left boundary. Thus, the level of the above Gaussian noise
can be measured as y = o7+ /w*, where w* is the object width.
[lustrations are shown in Fig. 4. We let y shared across four
boundaries, i.e., o = yw*, opx = yh*, opx = yh*, where
o+, o+, op+ are the standard deviations for the noise on the
other three boundaries and A* is the object height.

Based on our newly labeled and synthesized annotations on
the COCO dataset, we take FCOS [9] and Faster R-CNN [5],
two of the representative single-stage and two-stage detectors
respectively, as examples to examine the impact of the noise.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 04,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: NARROWING THE GAP: IMPROVED DETECTOR TRAINING WITH NOISY LOCATION ANNOTATIONS

6373

TABLE I

NOTICEABLE DEGRADATION OF PERFORMANCE ON THE COCO M1N1vAL SPLIT IS OBSERVED WHEN THE LOCATION
ANNOTATIONS OF THE TRATIN SPLIT ARE CORRUPTED BY SYNTHESIZED AND REAL-WORLD NOISE

Methods | type | scale | v | AP | APso APrs | APs AP, AP
0 385 573 416 | 225 424 497
synthesized | 123k | 0.05 | 37.1 (-1.4) | 569 403 | 21.6 404 478
FCOS [9] 0.1 | 33.5(-53) | 549 360 | 196 370  43.1
Lworld | 12K 0 22.8 392 233 | 1.6 248 300
real-wor - 212 (-1.6) | 384 207 | 103 229 294
0 375 582 409 | 211 412 49.0
synthesized | 123k | 0.05 | 358 (-1.7) | 57.8 390 | 209 393 458
Faster R-CNN [5] 0.1 33 (-42) | 563 356 | 193 375 421
Lworld | 12 0 233 429 227 | 1.7 258 308
real-wor - 218 (-1.5) | 422 202 | 102 244 2938
¥ = 0.05 **  FCOS (y=0.05) el Lo PHECCS(GRO) e
=01 » oot 7t b
0.8
0.8 ‘
0.6
0.6
0.4 b , 0.4
| s
0 0.5 10 \:_.::_
Flg 4 NOiSB distributions we adopt fOI' synthesized location annotations. 0 25000 50000 75000 100000 125000 150000 17500 0 25000 50000 75000 100000 125000 150000 175000
60
— mclean [ RN (=00 S . ST R =) e
50 14 loss_rpn_bbox loss_rpn_bbox
noisy(y=0.1) toy_loss_rpn_bbox toy_loss_rpn_bbox
12 loss_cls 1.0 loss_cls

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
IoU thresholds

Fig. 5. APs under various IoU thresholds for the FCOS detectors trained
with the clean and synthesized noisy annotations.

FCOS is an anchor-free detector’ with IoU-based regression
loss, and the detector of Faster R-CNN utilizes ROIAlign
operator to formulate a two-stage framework with L ,-norm-
based regression loss. As shown in Fig. 1 and Table I, both
the two methods are influenced by the injected noise. When
y = 0.05 in the case of synthesized noisy annotations, mAPs
evaluated on the minival split degrade to 96.3% and 95.5%
of the original scores for FCOS and Faster R-CNN respec-
tively. We further increase y to 0.1, and the performances
decline to 87.0% and 88.8% of the original scores disastrously.
Besides, we can find that APs with higher IoU thresholds drop
heavier, as shown in Fig. 5, which indicates that the noise
prominently damages the ability of detectors to accurately
locate objects.

We also examine whether the detectors can overfit the noisy
annotations. Since we have clean COCO annotations, it is easy
and straightforward to monitor additional toy losses calculated
by the predictions and the clean COCO annotations but stop
the backward pass for computing gradients from these losses
during the training phase. As shown in Fig. 6, we can find
that the losses calculated by the noisy annotations are always
higher than those calculated by the clean ones, and all of them

2We adopt the improved version with tricks like norm_on_bbox,
centerness_on_reg, center_sampling and giou unless otherwise
stated.

toy_loss_cls
10 loss_bbox
toy_loss_bbox

toy_loss_cls
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toy_loss_bbox

0.6 {

04 h

0.2

| S

A
04 M
| s

0.0 N 00
0 25000 50000 75000 100000 125000 150000 17500 0
iter

25000 50000 75000 100000 125000 150000 175000
iter

Fig. 6. Training curves for detectors with original and toy training losses.

consistently show a downward trend during training. Thus we
infer it is hard to overfit for detection tasks in our settings.

C. Our Improved Detector Training With Noise

When we happen to have a disappointing dataset with
noisy location annotations due to the limited labor or time
budget, it is thus worthy to study how to exploit these
noisy annotations effectively as direct utilization of them
results in prominent performance degradation as shown in
Sec. III-B. In this section, a simple yet effective method is
proposed based on the prediction ensemble to correct the noisy
box annotations. Furthermore, to avoid the trivial solution
during the direct use of this self-correction process in tracing,
a Teacher-Student learning framework is adopted. Our method
effectively alleviates the adverse effect of noisy annotations
and achieves better performance on noisy datasets.

1) Prediction Ensemble: Due to the popular one-to-many
label assignment during detector training [5], [6], [9], there
are usually duplicate predictions corresponding to the same
instance. We believe that these predictions possess the poten-
tial of correcting the noisy box annotations. To this end,
we present the following problem: For one object in the image
with category label ¢* and noisy box annotation b*, given
multiple predictions O = {01, O», ..., Oy}, how to acquire
the corrected bounding box b°" for that object?
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Here O; is the prediction of the anchor a;, and usually
involves the classification score p; and the box coordinate
prediction b;. Note that b; denotes the absolute coordinates
in the image plane, which is the decoded box prediction
transformed from ¢;, and N is the total number of anchors
in the image.

The above problem can be formulated as the estimation of
the posterior probability distribution, p(b°°"|c*, b*, O). If we
cast the coordinate prediction b; in O; as one measurement
of b°°", and assume the measurements conditioned on 5"
are independently distributed, this problem can be considered
as a particular case of recursive Bayesian estimation problem
on static systems. If we further assume the measurement
noise is normally distributed, it can be solved by Kalman
filter [54]. In this static system, the output state vector for
representing the corrected bounding box is updated by the
above measurements that are introduced in a sequential fashion
without considering their orders. This process is governed by
the following equations:

b = b
by = b + vy, 2)

where p(vi) ~ N(0, Ry) and Ry is the covariance matrix
for the k-th measurement. This formulation can also be
represented as p(bg|b(”") ~ N(b{’", Ry) in a probabilistic
manner. The initial state can be modeled by the given noisy
annotations, ie., p(by”") ~ N(b*, P*), where P* is the
covariance matrix for the annotations.

According to the derivations in Kalman filter [54], we can
obtain the following recursive equations:

Ki = Pe—1 (Pt + R)™!,
b = b + Ki (b — b)),
P = —Kp)Pr—1, 3)

where K is the Kalman gain and [ is the identity matrix.
Besides, we have the initial state as by”" = b*, Pp = P*.

By some derivations, the above recursive equations can be
simplified to the following general terms, which can directly
estimate the coordinates based on the noisy annotation and k
predictions:

k
b = P((PH7'6 + DR ), )
. i=1
Pl =)'+ > R (5)
i=1

It is shown that the order of input sequence of predicted
bounding boxes does not matter in estimating b;°" and P.
More specifically, we can use all the N predictions to estimate
the corrected coordinates as follows:

N N
peOT — b;\;)r =+ ZP*Ri_l)_l(b* + ZP*Ri—lblgar).
i=1 i=1

(6)

It can be drawn that P*R; ! matters in Equation (6) rather
than any individual one of P* and R;. As the measurements
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Fig. 7. Various choices for f(¢) ianquation (8): step for f(r) =1(r > 1)
-0
and Gaussian for f(t) =e @

(or predictions) are also trained with the supervision from the
noisy annotations, we thus assume that the covariance matrix
R; for the i-th measurement inherits the correlationship in
the covariance matrix P* for the annotation and follows a
scaling relation, i.e., P* = §; R;, where the scalar §; is the
scale factor between P* and R;. Note that P* and R; are not
necessarily to be diagonal matrices, which means that the four
coordinates of the box are not necessarily independent to each
other. Considering most objects in COCO [2] are subject to
certain length/width ratios, they are indeed not independent.
Following the assumption that P* = §; R;, the Equation (6) can
be rearranged to the one-dimensional case for each coordinate
of the box. Here we take the estimation of the left boundary
coordinate (/°°") for example:

N
jeor — I + Zi:l Sili

7
1+ 306 @

where [* and [; are the left boundary coordinate of the
annotation and the i-th measurement.

Then, we discuss the design of §;. At least two factors
should be considered: 1) the probability of the prediction’s
bounding box fitting the corresponding object; 2) the confi-
dence of the prediction’s category. To this end, we specially
design §; as follows:

8 = f(LoU (bi, b)) - p; . (8)

Here p; . represents the predicted classification score for
category c¢*, and f(-) should be an increasing function, and
has several design choices. We can use step function (f () =

I(t > 7)) or Gaussian function (f(t) = e*(l_T[)) alternatively,
where 7 and o are the hyper-parameters as shown in Fig. 7.
Both of them show comparably favorable performance in our
experiments. The formulation in Equation (8) makes sense for
the reason that: 1) higher IoU between the manually annotated
bounding box and predicted one indicates a higher probability
that they refer to the same object; 2) higher classification
score for the corresponding category roughly indicates higher
confidence for the bounding box prediction. Moreover, higher
IoU and score together contribute to higher confidence of b;
and hence higher §;.

We will show the noise can be suppressed to a certain extent
with the above prediction ensemble technique in Sec. IV-D.1.
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Fig. 8. The whole Teacher-Student learning framework. A frozen teacher detector and another student detector process images simultaneously. The predictions
of the teacher detector are then utilized to correct the noisy bounding box annotations using our self-correction method described in III-C.1. The corrected
annotations are used as supervision for the student detector.
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Fig. 9. In the training process, the top figure illustrates the mAP evaluated
on minival split at each epoch for different training scenarios. The bottom
one shows the average IoUs between the clean (noise-free) box annotations
and the ones available in these training scenarios of training samples.

2) Teacher-Student Learning: Provided the above predic-
tion ensemble method, a naive way to train a detector on
the noisy dataset lies in applying such correcting method on
the prediction obtained by the detector itself and utilizing the
corrected annotations for supervision during training (denoted
as naive). However, we experimentally find that it does not
work to directly use this self-correction process in training.
As shown in Fig. 9, although the corrected bounding boxes
have higher IoUs than the clean ones than the original noisy
annotations, the mAPs are not improved in the late of the
process. We attribute it to the trivial solution obtained when the
leading prediction dominates the ensemble. It is impracticable
to count on the annotations corrected by the prediction itself
to provide appropriate supervision.

To this end, a Teacher-Student learning framework is
adopted in our proposed training process. Specifically,
a teacher detector is introduced to correct the annotations,
which is pre-trained on the noisy dataset and kept frozen
during the training process of the student detector (denoted as
TS). The overall framework is shown in Fig. 8. During train-
ing, the teacher and student detectors process the same images
simultaneously. The predictions of the teacher detector are then
utilized to correct the noisy bounding box annotations using
our prediction ensemble method described in Sec. III-C.1.
The corrected annotations are used as supervision for the
student detector. In other words, the ability to alleviate noise of
the teacher detector is transferred to the student detector, hence

boosting the student detector’s locating performance with no
additional latency during the inference phase.

IV. EXPERIMENTS

We present experimental results on the COCO [2] detection
benchmark, which contains 118k images for training (train
split), Sk images for validation (minival split) and 20k
images for testing (test—dev split). We adopt the commonly
used evaluation metric, AP, which is computed over ten
different IoU thresholds, i.e., 0.5:0.05:0.95. Considering the
rather high quality of the bounding box annotations in COCO,
we regard the original annotations as the clean ones without
man-made noise. Thus, we investigate our methods by training
the models on the noisy dataset with either our newly-labeled
or synthesized annotations and evaluating them on the original
COCO minival split or test-dev split.

A. Implementation Details

We benchmark on two representative detectors, FCOS [9]
and Faster R-CNN [5], one of which is a single-stage method,
and the other one follows the two-stage paradigm. All of
our experiments are conducted based on mmdetection [18],
a popular open-source codebase, and adopt the default settings,
except that we train FCOS [9] and Faster R-CNN [5] with a
batch size of 8 and halve the learning rate according to linear
scaling rule [55], i.e., 0.005 for FCOS and 0.01 for Faster R-
CNN. Unless specified, the models are trained for 12 epochs,
with the learning rate decreased by 0.1 at 8 and 11 epochs.
We use ResNet-50 [56] as the default backbone and initialize it
with the weights pre-trained on ImageNet [57]. FPN [7] is used
by default. The input images are resized with the shorted side
of 800 pixels and only horizontal image flipping is adopted as
training data augmentations unless otherwise stated.

1) Training: We adopt the teacher-student learning frame-
work described in Sec. III-C.2. First, a teacher model is
obtained by training on the dataset with noisy annotations.
Then, the student model is trained. During training, the for-
ward process of the teacher model is executed synchronously
and the predictions along with the noisy annotations are fed
into our proposed prediction ensemble module to produce
the new bounding boxes for objects, which are then used as
the ground truths to generate the supervision of the student

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 04,2022 at 02:00:48 UTC from IEEE Xplore. Restrictions apply.



6376

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE II
EXPERIMENTAL RESULTS ON COCO TEST-DEV SPLIT

Methods \ type | scale | ¥ | Methods AP | APso APr5 | AP;s AP, AP,
0 } 38.9 57.9 42.0 224 414 486

_ 005 - 37T 573 302 ITE 393 760

synthesized 123k : Ours 37.9 (+0.8) 58.1 413 221 40.6 47.0

- 336 554 36.0 9.6 35.8 a4

FCOS 19] 0.1 Ours 35.6 (+2.0) 56.9 38.8 20.8 38.0 442
0 - 779 397 736 T3 237 735

real-world 12k - 710 384 704 97 775 773

- Ours 21.4 (+0.4) 38.8 21.0 10.2 230 274

0 ; 37.8 58.9 41.0 22.0 40.7 46.8

. 005 - 364 585 397 215 394 %3

synthesized 123k : Ours 36.7 (+0.3) 59.0 39.4 21.2 39.7 45.2

) - 337 571 359 70T 363 T2
Faster R-CNN [3] 01 Ours 35.1 (+1.4) 58.1 37.6 20.4 382 432
0 - 73, 3. 732 122 75.7 29.0

real-world 12k - o) 77 706 105 73S 787

- Ours 22.5 (+0.3) 430 21.1 11.0 247 283

detector. Following is a detailed description of how to get
proper predictions from the teacher detector. For the FCOS,
the predictions before NMS are utilized. Noting that the
productions of classification scores and center-ness scores
are considered as our category scores. As for the Faster
R-CNN, the original one only produces sparse predictions
after R-CNN, thus is not compatible with our methods.
Nonetheless, a moderate modification is applied. Specifically,
we collect the predictions of RPN and filter out the ones far
away from any annotations (e.g., IoU < 0.5) on the image
plane or with rather low classification scores (e.g., less than
0.05). All the remaining predicted boxes are fed into the
R-CNN as ROIs to perform the second-stage classification
and regression. To avoid bringing a heavy computing burden
in some extreme cases, only top-k scored predictions from
RPN are collected and k is set to 1000 in our experiments.
Then all these predictions obtained by R-CNN are utilized to
correct the noisy annotations. Noting that the above strategies
can be easily and smoothly extended to other one-/two-stage
detectors, though we only instantiate one detector for each
kind of them for the demonstration purpose.

2) Inference: Only the student detector is required during
the inference phase, thus no additional computational cost is
brought by our method. All the configurations in this phase can
follow the default settings without additional modifications.
Specifically, in post-processing, for FCOS, we adopt NMS
with an IoU threshold set to 0.6 and a score threshold of
0.05. For Faster R-CNN, NMS with a 0.7 IoU threshold is
applied after RPN and only the top 1000 boxes according to
their classification scores are fed into R-CNN to get the final
predictions. Finally, it is followed by another NMS with an
IoU threshold set to 0.5 and a score threshold of 0.05.

B. Overall Results

First, we evaluate our method on COCO test—-dev split.
All the models are trained on COCO train split with
clean or noisy annotations. Different detectors (FCOS [9]
and Faster R-CNN [5]) are adopted as our baselines and the
performance under the noise of various levels is presented in
Table II. It can be drawn that the performance is vulnerable
to the noise in location annotations for both synthesized and

real-world scenarios, while our method is capable to narrow
the gap. Furthermore, more improvement w.r.z. APs of higher
thresholds is achieved by our methods, which indicates that our
method tends to help the detectors to locate objects precisely.

Besides, our method is only applied during the training
phase, thus bringing no additional computational burdens for
the inference phase. Considering only the forward pass is
executed for the teacher detector and no intermediate results
need to be cached, the runtime and memory occupation
are also affected slightly in the training phase. Under our
configuration, the training speed is about 80% of the original
one, and the memory occupation is about 1.02 times. The
negligible burden makes our method easy for utilization and
deployment.

C. Comparisons With Existing Methods

In this section, we compare our method with some
other existing methods. As stated in Sec. II-B, there
are mainly two trends to deal with noisy labels. One
focuses on reducing noisy samples’ impact during training
[12], [13], [22], [23], [24], [25], [26], [27], [28]. However,
these methods are specially designed for classification tasks
and there are no publicly available works for adapting them
to detection tasks. Thus, we make an effort to adapt one
representative method among them, i.e., Co-teaching [28],
to the detection task in our comparisons. Specifically, the
two networks in the Co-teaching [28] framework are replaced
with two detectors (here, we adopt Faster R-CNN), and they
are trained simultaneously with a shared backbone. Following
the common practice, each network samples its anchors with
small classification loss as the relatively clean instances. The
regression loss in its peer network is only calculated on these
sampled anchors while the others are ignored.

The other trend to deal with noisy labels focuses on
correcting the noisy category labels [10], [11], [29], [30] or
noisy location annotations [39]. However, the method in [39]
is only evaluated on the small Pascal VOC [1] dataset. Thus,
we re-implement it under our setting as a strong counterpart.

The above two competitors are also trained on the COCO
train split with our synthesized noisy annotations with
y = 0.1. All other configurations follow those in Sec. IV-A.
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TABLE III
COMPARISONS WITH EXISTING METHODS
Method AP APsg APrs5 APs APy, AP,
- 333 56.3 35.6 19.3 37.5 42.1
Co-teaching [28] | 33.8 57.0 36.1 20.6 37.8 42.8
Mao et al. [39] 33.6 | 550 36.0 19.7 37.0 431
ours 346 | 57.2 36.9 21.8 382 434
0.07 T T
[ noisy
0.06 corrected
0.05 [ T
0.04 - T
g
0.03 b
0.02 4
0.01 - 1
0 I - 1 I I I I " .
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relative coordinate error

Fig. 10.  Distributions of relative boundary coordinate errors for noisy
annotations and our corrected ones.

The performance evaluated on the COCO minival split
is presented in Table III. Our method achieves superior
performance to the previous methods.

D. Ablation Study

In this section, we explore the effects of different compo-
nents or design choices in our method. All the experiments are
based on FCOS with synthesized Gaussian noise (y = 0.1).

1) Prediction Ensemble: As stated in Sec. III-C.1, our
prediction ensemble component can correct the noise in
location annotations effectively. We plot the distributions of
relative boundary coordinate errors for noisy annotations and
our corrected ones in Fig. 10. The relative boundary coordinate
errors are obtained by normalizing the absolute values of the
difference between the noisy (or corrected) boundary coor-
dinates and the accurate ones with respect to corresponding
object widths or heights. Obviously, our corrected ones possess
smaller variance, i.e., lower location errors, and thus contribute
to better detection performance.

Then, we examine different design choices of §; in Equa-
tion (8), the default of which is §; = f(loU(b;, b)) -
Di .+ Without the former part related to IoU, we could not
obtain meaningful results. It is anticipatable because numerous
predictions not belonging to this object are involved in the
ensemble and thus mislead the correcting procedure if the
probability of the predictions corresponding to the object is
excluded from consideration. In the case of removing the latter
part (p; ), slight performance degradation is observed, which
confirms the effectiveness of using the scores. Moreover,
we evaluate various functions for f(-), e.g., step function
and Gaussian function. We observe that both functions could
achieve comparable performance with appropriate hyper-
parameters provided. We infer that functions with similar
tendencies are workable with fine-tuned hyper-parameters. The
overall experimental results are listed in Table IV.

2) Teacher-Student Learning: In this section, we explore
the essentials of our teacher-student learning framework.

6377
TABLE IV
DIFFERENT DESIGN CHOICES OF §; IN EQUATION (8)
0; param. AP | APsg APr5
Dior - 0.1 0.1 0.0
I(IoU(b;,b%) = 7) T=0.7 | 349 | 563 377
T=05 | 346 | 572 369
I(IoU(bs,b*) > 7) -piex | 7=0.6 | 351 | 569  37.9
=07 | 352 ]| 566 319
T a=02 | 350 563 377
o= LIV bibTNT pi | ®=0.1 | 352 | 57.0 381
“e" | =005 | 333 | 570 347
TABLE V

OUR METHOD ACHIEVES CONSISTENT IMPROVEMENT UNDER DIFFERENT
TRAINING CONFIGURATIONS. “R50” AND “R101” ARE SHORT FOR
RESNET50 AND RESNET101 [56] RESPECTIVELY. “MS” MEANS
TRAINING WITH MULTI-SCALE AUGMENTATION. “2x” IS
A TRAINING SCHEDULE THAT FOLLOWS THE SETTING
EXPLAINED IN MMDETECTION [18]

Config. v Method AP AP50 APz
0 - 40.9 59.8 441
0.05 - 388 386 272
R50+2x+MS ) ours 39.2 59.8 43.2
0.1 - 35.1 57.3 38.0
: ours 36.2 57.9 39.3
0 - 40.7 59.6 43.9
0.05 - 39.0 59.3 428
R101 ' ours 39.8 59.9 43.5
0.1 - 35.7 58.1 38.3
: ours 37.3 59.0 40.5

As discussed in Sec. III-C.2, the trivial solution is easy to
obtain if we rely on the predictions produced by the detector
itself to serve as the source of the ensemble for supervision.
As shown in Fig. 9, for this naive approach, we can find that
the quality of the annotations has consistent improvement over
the original noisy annotations thanks to our self-correction
method. Even at the very beginning of the training process, the
quality is improved, which we attribute to the dynamic filtering
ability of our designed §; (Equation (8)). Great promotion on
mAP is also witnessed for the first several epochs during
training. However, the performance of the detector shows
no further improvement over the one without correction for
the last several epochs, though the IoU is still increasing.
We may attribute it to that such an ensemble could not provide
sufficient valuable correction for supervision in this stage.

In our teacher-student learning framework (TS), the predic-
tions used for correction and the ones under supervision are
decoupled, and thus the trivial solution is avoided naturally.
As shown in Fig. 9, the performance of the detectors is
consistently improved during our whole training process.

E. Extensive Experiments

1) Other Training Configurations: We examine the results
of our method under other training configurations in this
section as shown in Table V. First, we test a longer
training schedule with multi-scale training augmentation
(R5042x+4MS). Note that the configurations are adopted
for both teacher and student training in our method. It can
be found that even though better training configurations are
adopted, the performance is still inferior when the location
annotations are corrupted. But the gap can be narrowed by
using our method as ever. A similar phenomenon is observed
in the case of a larger backbone (R101).
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TABLE VI TABLE VIII
TRAINING WITH THE DECOUPLED TEACHER AND STUDENT CONFIGURA- EXPERIMENTAL RESULTS FOR DETECTORS TRAINED WITH
TIONS. THE ROwS WITH “S CONFIG.” MARKED AS “—” SHOW THE OUR NEWLY LABELED SUBSET OF COCO
RESULTS OF ISOLATED TEACHER DETECTORS. THE ROWS WITH “T
CONFIG.” MARKED AS “—” PRESENT THE RESULTS OBTAINED dc%aég f‘bni‘?th‘)ds Sf;%(e time 2]; ’25 u é? o
WITHOUT OUR CORRECTION METHOD AND TEACHER- _abes - . . :
S L W ARE A OUR B our noisy labels 12k 364h 21.2 38.4 20.7
TUDENT LEARNING, WHICH ARE ALSO OUR BASE- + our method 215 389 212
LINES FOR EACH GROUP. THE Rows WITH “T CON- elaborate labels 3K 372h 108 35.0 198
FIG.” MARKED AS “R50*” ARE FOR THE COM-
PARISON WITH THE ITERATIVE TRAINING
STRATEGY. BETTER PERFORMANCE IS TABLE IX
ACHIEVED WHEN STRONGER TEACH- ASYMMETRICAL NOISE HAS RATHER MORE TERRIBLE IMPACT ON THE
ERS ARE ADOPTED DETECTORS’ PERFORMANCE THAN THE SYMMETRICAL ONES
S Config. T Config. ¥ AP Noise Method AP APso AP;5
- R50+2 x+MS 0 40.9 - - 38.5 573 41.6
- RI101 0 40.7 Sym. (v = 0.05) - 37.1 56.9 40.6
. 0 383 Asym. - 316 56.6 37.9
z 371 (v = 0.05, enclosing) ours 35.1 56.6 38.8
R50 37.7 (+0.6) Asym. - 341 56.4 374
R50% 0.05 37.5 (+0.4) (v = 0.05, enclosed) ours 34.5 56.4 38.0
R50+2 x+MS 37.8 (+0.7)
R50 R101 37.9 (+0.8)
- 3335 . .
RS0 352 (41.7) d 'and e). This t1me,' 'the performance possesses a lmger
R50% 0.1 35.1 (+1.6) variance due to the additional source of randomness, i.e., noise
R50E2]6<1+ MS ggg E:ég; in the annotations (compare d to b). Furthermore, our method
achieves consistent gains across different settings (compare ¢
TABLE VII to b and e to d), which demonstrates the robustness of our
ROBUSTNESS TEST WITH 3 RUNS FOR EACH CONFIGURATION method.
Config mAP
R A =0 =005 7=01 F. Label Time Analysis
a. Same annotations without noise | 38.5(=£0.0) - -
b. annotations with the same noise - 37.1(%0.1) | 33.7(x0.2) In this section, we analyze the time consumption of labeling
[ + our methods - 37.7(£0.1) | 35.3(%0.1) .
d. annotations with different noise - 37.1(£0.2) | 33.4(£02) the images. It costs us about 364 human hours to label 12k
e + our methods - 37.7(£0.1) | 35.1(x0.1) images with rough bounding box annotations. Nevertheless,

Then we test the case with the training configurations of
the teacher and student detectors decoupled, e.g., a stronger
teacher is obtained first and then utilized to correct the
supervision of the student detector. The experimental results
are shown in Table VI. First, we compare with the iterative
training strategy, i.e., the student detector obtained from our
method is then used as a teacher for the second round of
training in our framework. However, we observe no continu-
ous improvement, which we attribute to too much inductive
bias involved in iterative training, leading to accumulated
errors. Then we test the stronger teachers obtained by the
longer training schedule with multi-scale training augmenta-
tion (R50+2x+MS) or a larger backbone (R101). We observe
that stronger teachers lead to better student performance, but
the additional improvement is limited. An upper bound is
likely to exist, which prevents the performance from approx-
imating to the optimal result infinitely.

2) Robustness: As randomness is involved in our noise
generation, the robustness of our method should be taken
into account. So we run 3 times for each configuration to
test it, as shown in Table VII. First, we conduct experiments
on datasets with the same clean (a) or noisy (b and c)
annotations for each run. In this case, the randomness comes
from the random initialization of the model weights and the
random sampling order of the data loader. We find that the
performance varies much more if the annotations are noisy
(compare b to a). Then, we execute noise generation 3 times
resulting in 3 different sets of noisy annotations for the dataset

we can only label about 8k images with fine-grained bounding
box annotations by taking up nearly the same time. That is
because much more time is consumed to finely adjust the
boundary annotations. Thus, about 1.5 times faster labeling
speed can be achieved by only requiring rough bounding box
annotation. We believe that much labeling time can be saved
if we further loosen the label restrictions. With the 8k images
with elaborate labels, we can train a detector as shown in
Table VIIL. Its performance is far behind those trained with 12k
images, especially for A Psy (up to —4.2 gap), though they are
labeled with almost equal time consumed. While by leveraging
our method, we can narrow the gap for APsp to only —0.3.
We may conclude that, with a limited or restricted label budget,
it is preferable to label with rough box annotations rather than
elaborate but fewer ones.

G. Evaluation on Other Forms of Noise

Finally, we introduce two additional forms of noisy location
annotations for analyzing their impact on the performance
degradation. We believe this can further provide positive guid-
ance for data annotation. Specifically, we adopt asymmetrical
noise, one of which restricts the noisy annotation box to
completely enclose the ideal one and the other completely
enclosed by the ideal one. Exponential distributions with
hyper-parameter A are adopted. We set A = 20+/2, and thus the
noise level is y = 0.05. We find that the asymmetrical noise
has a rather more severe impact on the detectors’ performance
degradation than the symmetrical one (Gaussian distribution)
as shown in Table IX, with APs of higher IoU thresholds
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dropping devastatingly. While our method can still reduce
the negative impact to a certain extent. Based on the above
observations, we conclude that it is better to control the
distribution of the annotated coordinates centered as near as
possible to the ideal one, and neither consistently larger nor
smaller noisy annotations than the ideal one are better choices
for box labeling.

V. CONCLUSION

The impact of noisy location annotations for detection tasks
is investigated in the paper. We demonstrate that fine-grained
location annotations are crucial for the plausible performance
of modern detectors, especially for the AP performance with
high IoU thresholds. Then a simple yet effective method is
proposed to correct the noise in the location annotations, which
can remarkably improve the performance of detectors under
both synthesized noisy annotations and real-world man-made
noisy annotations. Besides, we find that if there is a limited or
restricted label budget, the rough location annotations with
some weak noise can significantly reduce label cost, and
utilizing our method is essential for performance improvement.
Furthermore, in our view, more studies should be focused on
the pattern of man-made noise, based on which much more
effective methods could be proposed and further improve the
detector performance. Finally, the combination of location
noise and category label noise is also a challenging topic,
which needs future exploration.
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