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Attacks with adversarial examples can tremendously worsen the performance of deep neural networks
(DNNs). Hence, defending against such adversarial attacks is crucial for nearly all DNN-based applica-
tions. Adversarial training is an effective and extensively adopted approach for increasing the robustness
of DNNs in which benign examples and their adversarial counterparts are considered together in the
training stage. However, this may result in a decrease in accuracy on benign examples because it does
not account for the inter-class distance of benign examples. To overcome the aforementioned dilemma,
we devise a novel defense approach named adversarial supervised contrastive learning (ASCL), which
combines adversarial training with supervised contrastive learning to enhance the robustness of DNN-
based models while maintaining their clean accuracy. We validate the effectiveness of the proposed
ASCL approach in the scenario of defending against word substitution attacks by means of extensive
experiments on benchmark tasks and datasets. The experimental results show that ASCL reduces the
attack success rate to 20% while maintaining the accuracy for clean inputs within a 2% margin.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Deep neural networks (DNNs) [1] have achieved great success
in a variety of fields [2–8]. Nevertheless, many recent studies have
demonstrated that DNNs can be easily fooled by adversarial exam-
ples in both computer vision (CV) [9,10] and natural language pro-
cessing (NLP) [11,12] tasks. Adversarial examples, which are
generated by adversarial attacks using maliciously crafted pertur-
bations, pose a tremendous threat to the security of DNNs.

To make DNNs more robust, adversarial training [13] has been
proposed to help defend against adversarial attacks. In adversarial
training, a commonly adopted approach is to add adversarial
examples to the training set, and this defense approach has been
proven to effective for many CV tasks.

However, it is more challenging to generate adversarial exam-
ples for NLP applications due to the discrete nature of text. The
methods employed in CV may violate syntactic rules or change
semantics; thus, they cannot be directly applied. As a result, adver-
sarial attack and defense strategies for text are less studied in aca-
demia. On the basis of the unit or atom being processed, existing
text adversarial attacks can be roughly divided into three cate-
gories: character-level [14,15], word-level [16,17], and sentence-
level [18,19] attacks. Word-level attacks based on synonym substi-
tutions are the most common. It is difficult to detect such word-
level attacks because the adversarial examples generated via syn-
onym substitution are both syntactically and semantically correct.
Therefore, in this paper, we focus on defending against these chal-
lenging word-level attacks.

Mathematically, a word-level adversarial attack can be formu-
lated as a combinatorial optimization problem [20], in which the
goal is to find substitutions that can successfully fool DNNs.
Accordingly, a straightforward idea for defending against such
attacks is to find all possible substitutions and add them to the
training set. However, this simple approach is infeasible since the
search space grows exponentially as the sentence length grows.
Therefore, most current defense methods focus on the worst case
of synonym substitution. The underlying hypothesis is that by
training a DNN-based model against the synonym that will hurt
the model performance most, a model might be obtained that will
behave correctly for the remaining synonyms of this word as well.
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The key to this approach is to find efficient representations of syn-
onyms. The space of synonyms for a specific word can be modeled
as an l2 ball [21,22] or a hyper-rectangle [23,24] around that word
in the continuous embedding space. Adversarial sparse convex
combination (ASCC) is the latest state-of-the-art defense method
against word substitution attacks. In ASCC, the synonym space is
modeled as a convex hull with the synonyms as the vertices [25],
and this approach achieves the best defense performance against
word substitution reported to date by reducing the search space.

Although the aforementioned word-level defense methods
enhance the model robustness, this enhancement comes at a price.
Previous studies [10,26,27] have shown that DNN models trained
in the above manner will exhibit worse performance on benign
examples. To provide an informative illustration of this influence,
we visualize the penultimate layers of DNNs trained using the
standard method (i.e., adding some adversarial examples into the
training set) and the ASCC method. The task visualized is natural
language inference [28], and we choose the decomposable atten-
tion (DecomAtt) model [29]. As shown in Fig. 1, compared to that
of the model obtained through standard training (Fig. 1a), the
inter-class distance of the model trained via ASCC is greatly
reduced (Fig. 1b). As a result, examples that lie on the boundaries
are more likely to be misclassified as an incorrect class, which is
the main cause of the drop in accuracy.

To address this drawback of adversarial training, we consider
guaranteeing the intra-class compactness. Since the distances
Fig. 1. Visualizations based on t-SNE of the p
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between benign examples and their adversarial counterparts will
be reduced under adversarial training, we plan to simultaneously
reduce the distances between intra-class examples and other
examples in the same class. Meanwhile, we want the inter-class
distance to be sufficiently large to prevent an accuracy drop on
benign examples. To achieve the above two objectives, we employ
contrastive learning (CL), which allows DNNs to learn rich repre-
sentations [30,31]. Given a benign example as a reference, also
called an anchor sample, the spirit of CL is to pull the anchor sam-
ple and other positive samples closer together while pushing neg-
ative samples farther away in the latent space. In this situation, the
choices of positive and negative pairs may directly affect the model
performance. Since CL causes the members of each positive pair to
lie in close proximity to each other and pushes the examples in
negative pairs apart, the introduction of supervision information
into positive pairs allows supervised contrastive learning (SCL) to
simultaneously reduce the intra-class distance and increase the
inter-class distance.

In this paper, by combining adversarial training and SCL, we
propose a novel method called adversarial supervised contrastive
learning (ASCL) with the goal of finding challenging positive and
negative pairs (the more challenging an example is, the higher
the difficulty of detecting it) to augment the set of adversarial
examples. Unlike ASCC, ASCL is able to find the most expressive
representations within the convex hull without sacrificing much
accuracy on benign examples. Through extensive experiments on
enultimate layer of the DecomAtt model.
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different model architectures for text classification and natural lan-
guage inference tasks, we show that ASCL consistently outperforms
ASCC and other adversarial training methods on both benign and
adversarial examples.

To summarize, the main contributions of this paper are as
follows:

� We propose a novel defense approach against word substitution
attacks named ASCL by combining adversarial training and SCL.
By modeling the synonym space as a convex hull, ASCL is able to
find the most expressive representations within the synonym
space without sacrificing much accuracy on clean input.
� We empirically demonstrate that the reduction of inter-class
distance is the main cause of the drop in accuracy on clean
input. By reducing the intra-class distance and increasing the
inter-class distance, we achieve a better tradeoff between clean
accuracy and after attack accuracy.
� We evaluate the effectiveness of ASCL for three popular model
architectures on three benchmark datasets. The experimental
results show that ASCL consistently outperforms current
state-of-the-art method ASCC in terms of both clean accuracy
and after-attack accuracy.

The rest of this paper is structured as follows. We discuss
related work on adversarial attacks, adversarial defense and CL in
Section 2. Section 3 introduces the proposed ASCL method in detail.
Then, we present comparative experiments and results in Section 4.
Finally, we conclude by reviewing the contributions of the paper in
Section 5.
2. Related Work

In this section, we briefly review the current literature in the
fields of adversarial attacks, adversarial defense and CL.
2.1. Adversarial Attacks

In general, word-level attacks aim to find suitable substitutions
for the original words in a sentence. A commonly adopted method
is to substitute words with their synonyms. The major differences
among word-level attack methods lie in the search method, i.e., the
order of word replacement. Alzantot et al. adopted a genetic algo-
rithm to find substitutions that may fool the target model [17]. Ren
et al. applied the probability weighted word saliency (PWWS) algo-
rithm to consider both the word saliency and the classification
probability when determining the substitutions and the order of
word replacement [16]. Jin et al. proposed a black-box method
called TextFooler that searches for words based on a word impor-
tance ranking. Once the replacement order has been determined,
TextFooler will search until changes occur in the output. The attack
is considered to fail if the output does not change after the applica-
tion of all possible replacements [32].
2.2. Adversarial Defense

Adversarial training is an effective approach for defending
against adversarial attacks by means of training with adversarial
examples. The main differences among existing defense methods
lie in the allowed perturbation area and the training objectives.
Miyato et al. first adopted adversarial training in the field of NLP.
They generated adversarial examples in a continuous embedding
space constrained to an l2-ball, and the loss function adopted
was a combination of the prediction losses on natural and adver-
sarial examples, with the aim of classifying both correctly [21].
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Jia et al. constrained the perturbation area to a hyper-rectangle,
using interval bound propagation to propagate the embedding
intervals to the loss layer [23]. By minimizing the upper bound
on the loss, the proposed method achieved guaranteed robustness
in such scenarios.

Wang et al. proposed a pipeline defense method in which
adversarial examples are first generated via gradient-based attacks
and the generated data are then added to the training set [33].

Dong et al. used synonyms as the vertices to capture perturba-
tions [25], following the settings suggested in [27]. The loss func-
tion adopted was a combination of the prediction loss on natural
examples and the Kullback–Leibler divergence of the natural and
adversarial examples.

As reported in [27,34], models trained with the aforementioned
defense methods gain some robustness against attacks while sacri-
ficing some accuracy on clean examples.

2.3. Contrastive Learning

CL has been widely used for learning hidden representations in
self-supervised scenarios. The core idea of CL is to minimize the
contrastive loss for pairs of feature vectors captured from different
augmentations of the source data [35,36]. When CL is applied in
the pretraining phase, the learned representations are surprisingly
robust against adversarial attacks [35–37].

The performance of CL is mainly determined by the quality
of the augmented data. In the field of CV, data augmentations
are obtained through image transformations, such as rotation
[38], grayscaling [39], and random cropping [40]. In the field
of NLP, back translation is employed to augment text data. To
construct more challenging data pairs, adversarial examples
can be used for data augmentation to maximize the contrastive
loss [37,41].

Regarding the choice of negative pairs, SimCLR [31] adopts aug-
mented views of other examples in the same minibatch as negative
samples. MoCo [30] enlarges the size of negative samples by stor-
ing generated negative representations in memory banks, which
increases the difficulty of contrasting negative pairs. Robinson
developed an unsupervised sampling method for selecting chal-
lenging negative samples to further increase the difficulty of distin-
guishing negative samples from the anchor sample [42].

For the choice of positive pairs, semantics-preserving transfor-
mations are applied to anchor samples to generate augmented
samples. In self-supervised scenarios, positive pairs consist of both
anchor samples and their corresponding augmented samples. To
generate more challenging positive pairs, SCL has been proposed
by extending the single corresponding positive sample obtained
by transforming a given anchor sample to all augmented samples
in the same class. SCL has been employed to fine-tune language
models [43], and a model trained in this manner has better gener-
alization ability and is more robust against noise.
3. Methodology

In this section, we first formulate the problem of adversarial
attacks. Then, we introduce the concepts of a synonym convex hull
and adversarial training. Finally, we describe the proposed ASCL
method in detail with pseudocode.

3.1. Problem Formulation

Given a dataset D ¼ xi; yið Þf gNi¼1 consisting of N training pairs of
a benign sample (i.e., sentence) xi 2 X and its label yi 2 Y, we want
to obtain a prediction model f h : X! Y that is a mapping from the
space of the input texts to the space of the labels. Each sentence
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xi ¼ x1i ; . . . ; x
L
i

� �
contains L words. The look-up table used to trans-

form discrete words into continuous word vectors is denoted by
v �ð Þ. For a specific data pair x; yð Þ, word-level adversarial attacks
attempt to find suitable word substitutions to construct new
inputs x̂ that can mislead the model, i.e.,

f h xð Þ– f h x̂ð Þ s:t: D x; x̂ð Þ < �; ð1Þ
where the function D �ð Þmeasures the proportion of words replaced:

D x; x̂ð Þ ¼ 1
L

XL

i¼1
1xj–x̂j x; x̂ð Þ: ð2Þ

The replacing word x̂j for a word xj is selected from its synonym
set S xj

� �
. In this paper, we set the size of S xj

� �
to T.

3.2. Synonym Convex Hull

We can construct conv xj
� �

, the synonym convex hull spanned
by S xj

� �
, as follows. Because we represent each word by its embed-

ding vector, conv xj
� �

is a subset of the overall embedding space;
formally, conv xj

� �
can be defined by the following equation:

conv xj
� � ¼XT

k¼1
wkv S xj

� �
k

� �
; ð3Þ

where T is the size of the synonym set and wk P 0 is the weight of

synonym S xj
� �

k, satisfying
PT

k¼1wk ¼ 1. For any vector v j 2 conv xj
� �

,

we take it as the vector form of a synonym of word xj.

3.3. Adversarial Training

From the perspective of optimization, adversarial training seeks
an optimal model with parameters h� that minimizes the maximal
risk presented by perturbations on inputs [44].

min
h

E
x;yð Þ2D

max
v̂ xð Þ2conv xð Þ

LADV h; v xð Þ; v̂ xð Þ; yð Þ
� �

: ð4Þ

Above, the inner maximization finds a virtual adversarial exam-
ple that achieves the largest loss, and the outer minimization is a
process used to minimize that loss.

Since text inputs are discrete in nature, in this paper, we apply
perturbations to the embedding vector of a word x to create a vir-
tual adversarial word vector v̂ xð Þ. We can choose different forms of
the loss LADV to fit the requirements of specific tasks, such as the
cross-entropy loss LCE f h xð Þ; yð Þ to emphasize the classification per-
formance [44] or the KL divergence to separate benign and adver-
sarial counterparts [27]. For ASCC, a combination of the above two
losses is chosen. In addition, an extra entropy regularization term
based on the weights of the convex hull is adopted in ASCC, with
the aim of better aligning the virtual adversarial word vectors with
the embeddings of the real words.

3.4. Adversarial Supervised Contrastive Learning

Considering a batch of training pairs xi; yið Þf gBi¼1 of size B, we
apply adversarial training to create virtual augmented word vector

pairs bV ¼ v xið Þ; yið Þ2Bi¼1, where v xiþBð Þ ¼ v̂ xið Þ and yiþB ¼ yi for
i 2 1;Bð Þ. The supervised contrastive loss term is defined as

LSCL /;v xð Þ; v̂ xð Þ; yð Þ ¼
X2B
i¼1
� 1
Nyi � 1

X2B
j¼1

log
1i–j1yi¼yj

exp
/ v xið Þð Þ�/ v xjð Þð Þ

s

� 	
X2B
k¼1

1k–i exp
/ v xið Þð Þ�/ v xkð Þð Þ

s


 � ;

ð5Þ
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where Nyi is the size of the positive set, i.e., the number of examples
with the label yi, and / �ð Þ is the encoder that maps the word vector
v xð Þ to the embedding of the final hidden layer before the softmax
operation. Note that this embedding is l2 normalized, meaning that
the inner product of two embeddings is also the cosine similarity
between them.

To generate more challenging positive and negative pairs, in
this paper, we integrate SCL into adversarial training. Specifically,
we set the loss function in Eq. (4) to

LADV ¼ LSCL þ bKL f h v xð Þð Þjjf h v̂ xð Þð Þð Þ: ð6Þ
The SCL loss term encourages the inner maximization process to

generate challenging data pairs that achieve a large contrastive
loss. Data pairs are automatically generated and updated in the
training loop; therefore, extra data augmentation tricks are no
longer required in our ASCL method. The KL loss term aims to pull
benign examples and their adversarial counterparts closer together
to guarantee the defense performance. We provide an illustration
of the data distribution in the embedding space in Fig. 2.

Next, we show how to solve the min–max optimization prob-
lem (4). The inner maximization is basically a constrained opti-
mization problem. We solve it using the multistep projected
gradient descent (PGD) method. PGD is widely used for con-
strained optimization problems; it finds the optimal point by first
performing gradient descent on the current solution and projecting
it back into the constraint set conv xð Þ:

v̂ xð Þ kþ1ð Þ ¼ Pconv xð Þ v̂ xð Þ kð Þ þ csgn rv xð ÞLADV
� �
 �

; ð7Þ

where P is the projection operator to perform projection into the
conv xð Þ set and sgn is the sign function. However, in our setting,
the constraint set conv xð Þ is chosen to be the convex hull. The con-
straints are automatically satisfied as long as we normalize the
weights using the softmax function such that they satisfyPT

k¼1wk ¼ 1;wk P 0. Therefore, when modeled in this way, the
inner constrained problem is transformed into an unconstrained
problem, and we can use Adam [45] to solve both the inner and
outer optimization problems. The pseudocode for our algorithm is
shown in Algorithm1.

Algorithm1 ASCL algorithm

Input: DatasetD, model parameters h, word vector function v,
inner and outer optimizers Adamin and Adamout

Output: Optimal parameters h�

1: for minibatch x; yð Þ � D do
2: Initialize weight coefficient w1

3: for k 1 to K do
4: Normalize wk  softmax wk

� �
5: v̂ xð Þk ¼PT

i¼1w
k
i v S xð Þi

� �
6: gw  rv xð Þ � LADV h;v xð Þ; v̂ xð Þk; y


 �
7: wkþ1  Adamin gwð Þ
8: end for

9: gh  rh LCE f h xð Þ; yð Þ þ LADV h;v xð Þ; v̂ xð ÞK ; y

 �h i

10: h�  Adamout ghð Þ
11: end for
4. Experiments

In this section, we first introduce the detailed experimental set-
ting, and next, we present the main results for adversarial defense
and transfer defense performance on transfer adversarial exam-



Fig. 2. Illustration of the data distribution in the embedding space during the training process of ASCL. We use different colors to represent different classes and the same
shape to represent embeddings of different data in the same batch.
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ples. Then, we discuss the effects of class distance and batch size.
Finally, we study the effectiveness of different components of ASCL
by means of ablation experiments.

4.1. Experimental Setting

4.1.1. Datasets and Models
We conduct experiments on three benchmark datasets: the

IMDB sentiment analysis dataset [46], the AG’s News text classifi-
cation dataset [47], and the Standard Natural Language Inference
(SNLI) dataset [28]. For the IMDB and AG’s News datasets, we
implement both a convolutional neural network (CNN) and a bidi-
rectional long short-term memory (BiLSTM) networks to evaluate
the model robustness. In the experiments, the word embedding
layer is initialized with word vectors from GloVe [48], with the
embedding dimensionality set to 300. The CNN consists of a 1-D
convolutional layer with filter sizes of 3, 4, and 5; a dropout layer;
and a fully connected layer. The BiLSTM network has one bidirec-
tional layer with a hidden size of 150, a dropout layer, and a fully
connected layer. For the SNLI dataset, we employ both bag-of-
words (BoW) and DecomAtt models. The BoW model encodes a
sentence by summing up the vectors of all constituent words,
while the DecomAtt model is implemented following the settings
suggested in [29].

To evaluate the performance in defending pretrained language
models against word-level attacks, we conduct experiments on
the bidirectional encoder representations from transformers
(BERT) base uncased model [49] for each dataset. As BERT adopts
subword tokenization [50], the embedding of a synonym is approx-
imated as the mean of all of its subword embeddings. In the eval-
uation stage, we randomly sample 1000 examples from the IMDB
test set and use all samples from the AG’s News and SNLI test sets.

4.1.2. Attack and Defense Methods
To evaluate model robustness, we implement both the PWWS

attack [16] and the TextFooler attack [32] via the textattack tool-
box [51]. For comparison with other methods, we only attack
hypothesis sentences in the SNLI dataset and adopt the same word
substitution set used in [23].

We compare ASCL with the following four baseline defense
methods: natural training (NT) to train a vanilla model, standard
adversarial training (ADV) [21], the synonym encoding method
(SEM) [52] and the state-of-the-art ASCC method [25]. For the
SEM and ASCC methods, we carefully implement them and attack
the trained models using the same settings to achieve fair
comparisons.

4.1.3. Evaluation Metrics
In this paper, model performance is evaluated using three met-

rics: the clean accuracy Acc, the attack success rate a, and the after-
attack accuracy Acc0. The clean accuracy refers to the accuracy of a
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model on benign examples, and it reflects the generalization ability
of the model. The attack success rate is defined as the proportion of
successfully attacked examples and thus is related to the model
robustness. The after-attack accuracy represents the model accu-
racy on adversarial examples; it is a comprehensive measure of
generalization ability and robustness. In this paper, we attack sam-
ples that are correctly classified. The relationship among these
three metrics is expressed as follows:

Acc0 ¼ Acc � 1� að Þ: ð8Þ
4.2. Main Results

Table 1 and Table 2 list the after-attack accuracies achieved
with different defense methods. The proposed ASCL method con-
sistently outperforms the previous state-of-the-art ASCC method.

To compare the generalization ability and robustness sepa-
rately, the clean accuracy and attack success rate results under
PWWS attack are listed in Table 3. It is clear that the models
trained with ASCL have a better generalization ability (with a lar-
ger Acc) than the models trained with ASCC and tend to be more
robust (with lower a values for the BoW and DecomAtt models).

We train multiple models using different hyperparameters and
plot the Acc–a curves in Fig. 3. It is clear that Acc is positively
related to a, which indicates that models with higher generation
ability are more likely to be attacked. In addition, the Acc–a curve
of the models trained with ASCC lies consistently above that of the
models trained with ASCL. It can be concluded that the proposed
ASCL method can achieve better overall performance than the pre-
vious state-of-the-art ASCC method, i.e., it enhances robustness
while sacrificing less clean accuracy than the previous method.

4.3. Transfer Defense

Adversarial examples crafted from a model are likely to fool
another model that has not been given access to, which is known
as the transferability property [53]. To evaluate model perfor-
mance against transferred adversarial examples, we generate
adversarial examples for each model (CNN, BiLSTM and BERT)
based on the AG’s News dataset. The model we attack is trained
via NT (indicated by �), and we report the after-attack accuracies
of the other models in Table 4. The findings demonstrate that the
models trained with ASCL achieve transfer defense performance
comparable to that of the models trained using SEM and consis-
tently outperform the models trained with ASCC.

4.4. Class Distance

To analyze the latent model representations, we visualize the
penultimate layer of the DecomAtt model using t-SNE [54], as
shown in Fig. 1. To further quantify the distance between classes,



Table 1
After-attack accuracy (%) on the IMDB and AG’s News datasets.

Model Method IMDB AG’s News

PWWS TextFooler PWWS TextFooler

CNN NT 3.40 16.60 55.14 70.87
ADV 10.60 23.40 59.63 76.01
SEM 69.60 74.90 82.72 87.09
ASCC 67.10 75.10 86.86 87.86
ASCL 70.50 75.20 88.75 89.11

BiLSTM NT 5.60 9.40 62.01 71.53
ADV 12.20 18.70 64.17 75.86
SEM 69.50 75.50 84.71 87.22
ASCC 77.20 80.30 88.58 89.09
ASCL 80.60 82.60 89.34 89.64

BERT NT 33.60 50.60 66.88 78.62
ADV 36.20 42.20 68.14 75.86
SEM 40.10 46.30 84.80 89.07
ASCC 63.80 72.00 89.99 90.91
ASCL 65.70 72.40 91.24 92.82

Table 2
After-attack accuracy (%) on the SNLI dataset.

Model Method PWWS TextFooler

BoW NT 11.42 15.59
ADV 23.18 26.35
SEM 34.63 37.71
ASCC 71.26 71.78
ASCL 73.42 74.37

DecomAtt NT 8.91 12.87
ADV 20.64 23.49
SEM 39.73 42.69
ASCC 75.48 75.63
ASCL 77.43 77.77

BERT NT 29.93 36.50
ADV 36.46 41.12
SEM 49.16 53.11
ASCC 71.05 73.20
ASCL 71.07 73.45
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we compute the centroid ck of each class Ck and then determine
both the inter- and intra-class distances in the penultimate layer
based on all these centroids:

ck ¼ 1
jCkj

X
x2Ck

x; ð9Þ
dintra�class ¼ 1
jYj

XN
i¼1

1
jCkj

X
x2Ck

d x; ckð Þ; ð10Þ
dinter�class ¼ 2
jYj jYj � 1ð Þ

XjYj
i¼1

XN
j¼iþ1

d ci; cj
� �

; ð11Þ

where jYj is the number of classes and d ci; cj
� �

is the cosine distance
between centroids ci and cj. The distances calculated are shown in
Table 5.
Table 3
Models trained with ASCC versus ASCL under PWWS attack on the SNLI dataset.

Model Method Acc a Acc0
BoW ASCC 76.78 7.19 71.26

ASCL 78.80 6.82 73.42
DecomAtt ASCC 80.56 6.31 75.48

ASCL 82.17 5.76 77.43
BERT ASCC 87.57 18.87 71.05

ASCL 88.72 19.89 71.07
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Compared to the model trained with ASCC, the model trained
with ASCL is more compact within classes, which makes it more
difficult for examples to be classified as belonging to incorrect
classes. Meanwhile, the inter-class distance is not greatly reduced
with ASCL compared with that obtained through standard training,
thereby guaranteeing the clean accuracy on benign examples.
These results also provide an intuitive explanation of why the pro-
posed ASCL method outperforms ASCC in both clean accuracy and
robustness.
4.5. Batch Size

Studies on CL have shown that training with a larger batch size
is beneficial for ensuring the clean accuracy on downstream tasks
[31,55]. We plot the clean and after-attack accuracies of the differ-
ent models trained with different batch sizes in Fig. 4.

For models trained with ASCL, there is no apparent relationship
between accuracy and training batch size. The previous enhance-
ment of model performance with a larger batch size can be mainly
attributed to training with more negative examples. However, in
our setting, instead of augmenting the data simply by means of
semantics-preserving data transformations, we also augment the
data with adversarial examples, which are drawn from a different
underlying distribution than the benign examples. This is why
using a larger batch size is no longer effective in the adversarial
CL scenario.
4.6. Ablation Study

To better understand the effects of challenging data pairs on the
overall performance, we further conduct ablation experiments in
the following four settings:

� CL, standard self-supervised contrastive learning (the positive
set contains only pairs consisting of benign examples and their
corresponding adversarial counterparts) without the con-
trastive loss term in the adversarial loss function.
� SCL, supervised contrastive learning without the contrastive
loss term in the adversarial loss function.
� ACL, self-supervised contrastive learning with the contrastive
loss term in the adversarial loss function.
� ASCL, supervised contrastive learning with the contrastive loss
term in the adversarial loss function.

Note that we use adversarial training with the KL divergence
term in the adversarial loss function in all settings.



Fig. 3. Tradeoff between clean accuracy and attack success rate for BoW models under PWWS attack.

Table 4
After-attack accuracy (%) for different models on adversarial examples generated by attacking the vanilla model trained via NT. * denotes the white-box attacks on the vanilla
models.

Attack CNN BiLSTM BERT

NT SEM ASCC ASCL NT SEM ASCC ASCL NT SEM ASCC ASCL

PWWS 55.14* 90.04 88.83 89.92 81.72 90.61 89.91 90.34 87.87 93.11 92.17 94.21
TextFooler 70.87* 90.08 88.87 89.93 84.16 90.29 89.97 90.30 89.62 93.21 92.25 94.22
PWWS 80.32 90.17 88.86 90.00 62.01* 90.58 89.92 90.32 88.30 93.17 92.22 94.25

TextFooler 84.22 89.91 88.95 90.01 71.53* 90.34 89.96 90.32 90.01 93.18 92.13 94.21
PWWS 86.08 90.17 89.05 90.03 86.86 90.57 90.05 90.41 66.88* 92.80 92.22 94.04

TextFooler 87.41 90.07 89.12 90.13 87.62 90.42 90.01 90.39 78.63* 92.89 92.26 94.09

Table 5
Intra- and inter-class distances in the penultimate layers of DecomAtt models trained
with different methods.

Method Intra-class Inter-class

NT 0.114 0.676
ASCC 0.110 0.563
ASCL 0.103 0.640

J. Shi, L. Li and D. Zeng Neurocomputing 510 (2022) 59–68

65
As shown in Table 6, both adversarial training and supervised
data generation can improve model robustness by increasing the
difficulty of the data pairs. Adversarial training focuses on improv-
ing the difficulty of single pairs, while supervised data generation
aims to increase the number of positive data pairs. It is observed
from the experiments that supervised data generation is more
effective than adversarial training. By combining both approaches,
we can further improve the overall performance.



Fig. 4. Models trained with different batch sizes under PWWS attack.

Table 6
After-attack accuracy (%) with different data pairs for BoW models.

Method Adv. training? Supervised? Vanilla PWWS TextFooler

CL 68.04 64.48 64.37
ACL U 68.62 65.42 65.55
SCL U 77.14 71.26 72.37
ASCL U U 78.80 73.42 74.37
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5. Conclusion

This paper proposes a novel adversarial supervised contrastive
learning (ASCL) approach to defend against word-level substitution
attacks in the field of NLP. In the proposed ASCL approach, chal-
lenging data pairs are generated and then fed into the subsequent
contrastive learning phase. By combining supervised contrastive
learning with adversarial training, ASCL is able to reduce the
intra-class distance of benign examples without greatly decreasing
their inter-class distance. Experimental results demonstrate that
ASCL reduces the attack success rate to 20% while maintaining
the clean accuracy within a 2% margin, and it consistently outper-
66
forms current state-of-the-art method ASCC by an average of 2% in
terms of both the clean accuracy and after-attack accuracy.
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