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Abstract— This paper presents a novel kernel density esti-
mation approach to vehicle trajectory learning and motion
analysis. The framework comprises a training stage and a
testing stage. In the training stage, vehicle trajectories are first
clustered by the hierarchical spectral clustering method. Then,
through the proposed kernel density estimation approach, the
average kernel density of one point on a trajectory can be
estimated. In the testing stage, the compactness estimated by a
Gaussian kernel function is introduced. Abnormal trajectories
are detected with compactness lower than expected for a few
consecutive frames. Vehicle motions are identified into multiple
activities with their respective trajectory compactness.

I. INTRODUCTION

AKEY GOAL of video surveillance is to understand
the interactions and behaviors present in a scene. It

is important to detect abnormal activities or behaviors for
surveillance system that need continually monitor a site.
Unfortunately, large amounts of video data are generated,
making it a tedious and tiring job for human to manually
process accurately and quickly. Computer vision technology
helps to automate the process. Using computer vision tech-
niques, in activity analysis systems, normal activity patterns
in the video are filtered out automatically, and attention is
focused on the data in which the activity is abnormal.

By observing and collecting tracking data, which is re-
quired in the activity analysis systems, normal motion pat-
terns corresponding to lanes in the road can be learned off-
line or on-line. Then the normal motion patterns can be used
to detect anomalous actions if the activity happens with a
low probability to match any normal activity.

A training set of trajectories is acquired by collecting
tracking data for a period of time. Then the set is clustered to
find the major spatial routes, which can be probabilistically
modeled by several statistical models, such as hidden Markov
model (HMM), Gaussian mixture models and so on. Over
the past few years, based on trajectory clustering, a lot of
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work has been devoted to understanding activity patterns
of vehicles [1], [2], [3], [4], [5], [6]. On the other hand,
statistical models can be used to complement object tracking
or shadow detection [7], [8].

Wang et al. [9] used spectral clustering method to build
semantic regions for two scenes through trajectory clustering.
They first used the size of objects and spatial information to
cluster trajectories into vehicles and pedestrians. Then spatial
and temporal information were used to cluster trajectories
into more clusters. Wang et al. [10], [11] also used LDA
(latent Dirichlet allocation) and HDP (hierarchical Dirichlet
process) models to do activity analysis separately. LDA and
HDP are two methods based on Bayesian models; they have
been used very well for word-document analysis by suppos-
ing that words often co-existing in the same documents are
clustered into the same topic. Supposing documents were
trajectories and words were observations and topics were
semantic regions, Wang et al used their improved HDP and
LDA individually to analyze the traffic scenes.

Hu et al. [3] used FCM (fuzzy c-means) to analyze traffic
scenes and modeled the probability density as Gaussian
function to make prediction of the activity.

After clustering the trajectories, Morris et al. [5] and
Bashir et al. [12] used HMM to describe the transitions
between states and obtained good experimental results. They
supposed that each activity path can be represented by
several states in HMM, after learning the transition matrix
by standard methods, such as the Expectation Maximum
(EM) algorithm, the probability of moving from one state to
another could be predicted. Instead of finding the transition
probabilities, Saleemi et al. [7] used the learned density
distribution, which is obtained in the training stage, as a
generative model and sample feature points from the model
to construct a sequence of tracks in the testing stage. In
their work, kernel density estimation (KDE) was used to
describe the transition distribution, and then the Metropolis
Hastings Sampling was used to sample the trajectories to
help object tracking or activity understanding. In [13], 4-D
histograms were built to describe the scene. After learning
the histogram of each class using their proposed kernel which
was similar to KDE, the obtained statistical descriptions
of motion patterns can be used to detect and classify the
trajectory in the testing stage.

As depicted in [14], the work in the training stage can
be summarized in Fig. 1. In the tracking stage, vehicles are
detected and tracked between consecutive frames, and at the
same time the spatial and velocity attributes for each frame
of the vehicle are extracted. Before cluster, the trajectories
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should be preprocessed to remove noises or may be normal-
ized with the same length. Based on the spatial and velocity
attributes, the similarity measure between trajectories will
be built by Euclidean distance or Hausdorff distance etc.
Trajectory clustering could be done by unsupervised learning
algorithms, such as k-means clustering, SOM, and spectral
clustering. After trajectory clustering, semantic regions of
each activity pattern are depicted by statistical distributions.
After obtaining the statistical distributions, we can use the
distributions to detect and understand vehicle motion in the
testing stage or turn back to improve low-level tracking or
detection as in [7], [8].

Fig. 1. Trajectory learning steps [14].

The rest of this paper is organized as follows. In sec-
tion II, some theoretical background is introduced, and the
details of spectral clustering algorithm we used are first
given. Using the hierarchical spectral clustering method,
the trajectories are clustered into five clusters. Section III
describes our proposed method to build statistical description
of each cluster and introduce a factor of compactness for
trajectory classification and abnormal detection in the testing
stage. In Section IV, some experimental results are shown
and analyzed. Finally, in Section V, some conclusions and
discussions bring the paper to completion.

II. THEORETICAL BACKGROUND AND
TRAJECTORY CLUSTERING

A. Object Detection and Tracking
A lot of work of object detection in traffic surveillance

has been done in the lab I am working for [15]. Gaussian
mixture models of background modeling method [16], is used
in our work, in each frame after background subtraction,
objects are detected and in two frames matched according to
their position and velocity attributes. Then vehicle detection
and tracking have been completed. The trajectory of each
observed object is a sequence of tracking states obtained
in every frame, A = {~ai}, where ~ai can depict things
like position, velocity, appearance, shape, or other object
attributes. In our work we select the attributes with ~ai =<
xai , y

a
i , u

a
i , v

a
i >, where (xai , y

a
i ) are the spatial position of

the ith observation, and (uai , v
a
i ) are the velocity attribute in

x and y direction separately of the image. This trajectory in-
formation forms the basic block for further activity analysis.

Although tracking is well studied, there are still many
difficulties due to various effects, such as occlusion, camera

twittering and real-time adaptability to changing conditions.
These cause errors in the form of noise measurements or
trajectories breaking, which will be accounted for in the
activity learning process.

B. Spectral Clustering Algorithm and Trajectories Cluster-
ing

Many kinds of clustering algorithm need the trajectories to
be set with the same length. This will introduce noises in the
clustering. Spectral clustering method avoid these problems.

In the past few years, spectral clustering method has
become one of the most popular modern clustering al-
gorithms. Spectral clustering is simple to implement and
very often outperforms traditional clustering algorithms such
as k-means [17]. In spectral clustering, we just need to
get the similarity or dissimilarity matrix between different
observations. Hence the length of every observation is not
necessary to be equal differing from that of k-means or SOM.
In spectral clustering, similarity graph matrix W between
each two observations is first built, from which the Laplacian
matrix L can be derived, and then the first K eigenvectors
of L can be found. After that let the eigenvectors v1, . . . , vK
be matrix V ’s columns and {yi, i = 1, . . . , n}, be the rows
of matrix V . Subsequently, k-means clustering algorithm is
used to cluster the rows {yi, i = 1, . . . , n} of matrix V . After
clustering the rows of matrix V into K clusters, C1, . . . , CK ,
the clusters of observations A1, . . . , AK , can be obtained
with Ai = {j|yj ∈ Ci}.

In this paper, hierarchical spectral clustering is used to
cluster trajectories into several clusters. The trajectories are
first clustered into three clusters and then the three clusters
are divided into five final clusters as shown in Fig. 2.

As in [9], considering any two trajectories, A = {~ai} and
B = {~bi}, for an observation ~ai on A, its nearest observation
on B is bψ(i) with,

ψ(i) = argmin
j∈B

‖xai − xbj , yai − ybj‖ (1)

The directed spatial distance between A and B is

h(A,B) =
1
NA

∑
~ai∈A

‖xai − xbψ(i), y
a
i − ybψ(i)‖ (2)

where NA is the total observation number on trajectory A.
Considering the influence of velocity, the directed distance
between A and B is

f(A,B) =
1
NA

∑
~ai∈A

(‖xai − xbψ(i), y
a
i − ybψ(i)‖

+γd(uai , v
a
i , u

b
ψ(i), v

b
ψ(i))) (3)

where d(uai , v
a
i , u

b
ψ(i), v

b
ψ(i))is the dissimilarity measure be-

tween velocities of A and B. And γ is a weight coefficient to
make sure that the spatial distance and velocity distance have
similar scale before adding them. The systematic distance
between A and B is

F (A,B) =
{
f(A,B) if h(A,B) < h(B,A)
f(B,A) if h(A,B) > h(B,A) (4)
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(a) (b)

Fig. 2. The distribution of trajectories in each class after clustering
completed in the scene. In the figure, class 1 is defined as blue color, class
2 as green color, class 3 as red color, class 4 as magenta color meaning the
vehicle is off the main road and class 5 as black color. Noise trajectories
are shown in white color curves.

Then the systematic distance can be transformed to a
similarity measure:

S(A,B) = exp(−F (A,B)) (5)

In the experiments, d(uai , v
a
i , u

b
ψ(i), v

b
ψ(i)) is chosen as,

d(uai , v
a
i , u

b
ψ(i), v

b
ψ(i)) =

1−
uai · ubψ(i) + vai · vbψ(i)√

(uai )2 + (vai )2
√

(ubψ(i))
2 + (vbψ(i))

2
(6)

with γ = 0.02 in our experiments, and d(uai , v
a
i , u

b
ψ(i), v

b
ψ(i))

ranges from 0 to 2. To make sure that the spatial distance
and the velocity distance is similar in scale, the height and
width of the image in the experiment are normalized to 1
before clustering.

Under the similarity measure detailed up, two trajectories
are similar only if they are similar both in spatial position
and velocity. Note that before clustering we do not need to
resample trajectories with fixed equal length, and we also
can deal with broken trajectories. In the training stage, as
in [9], before clustering we first detect and remove noises
in the trajectories. These noises may come from occlusion
or camera twittering. Using directed distance, for each tra-
jectory, after finding its N nearest trajectories, we compute
the average distance, and then reject trajectories with large
average distance to neighbors as noises as shown in Fig.
2(a) with white color curves. In our experiments, we select
N = 10, and the average distance is 0.04.

After noises removal, similarity matrix for spectral clus-
tering could be built. Then the trajectory clustering results
are shown in Fig. 2(a) and Fig. 2(b). Fig. 2(a) shows the
clustering results with noises shown and Fig. 2(b) shows the
clustering results without noise shown.

C. Density Estimation

As in [3], [5], [12], after trajectory clustering, each cluster
of trajectories are assumed to be distributed according to
mixtures of Gaussian probability density function. Hence,
each cluster k is characterized by its mean vector µk and
covariance matrix CK . Using the density distribution we
can complete the detection and prediction of the activities.
But this method will be failed when the trajectories can
not be described in mixtures of Gaussian functions. Some
nonparametric density estimation method, such as kernel

density estimation (KDE) method, can be used to avoid the
limitation.

Kernel density estimation is a nonparametric density es-
timation method [18]. In KDE, a kernel centered at each
observation is used to obtain a continuous probability density
function (PDF) of the data. In fact, we do not need the
continuous probability density function in traffic surveillance,
as the vehicles moving with regular patterns appear at similar
positions on the image. In our paper, we proposed a method
to reflect the regular pattern in each cluster avoiding the
computation of continuous PDF. Our method considers the
average density of one point in each cluster.

III. PROPOSED METHOD

Vehicle tracking, noises detection and trajectories cluster-
ing are detailed in previous section and the results are shown
in Fig. 2. In all our experiments, we set manually an entry
zone and an exit zone in the region of interesting (ROI).
Only trajectories that begin in the entry zone and end in
the exit zone are retained in the training stage for further
processing. But all the trajectories which are detected in ROI
are considered in the testing stage, even though the track is
not begin in the entry zone or end in the exit zone.

Then, using the trajectories in each cluster we will estimate
the density distribution of one point on trajectory to build the
statistical description models. We introduce a compactness
function to evaluate the compactness of the trajectory with
the regular pattern in each cluster, then activity classification
and abnormal detection will be completed according to the
compactness. These details are given next.

A. Kernel Density Estimation

We use exponential kernel function to evaluate the density
of one point on trajectories. For a point (xai , y

a
i , u

a
i , v

a
i ), the

kernel density can be computed using its nearest point on
each trajectory in the same cluster as the kernel. So we
call our method as kernel density function even though we
do not compute the continuous probability density function.
Our kernel density function is based on the separable sum
of individual kernels in the spatial dimensions and the
orientation dimensions and the speed magnitude dimensions.
On the other hand,we just select the nearest point as the
kernel to estimate the density. Our method can be described
as follows.

Considering a trajectory A in class j and any trajectory
B in the same class, the kernel density of the ith point
(xai , y

a
i , u

a
i , v

a
i ) on trajectory A based on B can be evaluated

as

kde(i, B) = (cos vel(uai , v
a
i , u

b
ψ(i), v

b
ψ(i))

+ 2spatial kde(xai , y
a
i , x

b
ψ(i), y

b
ψ(i))

+ vel ratio(uai , v
a
i , u

b
ψ(i), v

b
ψ(i)))/4.0 (7)

where the first item in the right of (7) describes the operation
of the velocity orientation at point (xai , y

a
i , u

a
i , v

a
i ). This item
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is assessed as

cos vel(uai , v
a
i , u

b
ψ(i), v

b
ψ(i)) =

exp(−0.5d(uai , v
a
i , u

b
ψ(i), v

b
ψ(i))) (8)

where the d(uai , v
a
i , u

b
ψ(i), v

b
ψ(i)) is as same as Part B in

Section II and (xbψ(i), y
b
ψ(i), u

b
ψ(i), u

b
ψ(i)) is the nearest point

on B of the ith point (xai , y
a
i , u

a
i , v

a
i ) on A. This item depicts

the similarity between the velocity orientation of two points.
The spatial kernel is evaluated as

spatial kde(xai , y
a
i , x

b
ψ(i), y

b
ψ(i)) =

exp(−‖xai − xbψ(i), y
a
i − ybψ(i)‖) (9)

We double the second item to make sure that the spatial
attribute have similar scale with the temporal information,
which is denoted by the sum of the first and the third items
in (7).

The third item of (7) describes the kernel in the speed mag-
nitude, or the similarity between the magnitude of velocity
at point (xai , y

a
i , u

a
i , v

a
i ) and the magnitude of the velocity of

its nearest point on trajectory B. This item is

vel ratio(uai , v
a
i , u

b
ψ(i), v

b
ψ(i)) =

exp(−max(|1− r1/r2| , |1− r2/r1|)) (10)

r1 =
√

(uai )2 + (vai )2/
√

(ubψ(i))
2 + (vbψ(i))

2 (11)

r2 =
√

(ubψ(i))
2 + (vbψ(i))

2/
√

(uai )2 + (vai )2 (12)

Here r1 and r2 are the two ratios between the velocity
magnitude of the ith point on trajectory A and the velocity
magnitude of its nearest point on trajectory B. As normal
activity patterns, the velocity direction and magnitude of the
ith point will be similar with that of its nearest point on
trajectory B. Thus r1 and r2 should be close to 1. We select
the larger one between |1−r1/r2| and |1−r2/r1| to describe
the dissimilarity between the ith point on trajectory A and
its nearest point on trajectory B.

So the kernel density for the ith point on A in class j,
based on all the trajectories in class j can be evaluated by

k(i) =
∑

B∈classj

kde(i, B) (13)

Then the average kernel density for one point on trajectory
A is computed by

kp(A) = (
∑
i∈A

k(i))/poin num

= (
∑
i∈A

(
∑

B∈classj

kde(i, B)))/poin num (14)

where, the poin num is the length of trajectory A.
For every trajectory we can get the average kernel density

of one point in each class and its distribution is shown in
Fig. 3.

Then the results of Fig. 3 are used to compute the mean
kernel density of a point in each class. The results of the

Fig. 3. The distribution of kp(A), for any trajectory A in every class. In
the graph, class 6 comprises noise trajectories and the density is set to 0.

TABLE I
PARAMETERS FOR GAUSSIAN FUNCTION

class µ σ
1 128.117 6
2 238.728 12
3 295.595 16
4 7.839 0.2
5 11.589 0.5

means are shown in table I. Where the mean µj of class j
is evaluated by

µj = (
∑

A∈classj

kp(A))/Traj num (15)

here Traj num is the total number of trajectories in class
j.

In table I, σ is the parameter selected according to ex-
periments. These parameters will be used to evaluate the
compactness of each trajectory in the testing stage.

According to the distribution of the average kernel density
in each class, we can see that the kernel density distribution
is very compact in the same class and have different ranges
in different class. Each trajectory is composed by several
points, and as normal trajectories should have similar spatial
distribution with similar velocities when they move in the
same region. Therefore we select the nearest point to evaluate
the average kernel density for every point is feasible. To do
this, we do not need to resample the trajectory with equal
length, and in the testing stage, this make sure that the density
is only related to the points before.

Along with section II and this part of section III, we gives
the details of all the work in the training stage. Then, in the
next part, introducing a factor of compactness, we will give
the details of the work in the testing stage.

B. TRAJECTORY CLASSIFICATION AND ABNORMAL
DETECTION

In the testing stage, in order to classify the trajectory we
introduce the compactness to measure the similarity of kernel
density of the trajectory with the mean of kernel density in
each class.

When a vehicle moves in the ROI, through tracking, the
trajectory T with spatial and velocity attributes can be got.
Given that the vehicle moves with activity pattern of class j,
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(a) (b)

Fig. 4. An example for ROI. Two green curves are used to define ROI.
As in Fig. 2, different color curves are used to depict different class the
trajectory belongs to. In all of our results, the curves with different color
mean that the car moves in different lanes, namely with different activity
patterns as shown in Fig. 2.

then employing our kernel density function described previ-
ously, the average kernel density for one point kp(t,j)(T ) at
time t of the trajectory T is computed. Here t denotes time
(in frames). Since the vehicle enter ROI, t will increase until
the vehicle vanishes from tracking, then kp(t,j)(T ) at time t
is,

kp(t,j)(T ) = (
t∑
i=1

∑
B∈classj

kde(i, B))/t (16)

After computing the average kernel density of time t, the
compactness of the trajectory T with class j is PT (t, j)
which is computed as,

PT (t, j) = exp(−(kp(t,j)(T )− µj)2/2σ2
j ) (17)

PT (t, j) is the compactness of the average kernel density
at time t with µj , the mean of kernel density of class j
computed in the training stage. PT (t, j) is similar with the
role of probability that this trajectory belongs to class j, but
the sum of PT (t, j) of all classes is not 1.

After computing the average kernel density kp(t,j)(T ) and
the corresponding compactness PT (t, j), for j = 1, . . . , 5,
the most compact class is,

c = argmax
j

(PT (t, j)) (18)

So the vehicle at time t is moving with activity pattern of
class c, c ∈ {1, . . . , 5}, and if the maximum of compactness,
max(PT (t, j)), is less than 0.05 for consecutive 15 frames,
we set c = 6 as abnormal activity, when a vehicle moves
with very high speed or in the opposite direction or very far
away from the road.

IV. EXPERIMENTS

In the experiments, the data of video lasting more than
one hour with size 320× 240 is captured by an off-the-shelf
CCD camera. The camera is fixed on a tall building and
overlooks the traffic scene. The computer is equipped with
Intel R© CoreTM 2 Duo processor P8700 (2.26GHz processor,
1.98GHz RAM). The algorithm is only applied in the ROI
set manually shown in Fig. 4.

The clustering results of trajectories in the training stage
are shown in Fig. 2(a) and Fig. 2(b) separately. In all the
figures we use different color curves to represent different
activity patterns. Blue curves represent class 1 where vehicles
move straight along the lane near which the right-turn

(a) (b) (c)

(d) (e)

Fig. 5. Experiments results. The first three images are examples for vehicles
move in different straight roads. And last two graphs show a car which is
turning right.

(a) (b)

Fig. 6. An experimental result of abnormal activity detection. In the figure
a bike with two people, as they are large enough to deal with, we detect
the abnormal of the activity, as it moves in the opposite direction.

happened. Green curves mean trajectories in class 2 and red
curves are for trajectories in class 3 in which the vehicle
moves in the middle of three straight moving roads. Magenta
curves are for trajectories in class 4 where vehicles move
from the main road turning right to the side road. Black
curves are for trajectories in class 5, and in this class vehicles
move straight on the side road.

Using the compactness measure of (17) and (18), each
trajectory is assigned to the cluster it most likely belongs
to. Fig. 5, Fig. 6, Fig. 7 and Fig. 8, are the results in our
experiments.

In the scene, there are five activity patterns, three straight
moving on the main road and one straight moving on the side
road, another is right-turning from the main road to the side

(a) (b) (c)

(d) (e) (f)

Fig. 7. Another example for right-turning detection.
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(a) (b) (c)

Fig. 8. Some experimental results. In the figure an motor first moves
normally in 5th class. But after a while it moves so near to one side. So it
is detect as abnormal. And at the same time, lane-changing can be detected
too, a black car first moving with activity pattern 3, and then it changes to
activity pattern 1 in the second graph.

road. Fig. 5 gives the example of right-turning. Fig. 6 gives
the detection of an object moving in the opposite direction
with white color trajectory. Turning right from the main road
to the side road, the car is detected and classified correctly
in Fig. 7. Also the experiments show that lane-changing can
be detected correctly, as shown in Fig. 8 where a black car
first moves in the straight lane with activity pattern of class
3 in front of the white car, shown in Fig. 8(a) and then it
changes its lane to the activity of class 1 in Fig. 8(b). Fig.
8 also shows an abnormal detection for the motor moves far
away from the center of the road. The black car first moves
in the straight lane, and then it turns right off the side road.
All the process of the moving is detected correctly in the
experiments.

As the average kernel density is considered, just one point
can not decide the state of the moving. As shown in Fig. 7,
the car first moves in class 1, as the right-turn is not obvious,
it has almost equal opportunity of class 1 and class 4. After a
few frames, the right-turn is obvious enough to decide the car
is in class 4 activity pattern. It is the same when detect the
abnormal activities, shown in Fig. 6 and Fig. 8 in which we
consider the activity is abnormal only if the vehicle moves
in total 15 consecutive frames with all the value of PT (t, j)
in every class is less than the threshold value 0.05.

In the experiments, we successfully detect and classify
each vehicle into its activity pattern. Even the lane-changing
can be detected correctly when a vehicle moves from one
lane to another. If there are 3 vehicles in the same frame
to deal with, the time for processing is about 10 frames a
second. We believe that after optimization we can do the
experiments real-time.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, a novel kernel density estimation method is
proposed for understanding and detecting activity patterns.
Using the spectral clustering algorithm, the trajectories are
clustered into five clusters: three straight moving patterns,
one right-turning pattern and one pattern moving on the
side road. Based on our kernel density estimation method,
the average kernel density of one point on each trajectory
in each class is computed in the training stage. Gaussian
kernel function is used to evaluate the compactness of the
trajectory to each class. We say that the vehicle moves
in the activity pattern j, if and only if the compactness
to class j is the largest. Even though we have not got

the probability distribution of each class, we detect and
classify the vehicle activity successfully, obtaining a good
understanding of activity patterns.

In the future, more work will be focused on the prediction
of activities and more semantic explanation would be given to
activity patterns. Also, we can use the high-level information
to help to resolve the occlusion which we have not considered
here.
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