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Abstract

Gait recognition is widely used in social security applications due to its ad-

vantages in long-distance human identification. Recently, sequence-based

methods have achieved high accuracy by learning abundant temporal and

spatial information. However, their robustness under adversarial attacks in

an open world has not been clearly explored. In this paper, we demonstrate

that the state-of-the-art gait recognition model is vulnerable to such attacks.

To this end, we propose a novel temporal sparse adversarial attack method.

Different from previous additive noise models which add perturbations on

original samples, we employ a generative adversarial network based archi-

tecture to semantically generate adversarial high-quality gait silhouettes or

video frames. Moreover, by sparsely substituting or inserting a few adver-

sarial gait silhouettes, the proposed method ensures its imperceptibility and

achieves a strong attack ability. The experimental results show that if only

one-fortieth of the frames are attacked, the accuracy of the target model

drops dramatically.
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1. Introduction

Gait recognition is designed to automatically identify people according

to their way of walking. Compared to traditional biometric information such

as fingerprints or irises, gaits can be obtained at long distances without the

cooperation of subjects. As a result, gait recognition is widely applied in re-

mote visual surveillance solutions. In recent years, numerous gait recognition

methods [1, 2, 3, 4, 5, 6, 7] have been proposed; they have achieved a high

recognition accuracy. However, the robustness of gait recognition algorithms

against malicious attacks in an open world has not been thoroughly studied.

In this paper, we investigate the robustness of gait recognition models

subjected to adversarial attacks [8, 9]. Different from typical spoofing at-

tacks [10, 11] on a gait verification system, adversarial attacks aim to im-

perceptibly (i.e., without incurring visual cues) disable the gait recognition

model. Recently, adversarial attacks have been investigated including attacks

on image classification [8, 9], object detection [12], face recognition [13], etc.

However, for gait recognition, to the best of our knowledge, a meaningful

attempt has not been reported, yet. A very likely reason is that the pop-

ular adversarial attack methods on image classification are not suitable to

directly applied to gait recognition. Firstly, for sequence-based methods that

take a sequence of silhouettes segmented from the original video as input,

perturbations added on the source video do not work. This is due to the

signal processing these approaches require. Secondly, even if attackers have

access to modify the probes, adding a norm-constrained perturbation to the

original gait silhouette destroys the imperceptibility. This is illustrated in

the second row of Fig. 1.
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Figure 1: Top row: the original examples. Middle row: the perturbation-based ad-

versarial examples. Bottom row: the temporal sparse adversarial examples. The red

bounding box represents the modified example, while the green bounding box means the

original example. The middle row directly transfers adversarial attack methods in image

classification to gait recognition, causing all frames perturbed and imperceptibility de-

creased. The bottom row has only the first two frames modified. Besides, the modified

frames maintain a gait appearance, so it is not easy to distinguish whether they are ad-

versarial examples or not from human vision.

More specifically, this work focuses on the sequence-based methods [3, 5,

6]. Compared to template-based methods [1, 2], in which temporal informa-

tion is difficult to preserve, sequence-based methods are better at extracting

dynamic clues from silhouette frames with deep neural networks (DNNs). As

a result, these methods have a higher gait recognition accuracy. However, the

DNN-extracted temporal features may be vulnerable to adversarial attacks.

To verify this hypothesis, we propose a novel temporal sparse adversarial

attack method for the gait recognition system.

We have two primary intuitions that are illustrated in Fig. 1. Firstly, the

input of gait recognition models is a sequence of silhouette frames, rather

than a single image for the image classification models. Therefore, to better
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achieve its imperceptibility, only a few frames are modified in our attack.

This ensures sparsity on the temporal domain. Secondly, motivated by un-

restricted adversarial examples [14, 15], crafting an unrestricted adversarial

gait silhouette via deformation better achieves imperceptibility than adding

norm-bounded perturbations. Moreover, adversarial silhouettes generated

by the proposed method can easily be extended to valid video frames. This

enables a practical threat to gait recognition systems.

In summary, we propose a novel temporal sparse adversarial attack specif-

ically designed to target gait recognition methods. The proposed method

simultaneously achieves a high attack success rate and satisfactory imper-

ceptibility. With the proposed method, we conduct extensive experiments to

study the vulnerability of existing sequence-based gait recognition systems.

The results indicate that sequence-based deep learning methods have little

adversarial robustness despite their high accuracy.

2. Related work

2.1. Gait recognition

Gait recognition can generally be grouped into two categories, template-

based [1, 2, 4, 16, 17] and sequence-based [3, 5, 6, 7]. The former category is

composed of two main steps: template generation and matching. In the first

step, human silhouettes are compressed into one template. For example, a

large number of methods including GEINet [1] and GaitGAN [2] use the gait

energy image (GEI) [18] as the template. In the second step, the similarity

between pairs of templates is evaluated, e.g., by the Euclidean distance.

The latter category directly captures dynamic clues from the sequence of
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silhouette frames. This category includes 3D CNN-based approaches [5],

LSTM-based approaches [6], and GaitSet [3]. Currently, GaitSet achieves

the state-of-the-art gait recognition results on the CASIA-B [19] dataset.

2.2. Adversarial attack

In this paper, we explore the vulnerability of gait systems under adversar-

ial attack. Adversarial attack techniques [20, 21] have attracted increasing

attention from security communities in recent years. To fool a deep neural

network, attackers craft adversarial examples by maliciously adding designed

perturbations to the inputs. The adversarial perturbations are typically re-

stricted to a small norm, such as l∞ [9], l2 [22] or l0 [23]. A series of methods

have been proposed under this setting, such as FGSM [9], PGD [24], and

MIFGSM [25].

In contrast, unrestricted adversarial examples [14, 15] are constructed

entirely from scratch instead of perturbing existing data points by a small

amount. Poursaeed et al. [15] manipulate stylistic and stochastic latent vari-

ables that are fed into the StyleGAN [26] to generate an unrestricted adver-

sarial image to mislead a classification model. Similarly, we adopt a genera-

tive model to generate an adversarial high-quality gait silhouette. Here, we

extend the approach to include the temporal domain. Instead of perturbing

each frame, we sparsely generate adversarial frames to alert or insert into the

original gait sequence.

In addition, additional approaches are available in the literature on video

adversarial attacks [27, 28]. Wei et al. [27] utilize l1 norm across frames to

ensure the sparsity of adversarial perturbations on videos. A similar mask-

based method is applied in our attack to control the sparsity. Chen et al. [28]
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propose a new adversarial attack that appends a few dummy frames to a

video clip and then adds adversarial perturbations only on these new frames.

In our attack, we also explore the strategy of inserting frames into gait se-

quences. Both methods [27, 28] achieve a superior success rate on attacking

temporal sequences. Nonetheless, their methods focus on the norm-bounded

perturbations and cannot be directly transferred to the gait recognition task.

3. Methodology

3.1. Problem formulation

We have two types of adversarial attacks including dodging attack and

impersonation attack. In the former attack, the attacker tries to have a

gait sequence misidentified as any other arbitrary person, while in the latter

attack, the attacker disguises a gait sequence as a specific authorized person.

For clarity, we describe our method based on the dodging attack.

LetX ∈ RN×W×H denote a clean silhouette sequence, andX∗ ∈ RN×W×H

denote its adversarial sequence, where N is the number of frames, and W,H

are the width and height for a specific frame, respectively.

The adversarial sequence X∗ is the solution of the following objective

function:

argmin
X∗

λC(X,X∗) + Lcos(f(X), f(X∗)), (1)

where λ is a weight that balances the two terms in the objective function and

f is a gait recognition model that outputs the computed features of silhou-

ette sequences. In addition, Lcos is the loss function to measure the cosine

similarity between the ground truth sequence and the adversarial sequence,

Lcos(f(X), f(X∗)) =
f(X) · f(X∗)

∥f(X)∥2∥f(X∗)∥2
. (2)

6



C(X,X∗) is a distortion measurement to evaluate the difference between the

original sequence and its adversarial sequence. This proposed new measure-

ment is defined as

C(X,X∗) =
∑
n∈Φ

(o(Xn)− o(X∗
n))

2, (3)

where Φ is a subset within the set of frame indices and o is an oracle to

decide whether the image is a reasonable gait silhouette. o(·) = 1 means the

test example is a natural gait silhouette, and otherwise o(·) = 0. As unre-

stricted adversarial examples [14, 15], the adversarial frames in our attack

are expected to maintain a gait appearance even though they may have a

large perturbation at the pixel-level.

We also can easily achieve an impersonation attack on a gait recognition

system by modifying the objective function in Eq.(1). To craft an adversarial

sequence misclassified as a target ID t is to minimize the following function,

argmin
X∗

λC(X,X∗)− Lcos(f(Xt), f(X
∗)), (4)

where Xt is a sequence of ID t.

3.2. Temporal sparse attack

In this section, we propose a temporal sparse attack to solve the problem

in Eq.(1). The pipeline of our attack is shown in Fig. 2.

To control the temporal sparsity, we denote the temporal mask as M ∈

{0,1}N×W×H . We let Ω = {1, 2, ..., N} be the set of frame indices, Φ be

a subset within Ω having K elements randomly sampled from Ω, and Ψ =

Ω − Φ. The selection of Φ introduces randomization to make the crafted

adversarial sequence more difficult to detect. If n ∈ Φ, we set Mn = 1, and
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Figure 2: The pipeline of our attack approach. During attacking process, the latent

vectors Z are the only parameter to be optimized. We start from a randomly sampled

vector and iteratively optimize it through gradient backpropagation, shown as the blue

dotted arrows. Finally, we feed the optimized latent vector into the generator G, and

then put the obtained adversarial silhouettes into a source sequence to fool the target

gait model f . The discriminator D is used to supervise high-quality gait silhouette image

generation for imperceptibility on frame level. The mask M is used to achieve temporal

sparsity for imperceptibility on the sequence level.

if n ∈ Ψ, Mn = 0, where Mn ∈ {0,1}W×H is the n-th frame in M . The

sparsity is computed as S = K/N .

Denote the latent variable input into the generator as z ∈ RV , where V

is the dimension of each latent variable. G is a pre-trained generator on a

gait silhouette dataset. Let M be the natural gait silhouette manifold in

RW×H . In most generative models, a simple random sample z drawn from

the standard Gaussian distribution does not guarantee that G(z) ∈ M. To
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ensure the high quality of generated silhouettes, it must be in a region of

the latent space with high probability. Inspired by Menon et al. [29], we

replace the Gaussian prior on RV with a uniform prior on
√
V SV−1, where

SV−1 ⊂ RV is the unit sphere in the V dimensional Euclidean space.

For attacking a source sequence X, we propose two methods to craft

the corresponding adversarial sequence X∗. One is the frame-alteration

attack, which substitutes K frames in the source silhouettes with the gen-

erated adversarial ones. We first draw N vectors Z = [z0, z1, ...,zN−1] from

the uniform prior
√
V SV−1 and then feed Z into the generator G. X∗ is

computed by the following equation,

X∗ = M ·G(Z) + (1−M) ·X. (5)

The other is the frame-insertion attack, which directly generate K adver-

sarial frames and then insert them into the original sequence to obtain the

adversarial sequence X∗ ∈ R(N+K)×W×H .

In our new measurement (3), the supervision of the oracle is of vital im-

portance to improve the imperceptibility in the spatial domain. However, its

binary output hinders the backpropagation and makes the objective function

Eq.(1) difficult to optimize. A suboptimal solution is using a trained discrim-

inator D to supervise the generated silhouettes. The discriminator outputs

a value ranged in [0,1]. The value is close to one when the inputs are from

the natural manifold; otherwise, the value near zero is output. We make

sure G(Z) keeps a high probability of sampling from the natural manifold by

utilizing the binary cross entropy loss Lbce. Thus, our objective function in
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Algorithm 1 Temporal Sparse Adversarial Attack
Input: A gait recognition model f ; a generator G; a discriminator D; a silhouette

sequence X; iterations T and decay factor µ; sparsity S; step size ϵ; latent

space dimension V ; a hyper-parameter λ.

Output: An adversarial silhouette sequence X∗.

1: g0 = 0; X∗
0 = X; Z0 ∼

√
V SV−1, where SV−1 is the unit sphere space.

2: Compute the mask M according to the sparsity S, details are in the text;

3: for t = 0 to T − 1 do

4: Input Zt into the generator G and obtain the images G(Zt);

5: Compute the adversarial sequence as X∗
t = M ·G(Zt) + (1−M) ·X;

6: Compute the loss L in Eq.(6);

7: Update g(t+1) by accumulating the velocity vector in the gradient direction

as Eq.(8);

8: Update Z(t+1) by applying the clipped gradient as Eq.(9);

9: end for

10: return X∗ = M ·G(ZT ) + (1−M) ·X.

Eq.(1) is equal to optimizing Z to maximize the following objective function:

L = −Lcos(f(X), f(X∗))− λLbce(D(G(Z)),1), (6)

where λ is a hyper-parameter to establish a trade-off between two terms, and

the binary cross entropy loss is obtained by

Lbce(D(G(Z)),1) = −
N∑
i=1

ln(D(G(Zi)). (7)

By performing a gradient ascent in the latent variable space of the generator,

the corresponding Z that maximizes the final objective function in Eq.(6)

can be found. Without loss of generality, we adopt the MIFGSM [25] to
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attack f as follows:

g(t+1) = µ · g(t) +
▽Z(t)

L
∥▽Z(t)

L∥1
, (8)

Z(t+1) = Z(t) + ϵ · sign(g(t+1)), (9)

where µ is the decay factor, ϵ is the step size, and t represents the t-th

iteration. Algorithm 1 shows the proposed temporal sparse adversarial attack

(shown as the frame-alteration attack).

3.3. Video generation

The above generation process only considers silhouette images. There are

other possible attack points in a biometric recognition system, as shown in

Fig.3. We hypothesize that one can access the transmission channel to repeat

the previously recorded gait video on the channel. Under this hypothesis, we

extend our method to the generation of a valid video. This can be regarded

as a pixel-to-pixel image generation task.

Denote the source silhouette as X ∈ RN×W×H and the source video frame

as I ∈ RN×W×H×C , where C denotes the color channel. We train a pix-to-pix

generator Gp with paired data (I×X,X). In the attack process, we feed the

adversarial silhouette X∗ into the generator. The generated image Gp(X
∗)

is supposed to contain a subject; there is no background scene. We paste

the generated image on the background image Ib with the formulation Ia =

Ib×(1−X)+Gp(X
∗). Then, we insert the obtained adversarial frame into the

source video or substitute a frame with it to generate the fake video. Though

this method does not ensure spatial-temporal continuity between the adjacent

real frames and adversarial frames, the modified frames are imperceptible
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Figure 3: Vulnerability of a biometric recognition system. This figure is inspired by Jia et

al. [10]. Our method can be applied in both the 2nd and 4th step. To attack on biometric

samples, we train a generator to translate an adversarial silhouette image into a valid

video frame.

due to the temporal sparsity. On the other hand, the modified frame keeps

the same background, which is enough to deceive segmentation algorithms

such as background difference. Moreover, some sequence-based models, like

GaitSet, are flexible and capable of containing non-consecutive silhouettes in

input sets. Thus, in these scenarios our temporal sparse adversarial video is

not easy to detect; our video can cause a real threat to practical applications.

4. Experiments

In this section, we conduct experiments to explore the vulnerability of

gait recognition models under our temporal sparse attack. First, we specify
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the experimental settings in Sec. 4.1. Then, we test the adversarial robust-

ness of the state-of-the-art gait recognition model via the proposed method.

The white-box attack is presented in Sec. 4.2 and a cross-dataset validation

is presented in Sec. 4.4. We also perform a black-box attack to investi-

gate whether adversarial examples of sequence-based models can transfer to

template-based models in Sec. 4.3. Moreover, we provide a comparison of the

proposed method with existing perturbation-based methods to demonstrate

the superiority of our method in Sec. 4.5. Finally, we make a further analysis

of the proposed method in Sec. 4.6.

4.1. Setup

Datasets. We conduct experiments on two datasets, CASIA-A [19] and

CASIA-B [19]. CASIA-A consists of 20 subjects, and each subject has 12

image sequences, 4 sequences for each of the three directions, i.e. parallel,

45 degrees and 90 degrees to the image plane. Each sequence is labeled with

‘mm n’, where ‘mm’ represents direction and ‘n’ is sequence number. For

example, 4 parallel sequences are labeled with 00 1, 00 2, 00 3, 00 4, respec-

tively. CASIA-B is a widely used gait dataset that contains 124 subjects

(labeled 001-124) with 11 different viewing angles and 10 sequences per sub-

ject for each view. The 10 sequences contain three walking conditions: six

sequences are in the normal walking state (NM 1-6), two sequences contain

walking subject wearing coats (CL 1-2), and two sequences contain subject

carrying bags (BG 1-2). We mainly use CASIA-B for evaluation and CASIA-

A for cross-dataset validation.

Since our target gait models are trained on the first 74 subjects (labeled

1-74) and tested on the remaining 50 subjects of CASIA-B, we follow this
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Table 1: The dataset setting.

CASIA-B

training set ID: 001-074, nm01-nm06,bg01-bg02,cl01-cl02

gallery set ID: 075-124, nm01-nm04

probe set

probeNM ID: 075-124, nm05-nm06

probeBG ID: 075-124, bg01-bg02

probeCL ID: 075-124, cl01-cl02

CASIA-A

gallery set ID:all, 00 4, 45 4, 90 4

probe set

probe 0◦ ID:all, 00 1, 00 2, 00 3

probe 45◦ ID:all, 45 1, 45 2, 45 3

probe 90◦ ID:all, 90 1, 90 2, 90 3

setting to attack the last 50 subjects (labeled 75-124). For each subject, the

first four sequences of the NM condition (NM 1-4) are kept in the gallery

to test the recognition accuracy. All of the frames in a specific view and

walking condition are used as a sequence for the test. For the cross-dataset

validation, we use the whole CASIA-A. The first three sequences of each

angel are in the probe and the fourth sequence is in the gallery. The setting

is summarized in Table 1.

Metrics. We quantitatively evaluate the vulnerability of gait systems

by assessing the accuracy in the dodging attack and the success rate for an

impersonation attack. We also provide some visualization results to qualita-

tively evaluate the imperceptibility.

Gait recognition compares the feature similarities between probe and

gallery samples to identify a person. Thus, we report the average Rank-1

recognition accuracy to show the effectiveness of attacks since a strong dodg-

ing attack can largely decrease the recognition accuracy. The accuracy is
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averaged on all gallery views, and the identical views are excluded. For ex-

ample, when testing with CASIA-B, the accuracy of the probe view 90◦ is

averaged on 10 gallery views, excluding gallery view 90◦. For cross valida-

tion on CASIA-A, the accuracy is averaged on the 3 gallery views, and the

identical views are included.

For an impersonation attack, a successful attack means the probe has

a highest feature similarity with the target identity among all the gallery

samples. The success rate represents the proportion of successful adversarial

examples targeted the gait recognition model. A higher success rate demon-

strates a stronger impersonation attack.

Implementation details. If not specifically mentioned, we conduct the

dodging attack. For the impersonation attack, we randomly choose the target

ID and select one sequence of targeted ID as Xt in Eq.(4).

Our attack is based on MIFGSM [25], and the hyperparameters are set

as follows: the iterations are 100, λ = 10−5 in Eq.(6), µ = 1.0 in Eq.(8),

ϵ = 0.1 in Eq.(9). For the mask M , we let the set Φ be Φ = {1, 2, ..., K},

which means we simply alter the first K frames with adversarial ones. K is

computed according to the needed sparsity.

Generative adversarial network (GAN) [30] achieves impressive results in

image synthesis and is applied in our method. WGAN-GP [31] is an impor-

tant extension of GAN which improves image quality and stabilizes training.

We train the WGAN-GP on CASIA-B for 16000 iterations; the trained gen-

erator G and the discriminator D are used in attacking gait silhouettes. We

set the dimension of inputted latent variables as V = 128.

SPADE [32] is a method based on conditional normalization, and it can
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convert the segmentation map to a photo-realistic image. We use the SPADE

in the silhouettes to video translation. We train it on CASIA-B for 670000

iterations.

Settings for perturbation methods. For comparison, we report the

experimental results under the attack setting as the 4th step in Fig. 3. For

perturbation-based methods, we choose FGSM, PGD, and MIFGSM as base-

lines. The distortion budget is set to the value 1 for these methods, with the

pixel value within [0,1]. For iterative methods, PGD and MIFGSM, the

iterations are set to 20. The decay factor in MIFGSM is set as 1.0.

4.2. White-box experiments

In this subsection, we attack a gait model under the white-box protocol.

This means we have the full knowledge of this target model. The attacked

model is GaitSet, the state-of-the-art gait recognition model. GaitSet regards

the gait as a set of gait silhouettes and utilizes a deep neural network to

directly extract temporal information during training. Moreover, GaitSet

is flexible since the input set can contain any number of non-consecutive

silhouettes.

In the following, we evaluate the attack ability of our method. For clarity,

we report the results of frame-alteration attack and omit the results of frame-

insertion attack as the trends for both methods are similar.

Dodging attack results. We report the results of dodging attack in

Fig.4. The natural accuracy of GaitSet is labeled with Natural (marked as

red) and the accuracy under our attack is labeled with Adversarial (marked

as green). We observe that our attacks with different sparsity successfully

deceive GaitSet, causing low accuracy in all three walking conditions. We
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(a) sparsity=1/40.
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(b) sparsity=1/20.
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(c) sparsity=1/10.

Figure 4: Results of white-box dodging attack. Each column represents a predefined

sparsity, including 1/10, 1/20, and 1/40. From top to bottom are results of different

walking conditions, including NM (first row), BG (second row), and CL (third row). Four

settings (Natural (Nat), Random (Ran), Real and Adversary (Adv)) are labeled with

different colors.

also find that a stronger attack needs more modified frames in a sequence.

However, the accuracy still drops dramatically when the sparsity is 1/40.

To further prove the drop accuracy is caused by our novel attack design

rather than altering some frames with randomly chosen gait silhouettes, we

compare Adversarial with other two situations: (1) Real (marked as blue).

Randomly selected real frames of other subjects replace some frames in the
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original sequence. (2) Random (marked as yellow). In this scenario, the

latent variable is randomly sampled from a standard Gaussian distribution.

Then our GAN model generates attacking frames from the randomly sam-

pled vector. This is different from our attacking method, since in our attack

the vector Z is optimized by gradient backpropagation as the blue arrows

in Fig. 2, i.e., our attack is searching the optimal Z in a prior distribution

rather than randomly sampling Z. As shown in Fig. 4, Both Real and Ran-

dom only slightly affect the accuracy of GaitSet, while Adversarial has more

severe damage to the recognition performance. These results demonstrate

the effectiveness of our attack.

One intriguing phenomenon is that altering some original frames have a

more obvious effect on the accuracy when the view angle is close to 0◦ or

180◦. Under these conditions, the proposed attack is hardly recognizable.

These remain challenging cases for most of the state-of-the-art gait recog-

nition methods. Besides 0◦ and 180◦, the accuracy of 90◦ under attack is a

local minimum value. Chao et al. [3] point out that both parallel and vertical

perspectives lose some part of gait information. For example, stride can be

observed most clearly at 90◦ while a left-right swinging of body or arms can

be observed most clearly at 0◦ or 180◦. For attacking case, we conclude that

the parallel and vertical perspectives are more fragile when facing noises.

Fig. 4 empirically proves this statement. When replacing some frames with

randomly generated or real silhouettes instead of adversarial images, the ac-

curacy of 0◦ or 180◦ still has a larger decrease than other views.

Moreover, to prove that the accuracy is not affected by the quality of

inserted images, we randomly select some silhouettes and show them in Fig. 5.
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Figure 5: Comparison of modified images. For each subfigure, from top to bottom are a

short sequence corresponding to four different settings, i.e., Natural, Adversarial, Random

and Real. ID is classified by GaitSet.

Here the source sequence of NM is five consecutive frames in the fifth sequence

of subject 103 under normal condition with angle view 108◦, BG is the second

sequence of subject 76 with angle view 144◦ and CL is the first sequence of

subject 80 with angle view 72◦. For all the three walking conditions, NM, BG,

and CL, the silhouettes drawn from attacking frames achieve a competitive

quality with a real silhouette. Furthermore, we observe that, although the

generated silhouettes of Random in Fig. 5(b) are low quality and do not

seem like a person with bag, GaitSet still makes a correct classification.

Contrarily, the adversarial sequence successfully fools GaitSet. Therefore,

GaitSet is robust to a slight disturbance but vulnerable under the proposed

adversarial attack.

Impersonation attack results. We report the results of impersonation

attack in Table 2. The results share some similarities with dodging attack

results: the success rate is positively correlated with sparsity; the attack

achieves a higher success rate when the view angle is 0◦ or 180◦. But com-
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Table 2: Results of white-box impersonation attack, shown as success rate(%).

viewing angles: 0◦ - 180◦

sparsity condition 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ average

1/40

NM 34.60 18.90 13.20 8.60 7.70 9.40 7.90 10.10 8.30 16.80 30.80 15.118

BG 31.70 20.70 14.60 11.41 11.70 14.40 12.40 12.10 16.10 22.93 35.50 18.504

CL 42.30 23.40 17.20 17.50 13.10 17.90 15.70 14.90 23.20 26.00 41.00 22.927

1/20

NM 61.60 43.40 33.30 30.50 25.40 29.00 22.20 27.90 37.00 40.10 63.50 37.627

BG 63.30 47.00 39.50 34.64 33.40 37.30 33.00 36.10 41.10 47.07 62.80 43.201

CL 65.60 49.20 39.50 37.80 35.70 36.20 36.30 38.60 47.20 50.70 63.80 45.509

1/10

NM 78.60 67.40 59.40 61.40 60.00 61.10 58.90 60.90 65.10 68.60 80.60 65.636

BG 82.30 69.80 65.40 64.55 61.20 62.90 60.50 63.50 66.50 70.91 80.20 67.978

CL 78.90 70.50 63.80 66.20 62.40 65.00 65.50 65.70 69.90 73.10 81.30 69.300

pared with the dodging attack, the impersonation attack is apparently more

difficult, because it aims to deceive a gait recognition model with a specific

subject ID rather than any one. Nonetheless, the proposed method can suc-

cessfully deceive the GaitSet with a high success rate at around 65% when

the sparsity is 1/10. Therefore, our method can serve as a strong benchmark

of adversarial attack on gait recognition.

The goal of impersonation attack is similar to spoofing attack, which aims

to gain illegitimate access to gait systems by masquerading as others. Here

we compare our impersonation attack with spoofing attack proposed by Jia

et al [10]. Results are shown in Table 3. Though spoofing attack achieves

a high success rate, it needs to alter each frame of the source sequence, i.e.,

generating a fake background to substitute the original background. Our

method can achieve a satisfactory success rate with a slighter modification.
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Table 3: Comparison with spoofing attack, shown as success rate(%).

gallery: NM 01-04 viewing angles: 0◦ - 180◦

probe: NM 05-06 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ average sparsity

spoofing attack [10] 68.0 86.0 92.0 89.0 82.0 78.0 82.0 89.0 90.0 85.0 65.0 82.0 100%

ours 85.3 80.1 75.3 74.2 74.7 76.9 76.6 75.4 77.3 78.2 84.0 78.0 20%

4.3. Black-box experiments

Our attack method is specifically aimed at sequence-based gait recogni-

tion models, and the above experimental results demonstrate their vulnerabil-

ity. In this subsection, we also make a black-box attack on the template-based

model, GaitGAN [2]. Different from GaitSet, which takes a gait sequence as

a set and extracts its feature with a CNN, GaitGAN uses a GEI template as

the gait feature. Moreover, GaitGAN takes a GAN model as a regressor to

simultaneously address variations in viewpoint, clothing, and carrying con-

ditions in gait recognition. In the black-box scenario, we cannot access any

information of GaitGAN in the attack process. To perform the black-box

attack, we apply the widely used transfer-based attack [33, 34]. It leverages

a property of adversarial examples, i.e., transferability, which means that

adversarial examples crafted on one model can successfully attack another

model with different architecture and parameters. In transfer-based attack,

attackers use a local substitute model to craft adversarial examples and feed

them into a black-box target model to result in wrong outputs. Specifically,

here we firstly attack GaitSet with Algorithm 1 to obtain the adversarial

sequence, and then use it as the input of GaitGAN to test the accuracy.

The sparsity is 1/40 and the adversarial sequences are the same as Adv,
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Table 4: Results of a Black-box attack on GaitGAN, shown as accuracy(%).

probe view 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ average

natural 39.4 56.0 62.3 61.1 59.3 25.8 55.8 63.6 57.3 52.9 40.7 52.2

after attack 35.9 52.8 60.0 57.6 56.1 24.4 52.2 60.4 55.2 49.5 36.2 49.1

drop ↓ 3.5 3.2 2.3 3.5 3.2 1.4 3.6 3.2 2.1 3.4 4.5 3.1

NM in Fig. 4(a). We report the results of probeNM, shown in Table 4. The

recognition rate of each probe view only drops a little after attacking. We

conclude that GEI is more robust than the feature extracted by GaitSet un-

der our temporal adversarial attack. Because GEI is obtained by aligning

the silhouettes in the spatial space and averaging them along the temporal

dimension, the perturbation of a few frames is not enough to deceive Gait-

GAN. Although sequence-based gait recognition has made great progress in

recognition accuracy, its robustness compared to template-based methods

remains limited. This is a key area for the community to focus on in the

future.

4.4. Cross-dataset validation

For a more reliable performance assessment, we conduct cross-database

testing using CASIA-A. In this scenario, the training set of CASIA-B is used

to train the GaitSet and WGAN-GP, while the whole CASIA-A dataset is

used for testing. Results are shown in Table 5. The trend is almost the

same as the results of testing on CASIA-B. The recognition capability of the

attacked model drops rapidly as the attack sparsity increases.

Under the dodging attack, the performance degradation could be affected

by many reasons, such as domain shift or the generalization ability of the

22



Table 5: Results of cross-database

validation with dodging attack,

shown as accuracy(%).

probe view

sparsity 0◦ 45◦ 90◦ average

0 56.67 70.00 76.67 67.78

1/40 33.33 33.33 18.33 28.33

1/20 18.33 25.00 3.33 15.55

1/10 6.67 8.33 3.33 5.11

Table 6: Results of cross-database

validation with impersonation at-

tack, shown as success rate(%).

probe view

sparsity 0◦ 45◦ 90◦ average

1/40 11.67 8.33 31.67 17.22

1/20 26.67 20.00 61.67 36.11

1/10 56.67 63.33 85.00 68.33
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Figure 6: Comparison of our method with perturbation-based methods. ‘Natural’ is the

original accuracy of GaitSet and others represent the accuracy under different attacks.

recognition method itself, other than attacking. For a more convincing jus-

tification, we further perform cross-database impersonation attack. Results

are shown in Table 6. When the sparsity is 1/10, the success rate reaches

68.33% on average.

4.5. Comparison with perturbation-based methods

In Sec. 1, we have qualitatively demonstrated the shortcomings of the

perturbation-based approaches. In this subsection, we compare our pro-

posed method with these methods quantitatively. The perturbation-based
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Figure 7: From top to bottom are natural examples and their corresponding adversarial

examples generated by FGSM, PGD, MIFGSM, and our method.

attacks used as baselines include FGSM [9], PGD [24] and MIFGSM [25]. It

is difficult to extend these attacks to video frame generation due to the sig-

nal processing in silhouette-based gait recognition. Therefore, in this study

we perform attacks on the gait silhouettes. For a fair comparison, we fix

the sparsity and compare the imperceptibility and the accuracy under dif-

ferent attacks. The distortion budgets of perturbation-based methods are

all relaxed to pixel values, which means adversarial examples are not norm-

bounded by a small constant for these methods. Our method is under the

protocol of a frame-alteration dodging attack.

The results are shown in Fig. 6, and some crafted adversarial examples

are shown in Fig. 7. Our proposed method achieves a superior attack perfor-

mance and imperceptibility. In Fig. 6, we observe that while all of the attacks

lower the accuracy of GaitSet, our method surpasses the perturbation-based
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methods by obtaining superior attack performance in all of the settings. In

Fig. 7, we show that the subjects in the silhouettes retain a human posture

in our method. Thus, it maintains better imperceptibility of the spatial do-

main than perturbation-based methods. Furthermore, it enables the transfer

of these silhouettes to video frames; it makes a practical threat to the gait

recognition system. However, a limitation is that the generated samples have

pose changes when they are compared to their adjacent frames. Therefore,

some constraints are needed to enforce the changes between the adjacent

frames, which we leave for our future work. Compared with perturbation-

based methods, our proposed method provides superior attack ability and

imperceptibility and can serve as a stronger baseline for sequence-based gait

recognition.

4.6. Analysis of the proposed method

In this section, we make a further analysis of the proposed method.

Position of frame-insertion. Firstly, we study the effects of position

to insert the adversarial image. In our prior experiments, we use GaitSet as

the target model. GaitSet has achieved state-of-the-art performances with-

out modeling the temporal characteristics explicitly. In other words, Gait-

Set takes a set of silhouettes as input and the order of input frames does

not affect the recognition. Similarly, models using gait templates, such as

GaitGAN [2], aggregate temporal walking information over a sequence of

silhouettes in a single map. The order of a gait sequence does not matter

in these methods. Differently, some models learn from the order and rela-

tionship of frames in gait sequences, instead of aggregating them. We take

SelfGait [35] as an example and perform dodging attack on it. SelfGait is a
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Table 7: Study on position of inserted adversarial frames, shown as accuracy(%).

walking condition

position NM BG CL

no inserted frames 91.079 84.735 74.261

{0,1,2,3} 17.711 12.197 10.663

{8,9,10,11} 18.895 11.193 11.212

{15,16,17,18} 18.190 11.913 11.629

{23,24,25,26} 18.176 11.420 12.689

{30,31,32,33} 19.784 12.651 11.117

{0,11,22,33} 19.607 12.784 11.723

{4,12,20,28} 20.035 14.565 11.553

{9,14,19,24} 18.406 11.572 9.583

{13,15,17,19} 18.992 11.553 10.303

random (mean±std) 19.130±0.406 12.940±0.281 10.530±0.890

self-supervised framework with spatiotemporal components to learn from the

massive unlabeled gait images. Since SelfGait preserves and learns temporal

representation from the order and relationship of frames in gait sequences,

disrupting the order of input frames will decrease its accuracy.

In the following experiments, we randomly draw 30 sorted successive

frames from a sequence as input and insert 4 adversarial frames into dif-

ferent positions. Results are reported in Table 7. Different positions are

numbered with the index of adversarial frames in the obtained 34 frame-

length sequence. For example, {0, 1, 2, 3} represents that all the 4 adversar-

ial frames are inserted into the start of a sequence. In Table 7, from the

row of {0, 1, 2, 3} to {30, 31, 32, 33} are inserting all the 4 frames into two

adjacent frames. From the row of {0, 11, 22, 33} to {13, 15, 17, 19} are insert-
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Table 8: Study on number of inserted adversarial frames, shown as accuracy(%).

dynamic evaluation

frame number 1 2 3 4 5

accuracy 47.51% 14.73% 3.71% 1.57% 0.56%

static evaluation

accuracy 0%

mean frame number 1.6

ing adversarial frames into equidistant positions. The last row, ‘random’,

means that for each original sequence, adversarial frames are inserted into

randomly chosen positions. Its final result is averaged on five experiments

with different random seeds (from 0 to 4). We observe different positions

have a slight effect on the attacking performance. For example, for all insert-

ing positions, the accuracy of SelfGait under condition NM is around 19%.

Therefore, our method can pre-define any positions to insert the generated

adversarial frames for a similar result.

Number of adversarial images. We study the minimum number of

inserted adversarial frames in order to yield a satisfactory result. To make

a fair comparison, we fix the length of silhouette frames in the test phase.

Specifically, the sampler collects 30 sorted successive frames as input. We

evaluate under two settings: (1) Static evaluation. We pre-define a number

of inserted adversarial frames and test the accuracy under such a pre-defined

number. (2) Dynamic evaluation. For a source gait sequence, we gradually

increase the number of inserted frames and run until a successful attack.

Under this setting, the evaluation metric is the mean of the inserted frame

numbers. We perform dodging attack on GaitSet and obtain results in Ta-
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Table 9: Ablation study on the hyper-parameter λ, shown as accuracy(%).

λ 10−8 10−7 10−6 10−5 10−4 10−3

NM 25.3 25.9 25.9 26.4 32.8 45.8

BG 17.9 18.3 18.5 18.6 24.8 24.4

CL 12.1 12.1 11.9 12.4 15.1 22.5

Table 10: Speed evaluation of the proposed attack, shown as the average time (seconds)

to craft a adversarial sequence on CASIA-B.

iterations 40 60 80 100

sparsity 1/40 1/20 1/10 1/40 1/20 1/10 1/40 1/20 1/10 1/40 1/20 1/10

computation time 1.43 1.58 1.65 2.29 2.32 2.54 2.98 3.03 3.44 3.42 3.54 3.80

ble 8. We can observe inserting only three adversarial frames can degrade

the accuracy to to 3.71%. Furthermore, for a 30 frame-length sequence, the

mean frame number to completely deceive GaitSet is only 1.6.

Hyper-parameters. We study the hyper-parameter λ in Eq.(6) since it

is crucial for the trade-off between attack performance and the impercepti-

bility in the spatial domain. We perform the dodging attack on the GaitSet,

with a sparsity of 1/40. Considering the imperceptibility is difficult to be

quantitatively measured, we mainly evaluate the attack performance with

the accuracy of GaitSet. Table 9 shows that the accuracy increases as the λ

becomes larger.

Finally, we study the parameters in Algorithm 1 which affect the compu-

tational complexity, including the iterations T , the step size ϵ, the sparsity

S and the length of the original sequence, etc. We fix the step size as ϵ = 0.1
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and the length of the original sequence as 40 frames to study the effects of

iterations T and sparsity S. Results are shown in Table 10. We conclude

the iterations has a significant influence on the speed and the sparsity has a

relatively modest effect.

5. Discussion

Attack scenarios. We have mainly evaluated our attack in the digi-

tal space. For a real-world attack, one can access the transmission channel

to repeat the previously prepared adversarial biometric data on the chan-

nel and avoid the sensor. This can be achieved in a number of ways, e.g.

through reverse engineering the authentication protocol and directly talking

to the system [36]. A predictable difficulty is that such an attack is possi-

bly hindered by many other uncertainties in an open world. For example,

the dynamic background instead of still ones can decrease the visual qual-

ity of generated videos; some frame selection process may remove the key

adversarial frames.

Countermeasures. Several studies provide anti-spoofing methods to

defend spoofing attacks. However, the proposed adversarial attack still lacks

effective countermeasures. To improve the robustness of sequence-based gait

system against our attack, one can consider adversarial training [24], i.e.,

augmenting the training data with our generated adversarial sequences. A

shortcoming is this method will lower down the accuracy on the benign sam-

ples. Instead, one can detect the adversarial frames under the hypothesis

that they have already known the attack. For example, the inter-class dis-

similarity between adversarial frames and benign ones can be utilized, since
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the adversarial samples are all crafted by a GAN in our method.

6. Conclusion

In this paper, we propose a novel temporal sparse adversarial attack on

gait recognition. Our method achieves good imperceptibility and a high at-

tack performance. Experiments on CASIA datasets indicate that the state-

of-the-art model, GaitSet, is vulnerable to our adversarial attack. This re-

veals a key limitation in adversarial robustness research on gait recognition

that requires urgent attention. Our method also shows a potential threat in

practical applications as it is flexible in either attacking on biometric sam-

ples captured by a sensor or directly modifying probes. We mainly focus on

the vulnerability of sequence-based models and show template features like

GEI may resist our attack. The results highlight the inherent loss of tem-

poral and fine-grained spatial information in gait templates; consequently,

they can avoid deliberate attacks on vulnerable temporal features. There-

fore, we identify the need for the community to consider the robustness of

sequence-based methods, which possess the benefit of high accuracy, in future

research.
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