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Thanks to the potential to address the privacy and security issues, data-free quantization that generates
samples based on the prior information in the model has recently been widely investigated. However,
existing methods failed to adequately utilize the prior information and thus cannot fully restore the
real-data characteristics and provide effective supervision to the quantized model, resulting in poor per-
formance. In this paper, we propose Dual-Discriminator Adversarial Quantization (DDAQ), a novel data-
free quantization framework with an adversarial learning style that enables effective sample generation
and learning of the quantized model. Specifically, we employ a generator to produce meaningful and
diverse samples directed by two discriminators, aiming to facilitate the matching of the batch normaliza-
tion (BN) distribution and maximizing the discrepancy between the full-precision model and the quan-
tized model, respectively. Moreover, inspired by mixed-precision quantization, i.e., the importance of
each layer is different, we introduce layer importance prior to both discriminators, allowing us to make
better use of the information in the model. Subsequently, the quantized model is trained with the gen-
erated samples under the supervision of the full-precision model. We evaluate DDAQ on various network
structures for different vision tasks, including image classification and object detection, and the experi-
mental results show that DDAQ outperforms all baseline methods with good generality.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Deep neural network (DNN) models have demonstrated
remarkable effectiveness in a variety of computer vision tasks
[1–6]; nevertheless, their high model complexity makes deploy-
ment and real-time inference on edge devices challenging [7–11].
Therefore, model quantization, which converts 32-bit floating-
point parameters to low-precision values, is extensively used to
produce efficient networks suitable for hardware deployment
[12–19,70]. To mitigate the accuracy degradation caused by quan-
tization, quantization-aware training (QAT) methods fine-tune the
parameters with the help of original training data [20–22]. How-
ever, in many practical scenarios concerning user privacy and secu-
rity, original data is not available [23–25], such as medical data and
bio-metric data, rendering the QAT methods no longer applicable
[26–28].

As a result, post-training quantization (PTQ) methods are pro-
posed to eliminate the complex fine-tuning process [29–31]; how-
ever, they still typically require a small amount of training data for
calibration, and suffer from non-trivial accuracy gaps, especially
for low-precision (e.g., 4-bit) quantization [32]. To address the
above issues, recent works have proposed data-free quantization
[27,32,33,26], which does not require any original data but pro-
duces powerful results, making it a new research hotspot. One
approach is to reconstruct samples based on the batch normaliza-
tion (BN) distribution [27,33,26], intending to match the real-data
statistics contained in the full-precision model’s BN layers, and
then use the generated samples for parameter calibration. Another
notable approach models the discrepancy between the full-
precision model and the quantized model as an adversarial game
[32], thereby achieving sample generation and knowledge transfer
from the full-precision model to the quantized model. However,
there is still a large performance gap between these two
approaches and real-data-driven QAT methods, since neither
approach fully utilizes the information in the model, i.e., the former
ignores the information interaction between models and hence
cannot ensure the generality of the quantized model, while the lat-
ter disregards the real-data statistics stored in the full-precision
model, leading to a mismatch between the distribution of the gen-
erated samples and the real data.
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In addition, none of the previous methods in the data-free quan-
tization community take into account the layer importance prior,
i.e., different layers in a DNN model have different contributions
to the overall performance, which is a potentially key attribute of
the model highlighted in the mixed-precision quantization meth-
ods [34–37]. For instance, DSG [27] performs layerwise sample
enhancement (LSE) by assigning the same weight to each layer
using an identity matrix, which is based on the faulty assumption
that each layer is equally important; ZAQ [32] indiscriminately
sums the discrepancies between the intermediate layers of the
full-precision model and the quantized model, which also ignores
the difference in the importance of the layers. Consequently, exist-
ing methods all fail to take advantage of the valuable attribute of
layer importance prior, resulting in unsatisfactory performance.

In this paper, we propose a novel data-free quantization frame-
work, named Dual-Discriminator Adversarial Quantization
(DDAQ), to overcome the aforementioned issues. DDAQ efficiently
exploit the information contained in the model, considering not
only the BN statistics in the full-precision model, but also the infor-
mation interactions between the models that are achieved by the
min–max adversarial game of the discrepancy between the full-
precision model and the quantized model. Specifically, we train
the generator in an adversarial learning fashion using two discrim-
inators, one to minimize the matching loss of the BN layer distribu-
tion and the other to maximize the discrepancy between the full-
precision model and the quantized model, and subsequently, the
generated samples are utilized to train the quantized model under
the supervision of the full-precision model. Furthermore, we intro-
duce Hessian-based layer importance prior to both discriminators,
allowing us to fully utilize the valuable information in the model,
and thus promoting more diverse sample generation andmore effi-
cient knowledge transfer. The overall workflow is illustrated in
Fig. 1.

To sum up, our contributions are as follows:

� We propose DDAQ, an adversarial learning framework with two
discriminators to support effective sample generation and
knowledge transfer for data-free quantization. DDAQ considers
both BN layer distribution and model interaction, allowing us to
efficiently exploit the information contained in the model.
Fig. 1. The overall workflow of DDAQ. The training procedure is conducted in a two-sta
quantized model are fixed, while the generator is trainable and synthesizes fake samples
generator, which facilitate BN distribution matching and model discrepancy maximizati
fixed while the quantized model is trainable, and the generated samples are utilized t
addition, we introduce layer importance prior (average Hessian trace hi) to the framewo
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� We introduce layer importance prior to the framework by
enhancing the discriminator losses with the average Hessian
trace, which enables us to further leverage the information in
the model.

� The diverse samples generated by DDAQ satisfy the real-data
statistics stored in the BN layers and increase the discrepancy
between models, thus facilitating more effective knowledge
transfer from the full-precision model to the quantized model.

� We conduct extensive experiments on various model structures
for image classification and object detection tasks, and consis-
tently outperform state-of-the-art (SOTA) data-free quantiza-
tion methods, demonstrating the effectiveness and generality
of DDAQ.

2. Related works

Model quantization is a promising approach for reducing the
memory consumption and computation cost of a DNN model, thus
ensuring its real-time processing on edge devices [38–44]. To
address the accuracy gap between the full-precision model and
the quantized model, various QAT methods have been proposed.
DoReFa [21] approximates the gradient propagation of the quan-
tized model using straight-through estimator (STE) [45]. LSQ [46]
and PACT [47] take the step size or activation clipping value as a
learnable parameter to achieve low-bit quantization. LQ-Nets
[20] determines the quantization levels using the quantization
error minimization algorithm, while APoT [48] limits all quantiza-
tion levels to the sum of powers-of-two terms. FQN [49] utilizes
channel-wise quantization to compress the networks for object
detection tasks. Other works attempt to use periodic regularization
to assist quantization [50,51] or progressively quantify the net-
work [52]. However, the above methods all require original train-
ing data for fine-tuning, and the unavailability of original data for
many scenarios makes these methods inapplicable.

The PTQ methods are proposed to eliminate the computation
cost of fine-tuning and thus improve the quantization efficiency.
DFQ [29] and ACIQ [30] rely on correction strategies to equalize
weights and remove biases. AdaRound [31] adaptively rounds
weights based on the data and the task loss. However, the PTQ
methods result in severe performance degradation, and they are
ge adversarial learning manner. In the first stage, the full-precision model and the
from Gaussian noise. Two discriminators are employed to direct the training of the
on, respectively. In the second stage, the full-precision model and the generator are
o train the quantized model under the supervision of the full-precision model. In
rk to enhance the discriminator loss.
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not genuinely data-free since a limited amount of data is required
for calibration.

Data-free quantization, which can compress models without
access to any real data, is a technique that is highly desired in
many scenarios concerning privacy and security [17], and is there-
fore receiving increasing attention. The idea is to follow the prior
information in the full-precision model to generate samples, and
then use them to train the quantized model. ZeroQ [26] recon-
structs samples to match the real-data statistics stored in the
full-precision model’s BN layers. DSG [27] slackens the BN match-
ing constraint and assigns different attention to specific layers for
different samples to ensure diverse sample generation. GDFQ [33]
introduces class prior (category label) information combined with
BN statistics to synthesize samples, limiting its inability to extend
to high-level tasks such as object detection. ZAQ [32] models the
discrepancy between the full-precision model and the quantized
model as an adversarial game, and achieves sample generation
and knowledge transfer in an adversarial learning manner. How-
ever, the performance of the existing methods is still far from sat-
isfactory, as they all fail to fully use the information in the model,
leading to low generality of the quantized model [26,27,33] and
mismatch of the generated samples [32].

Layer importance prior is highlighted in the mixed-precision
quantization methods [34–37], which is a potentially key attribute
of the model, i.e., the importance of each layer for the final perfor-
mance is different. A popular metric for layer importance evalua-
tion is the average Hessian trace used in HAWQ-V2 [34], which
is second-order information that can be calculated using the
Hutchinson algorithm [53,54] for fast computation. In addition,
layer importance prior also has wide range of applications in other
scenarios, including filter pruning [55] and feature representation
enhancement that improves the discriminative capability of DNN
models [56–60]. In this work, we introduce the average Hessian
trace to the proposed framework, on which two enhancement
matrices are developed to improve the two discriminator losses,
respectively, to further exploit the information in the model, pro-
moting more effective sample generation and knowledge transfer.
3. Methodology

In this section, we first describe the preliminary of uniform
quantization, generative adversarial nets (especially the dual-
discriminator architecture), and layer importance prior repre-
sented by the average Hessian trace. The overall adversarial learn-
ing pipeline of DDAQ is then summarized and introduced.
Afterward, we introduce the training of the generator, and in par-
ticular, describe in detail how to establish two discriminators to
apply data-free quantization to the dual-discriminator framework.
Finally, the training of the quantized model is presented to achieve
knowledge transfer from the full-precision model.
3.1. Preliminary

Uniform quantization: Quantization converts the floating-
point parameters hp (weights and activations) in the pretrained
full-precision model to low-precision fixed-point values hq, thus
reducing the model complexity. Uniform quantization is the sim-
plest and most hardware-friendly method, which is defined as
follows:

hq ¼ hp � Z
D

� �
;D ¼ maxðhpÞ �minðhpÞ

2k � 1
ð1Þ

where [�] is the rounding function, Z is the zero point, and k is the
quantization bit-width.
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Generative adversarial nets: The vanilla GAN [61] utilizes a
generator G to map the noise vector z drawn from a prior pzðzÞ
(e.g., Gaussian distribution) to the desired data GðzÞ, while a dis-
criminator D is employed to distinguish the real data y from the
generated data. Specifically, D and G play a two-player minimax
game in an adversarial learning style with the following value
function VðG;DÞ:
min

G
max

D
VðG;DÞ ¼ Ey�pdataðyÞ½logDðyÞ� þ Ez�pzðzÞ½logð1� DðGðzÞÞÞ�

At this point, the loss function LG1 to be minimized for training
the generator G is:

LG1 ¼ Ez�pzðzÞ½logð1� DðGðzÞÞÞ� ð3Þ
To further improve the capability of the generator, D2GAN [62]

play a three-player minimax game with two discriminators D1 and
D2 to guide sample generation, where D1 encourages the real data
while D2 encourages the generated data. In this case, the generator
is optimized depending on both D1 and D2 with the following loss
function:

LG2 ¼ Ez�pzðzÞ½�D1ðGðzÞÞ� þ cEz�pzðzÞ½logðD2ðGðzÞÞÞ� ð4Þ
where the two parts aim to fool the discriminators D1 and D2,
respectively, and c is a hyperparameter to balance the effect of
the two discriminators.

Layer importance prior: HAWQ-V2 [34] theoretically proves
that the average Hessian trace can represent the impact of each
layer’s perturbation on the overall performance of the model, and
thus it can be used to measure the importance of each layer (please
see Appendix for the proved Lemma). The Hessian matrix
Hi 2 Rmi�mi of layer i in the pretrained model is the second deriva-
tive of the loss ‘ w.r.t. the parameters hi 2 Rmi of layer i, which is
calculated as follows:

Hi ¼
@ghi

@hi
¼ @2‘

@h2i
ð5Þ

The Hessian trace can be estimated by a low computational
overhead method [53], which is formulated as follows:

TrðHiÞ ¼ TrðHiIÞ ¼ TrðHiE½vvT �Þ ¼ E½TrðHivvTÞ� ¼ E½vTHiv � ð6Þ
where v is a random vector drawn from Rademacher distribution
(or Gaussian distribution Nð0;1Þ).

To eliminate the effect of the layer’s memory footprint, we nor-
malize the Hessian trace with the number of parameters mi and
obtain the average Hessian trace as follows:

hi ¼ TrðHiÞ
mi

ð7Þ

The average Hessian trace of each layer in ResNet model on
ImageNet is illustrated in Fig. 2, showing that the importance of
each layer for the final performance is significantly different.

3.2. The DDAQ pipeline

The DDAQ framework is performed in an adversarial learning
manner, and the overall pipeline is summarized in Algorithm1.
In DDAQ, we only need the full-precision model to produce the
quantized model; no original data is required. This is achieved by
dividing the whole process into two stages which are performed
alternately in an adversarial game, where the generator G is
employed to produce diverse samples that satisfy the real-data dis-
tribution and maximize the discrepancy between models, while
the quantized model Q learns the useful knowledge of the full-
precision model with the help of the generated samples and thus
minimizes the discrepancy between models.



Fig. 2. The average Hessian trace of different layers in pre-trained ResNet-18 and ResNet-50 on ImageNet. The x-axis represents each layer in the model, and the y-axis
indicates the importance of each layer to the final model performance. As one can see, different layers have significantly different importance.

Algorithm1: The DDAQ Pipeline
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In the first stage, we first randomly produce a batch of
Gaussian noise z � Nð0;1Þ, and feed it to the generator G to
obtain the samples GðzÞ. Then the generated samples GðzÞ are
input to two discriminators to obtain two loss functions for
training the generator, where Lbn is utilized to facilitate the
matching of BN statistics and Ladv is utilized to increase the
discrepancy between the full-precision model and the quan-
tized model. Finally, we combine the two losses to obtain
LG and perform back-propagation to update the parameters
70
hg of the generator while fixing the parameters hq of the quan-
tized model.

In the second stage, we start by producing Gaussian noise
z � Nð0;1Þ and generating samples GðzÞ in the same way. The
full-precision model and the quantized model then perform infer-
ence with the generated samples GðzÞ. We obtain the loss function
LQ which aims to reduce the discrepancy of the feature maps in
the corresponding layers during the inference of the two models,
and finally use it for back-propagation to update hq while fixing hg .
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3.3. Training of the generator

Since D2GAN requires real data for training, data-free quantiza-
tion cannot be directly applied to this architecture. Therefore, our
interest is how to define two discriminators to direct the training
of the generator without original data. To this end, we only utilize
the prior knowledge available in the full-precision model to train
the generator, with one discriminator reflecting the statistics of
the real data and the other discriminator performing the informa-
tion interaction between models. Specifically, the generator is a
lightweight four-layer upsampling convolutional neural network,
which follows GDFQ [33] and ZAQ [32]; discriminator 1 contains
only the full-precision model, and discriminator 2 contains both
the full-precision model and the quantized model, with the specific
training strategy and loss functions below.

Discriminator1: The statistics (i.e., the mean and standard
deviation) encoded in the BN layers of the full-precision model
can represent the distribution of the original training data. Dis-
criminator 1 contains only the full-precision model itself, and it
is employed to facilitate the matching of BN statistics. Specifically,
we learn the input data to best match the BN statistics and thus
make it approximate the real-data distribution. The matching loss
Lbni of layer i is calculated as follows:

Lbni ¼ Ez�pz jj~lg
i � lijj22 þ jj~rg

i � rijj22
h i

ð8Þ

where jj � jj22 denotes the square of L2 norm. Here, ~lg
i =~r

g
i are the run-

ning mean/standard deviation of the feature distribution at the i-th
BN layer during model inference when the input is the generated
samples GðzÞ, and li=ri are mean/standard deviation information
encoded in the i-th BN layer of the full-precision model.

Furthermore, we introduce layer importance prior to enhance
the BN statistics matching. Specifically, instead of simply summing
as in ZeroQ [26], we combine the matching loss Lbni of each layer

into a row vector L1 2 R1�N (N is the total number of the layers),
which is represented as follows:

L1 ¼ Lbn1 ;Lbn2 ; . . . ;LbnN

� � ð9Þ
Then we define the enhancement matrix X1 2 RN�N based on

the layer importance prior as follows:

X1 ¼

h1 0 � � � 0
0 h2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � hN

2
66664

3
77775þ 11T ð10Þ

where hi is the average Hessian trace of the i-th layer in the full-
precision model, and 1 is an N-dimension column vector of all ones.
The enhancement matrix X1 encourages a batch of generated sam-
ples to pay different attention to different layers (i.e., the i-th sam-
ple is more influenced by the i-th layer’s BN statistics), and this
attention varies with the layer importance prior, which can poten-
tially ensure the diversity and validity of the samples.

Finally, the loss function Lbn of the generator directed by dis-
criminator 1 is defined as:

Lbn ¼ 1
N
� 1TðL1X1Þ ð11Þ

Here, the result Lbn is a row vector, where the i-th element
focuses more on the i-th BN layer and it will act on the update of
the i-th sample in the batch.

Discriminator2: This discriminator considers the information
interaction between models and maximizes the discrepancy
between the full-precision model and the quantized model, which
can both improve the diversity of generated samples and promote
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the generality of the quantized model after knowledge transfer. We
calculate not only the output discrepancy between models, but
also the discrepancy of the feature maps in the intermediate layers.
The discrepancy is modeled with the adversarial distillation loss,
which is calculated as follows:

Ladv i
¼ Ez�pz

1
N
jjPiðGðzÞÞ � QiðGðzÞÞjj1

� �
ð12Þ

Where PiðGðzÞÞ and QiðGðzÞÞ are the feature maps of layer i in
the full-precision model and the quantized model when the input
is the generated sample GðzÞ, respectively. Note that we simply use
the naive L1 norm in order to prove the validity of the framework
itself, rather than more advanced losses such as KL divergence.

Then, as in discriminator 1, we combine the discrepancies of
each layer into a row vector L2 2 R1�N rather than simply adding
them up like ZAQ [32], which is denoted as:

L2 ¼ Ladv1
;Ladv2

; . . . ;LadvN

� � ð13Þ
In discriminator 2, the enhancement matrix X2 2 RN�1 is formu-

lated as:

X2 ¼ h1;h2; . . . ;hN½ �T þ 1 ð14Þ
The enhancement matrix X2 motivates us to focus more on the

discrepancies between the more important layers rather than
treating all layers equally when calculating adversarial distillation
losses, thus allowing us to obtain more effective information about
the discrepancies.

Finally, the loss function of the discrepancy between the full-
precision model and the quantized model is defined as:

Ladv ¼ L2X2 ð15Þ
Training loss of the generator: Our aim is to generate samples

that can simultaneously fool both discriminators. Therefore, as in
Eq. 4, we combine the losses corresponding to the two aforemen-
tioned discriminators, minimizing the distribution matching loss
Lbn and maximizing the discrepancy loss Ladv , to obtain the final
objective function for training the generator as follows:

LG ¼ aLbn � bLadv ð16Þ
where a and b are hyperparameters to balance the two losses Lbn

and Ladv .

3.4. Training of the quantized model

The training process requires the participation of both the
full-precision model and the quantized model. Specifically, in
this process, the quantized model is trained with the generated
samples under the supervision of the full-precision model, i.e.,
we achieve the knowledge transfer from the full-precision
model to the quantized model with the help of the generated
samples. To this end, we utilize the adversarial distillation loss
in discriminator 2 to minimize the discrepancy between the
two models, thus motivating the quantized model to learn use-
ful knowledge (i.e., driving the quantized model to mimic the
full-precision model). Note that since discriminator 1 contains
only the full-precision model, it has no effect on the training
of the quantized model and we can ignore it. More formally,
the loss function for training the quantized model is defined
as follows:

LQ ¼ Ladv ¼ L2X2 ð17Þ
Note that LQ directly forms an adversarial relationship with

(�Ladv ), which makes it possible for us to solve optimization prob-
lems with the help of the adversarial learning paradigm.



Fig. 3. Training losses and test accuracy of ResNet-20 on CIFAR-10 during fine-tuning. LG and LQ decrease in the adversarial, making the quantized model accuracy steadily
improve. We visualize the results of the intermediate epochs, showing a gradual increase in the validity and semantics of the generated samples (in 32�32 resolution).
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4. Experimental results

In this section, we evaluate various model structures [63–65] on
CIFAR-10 [66] and ImageNet [67] datasets for image classification
task and COCO [68] dataset for object detection task, and compare
the experimental results with the SOTA data-free quantization
methods to demonstrate the advantages of the proposed DDAQ.

4.1. Implementation details

All implementations are performed based on PyTorch. First, we
obtain the pretrained full-precision model from pytorchcv1. Then
we use PyHessian2 [54] to calculate the average Hessian trace as
the layer importance evaluation metric. And we quantize the
weights and activations of the model into the corresponding bit-
1 https://pypi.org/project/pytorchcv
2 https://github.com/amirgholami/PyHessian

72
widths, including the first and last layers. The specific training pro-
cess includes two parts, warm-up and fine-tuning, which are
described below.

Warm-up: In the first few epochs, the generated samples are
close to Gaussian noise and are useless for training the quantized
model. Therefore, we only train the generator in the warm-up.
Specifically, the warm-up epochs are set to 10, 30, and 30 on
CIFAR-10, ImageNet, and COCO datasets, respectively.

Fine-tuning: As shown in Algorithm1, the fine-tuning is per-
formed in a two-stage adversarial game, and no fine-tuning means
that the quantized model is updated only once. We use the Adam
[69] optimizer to learn both the generator and quantized model,
and the gradient back-propagation and updating of the quantized
model is done using naive STE [45]. For the discrepancy calculation
in discriminator 2, we make simplifications to reduce the compu-
tation, e.g., we only consider the feature map of the last layer of
each residual block in ResNet. For the balance coefficients a and
b of the generator loss, we set them both to 0.5 after a simple grid

https://pypi.org/project/pytorchcv
https://github.com/amirgholami/PyHessian


Table 1
Quantization results on CIFAR-10 and ImageNet datasets. We abbreviate fine-tuning as ‘‘FT”(‘‘–” means without fine-tuning and ‘‘U” means with fine-tuning) and bit-precision as
‘‘Prec.” (WxAy means weight with x-bit and activation with y-bit). Our proposed DDAQ outperforms the SOTA data-free quantization methods in both no fine-tuning and fine-
tuning cases, including ZeroQ [26], DSG [27], GDFQ [33], and ZAQ [32]. ‘‘*” denotes the results reproduced from the source code, and all other results are obtained from the original
paper.

Dataset Model Method FT Prec. Size(MB) BitOps(G) Top-1(%)

CIFAR-10 ResNet-20 Baseline FP32 1.03 41.7 94.03
ZeroQ – W4A4 0.130 0.652 85.39
DSG – W4A4 0.130 0.652 87.75

DDAQ (ours) – W4A4 0.130 0.652 90.70
GDFQ U W4A4 0.130 0.652 90.25
ZAQ* U W4A4 0.130 0.652 91.03

DDAQ (ours) U W4A4 0.130 0.652 92.41

ImageNet ResNet-18 Baseline FP32 44.6 1858 71.47
ZeroQ – W4A4 5.58 29.0 26.04
DSG – W4A4 5.58 29.0 34.53

DDAQ (ours) – W4A4 5.58 29.0 58.44
GDFQ U W4A4 5.58 29.0 60.60
ZAQ* U W4A4 5.58 29.0 61.34

DDAQ (ours) U W4A4 5.58 29.0 62.91
ResNet-50 Baseline FP32 97.8 3951 77.72

ZeroQ* – W4A6 12.2 92.6 67.82
DDAQ (ours) – W4A6 12.2 92.6 73.30

GDFQ* U W4A6 12.2 92.6 73.52
DDAQ (ours) U W4A6 12.2 92.6 74.56

ZeroQ – W6A6 18.3 139 75.56
DSG – W6A6 18.3 139 76.07

DDAQ (ours) – W6A6 18.3 139 76.58
GDFQ U W6A6 18.3 139 76.59

DDAQ (ours) U W6A6 18.3 139 76.98

MobileNetV2 Baseline FP32 14.0 307 73.03
ZeroQ – W4A4 1.75 4.80 3.31

DDAQ (ours) – W4A4 1.75 4.80 49.59
GDFQ U W4A4 1.75 4.80 51.30

DDAQ (ours) U W4A4 1.75 4.80 52.99
ZeroQ – W6A6 2.63 10.8 69.62

DDAQ (ours) – W6A6 2.63 10.8 70.30
GDFQ U W6A6 2.63 10.8 70.98

DDAQ (ours) U W6A6 2.63 10.8 71.62
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search. Fig. 3 shows the training losses of ResNet-20 on CIFAR-10,
where LG and LQ drop in an adversarial fashion, resulting in
increased accuracy.
4.2. Performance test for image classification

We start by discussing the effectiveness of DDAQ on image clas-
sification tasks, where DDAQ is applied to quantify various pre-
trained models on CIFAR-10 and ImageNet datasets. We compare
DDAQ with the SOTA data-free quantization methods including
ZeroQ [26], DSG [27], GDFQ [33], and ZAQ [32] in different config-
urations (i.e., fine-tuning and bit-precision), and the quantization
results are reported in Table 1. For the quantization with W4A4
for ResNet-20 on CIFAR-10, DDAQ improves by 2.95% and 1.38%
without and with fine-tuning, respectively. In particular, DDAQ
without fine-tuning even obtains 0.45% higher accuracy than GDFQ
with fine-tuning.

On the large-scale ImageNet dataset, DDAQ also shows signifi-
cant advantages for various models in different configurations.
For instance, in the case of W4A4 without fine-tuning, DDAQ quan-
tifies ResNet-18 with 58.44% accuracy, which is 1.69� higher than
DSG. When quantizing ResNet-50 with W6A6, DDAQ achieves
76.98% accuracy, which is only 0.75% lower than the full-
precision model at a 5.3� compression rate of model size. In addi-
tion, DDAQ remains robust to low-bit quantization of the light-
weight model MobileNetV2. The accuracy of DDAQ with W4A4 is
46.28% and 1.69% higher than ZeroQ and GDFQ without and with
fine-tuning, respectively, and DDAQ with W6A6 can obtain a quan-
tized model of size 2.63 MB with 71.62% accuracy.
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To demonstrate the robustness of DDAQ for quantization bit-
precisions, we compare the results of 2-, 4-, 6-, and 8- bit quanti-
zation for ResNet-20 on CIFAR-10 and ResNet-18 on ImageNet, as
illustrated in Fig. 4. We can clearly see that DDAQ always achieves
the highest performance at different bit-precisions without and
with fine-tuning. Particularly, the SOTA methods have non-trivial
accuracy degradation for low-precision (e.g.., 2-bit) quantization,
while DDAQ still maintains a satisfactory performance.
4.3. Performance test for object detection

In addition to image classification, object detection is also of
significant value in real-world applications. Here, DDAQ is
extended to the object detection task to sufficiently demonstrate
its generality. Specifically, we evaluate the effectiveness of DDAQ
on the SOTA single-stage model RetinaNet [65] with ResNet-50
as the backbone, and the quantization results on COCO dataset
are shown in Table 2. For the practical implementation, similar
to the classification task, we only calculate the discriminator losses
depending on the backbone ResNet-50 and perform knowledge
transfer for the backbone network. From the results, in the absence
of fine-tuning, DDAQ achieves superior performance over ZeroQ at
various quantization bit-precisions, e.g., about 1% mAP improve-
ment at both W4A4 and W4A6 settings. Benefiting from fine-
tuning, DDAQ can further improve accuracy, and in particular,
DDAQ withW4A6 can achieve comparable results to FQN [49] with
W4A4 that requires real data for fine-tuning.



Table 2
Quantization results of RetinaNet on COCO dataset. Our proposed DDAQ outperforms the SOTA data-free quantization method ZeroQ [26] at all bit-precisions, and the
quantization with W4A6 can achieve comparable results to FQN [49] with W4A4, which relies on real data for fine-tuning.

Model Method FT Prec. Size(MB) BitOps(T) mAP

RetinaNet Baseline FP32 145 128 73.03
FQN U W4A4 18.1 1.99 32.5
ZeroQ – W4A4 18.1 1.99 20.3

DDAQ (ours) – W4A4 18.1 1.99 21.6
DDAQ (ours) U W4A4 18.1 1.99 23.2

ZeroQ – W4A6 18.1 2.99 30.1
DDAQ (ours) – W4A6 18.1 2.99 31.0
DDAQ (ours) U W4A6 18.1 2.99 32.3

ZeroQ – W6A6 27.2 4.49 36.5
DDAQ (ours) – W6A6 27.2 4.49 36.7
DDAQ (ours) U W6A6 27.2 4.49 37.0

Fig. 4. Comparison of quantization results with different bit-precisions on CIFAR-10 and ImageNet datasets. (left): without fine-tuning; (right): with fine-tuning. Our
proposed DDAQ consistently outperforms the SOTA methods at any bit-precision, thus proving its promising robustness and generality.
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Table 5
Ablation study on effect of different weighting styles in loss functions of generator G for ResNet-18 with W4A4 on ImageNet.

Discriminator 1 Discriminator 2 FT Top-1 FT Top-1

L0
bn L0

adv – 57.30 U 62.29
L0

bn Ladv – 57.51 U 62.56
Lbn L0

adv – 58.12 U 62.72
Lbn Ladv – 58.44 U 62.91

Table 3
Ablation study on effect of different loss functions of generator G for ResNet-18 with W4A4 on ImageNet.

Lbn (Discriminator 1) Ladv (Discriminator 2) FT Top-1 FT Top-1

– – – 22.11 U 25.39
U – – 42.82 U 58.98
– U – 35.76 U 61.62
U U – 58.44 U 62.91

Table 4
Ablation study on layer importance prior for ResNet-18 with W4A4 on ImageNet.

X1 (Discriminator 1) X2 (Discriminator 2) FT Top-1 FT Top-1

– – – 55.65 U 61.82
U – – 56.72 U 62.22
– U – 57.05 U 62.37
U U – 58.44 U 62.91
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4.4. Ablation study

We perform three ablation studies to verify the effect of compo-
nents of the proposed DDAQ using ResNet-18 with W4A4 on Ima-
geNet dataset. First, the effect of two discriminators on the
training of the generator is investigated, as shown in Table 3. It can
be seen that in both no fine-tuning and fine-tuning cases, the losses
Lbn andLadv directed by two discriminators both contribute signif-
icantly to the final performance. In particular, without fine-tuning,
the absence of Lbn and Ladv produces 26.7% and 38.8% accuracy
degradation, respectively. From the results, the effects of the two
discriminators are superimposed, indicating that the two discrimi-
nators are focused on different aspects and are independent.

Second, we evaluate the effect of Hessian-based layer impor-
tance prior in both no fine-tuning and fine-tuning cases, and the
results are shown in Table 4. As we can see, the average Hessian
trace is effective in enhancing the losses of discriminators, espe-
cially the enhancement matrices X1 and X2 both contribute more
than 1% accuracy improvement without fine-tuning. In addition,
the enhancements to BN statistics and discrepancies between lay-
ers are also superimposable and non-interfering with each other.

Finally, the effect of different weighting styles in loss functions
of the generator is evaluated, as shown in Table 5. Specifically, we
replace the loss functions with L0

bn and L0
adv , where L0

bn is
weighted using X2 and L0

adv is weighted using X1 as follows:

Lbn0 ¼ L1X2; Ladv 0 ¼ 1
N
� 1TðL2X1Þ ð18Þ

As we can see, Lbn weighted with X1 can ensure the sample
diversity in the batch while promoting BN distribution matching,
which is important for the case without fine-tuning. For instance,
replacing to weighting with X2 leads to about 1% performance
degradation. In addition, replacing to L0

adv also produces accuracy
loss, thus it is more effective to consider the information interac-
tions between models of the overall sample batch.

5. Conclusions

We have proposed DDAQ, a data-free quantization method that
potentially enables high-accuracy model compression without any
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original training data. DDAQ is performed in an adversarial learn-
ing paradigm that alternately trains the generator and quantized
model, with two main innovations: first, the training of the gener-
ator depends on dual discriminators that facilitate sample distribu-
tion matching and model interaction, respectively; second, we
introduce Hessian-based layer importance prior to the framework
and thus allowing for more diverse sample generation and more
effective knowledge transfer. Extensive experiments have been
conducted on various model structures for image classification
and object detection tasks, and DDAQ consistently outperforms
the SOTA methods, especially with 23.91% and 1.57% improve-
ments for low-precision W4A4 quantization of ResNet-18 on Ima-
geNet without and with fine-tuning, respectively, fully
demonstrating its effectiveness and generality.

In the future, we plan to explore the BN-free scheme for data-
free quantization, which can be applied to vision transformers.
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Appendix A. Appendix

The Lemma proved by HAWQ-V2 [34] is shown below, indicat-
ing that the average Hessian trace can represent the importance of
each layer. Please refer to the original HAWQ-V2 paper [34] for the
detailed proof of the Lemma.

First, we assume that the model is twice differentiable and has
converged to a local minima W�. Given this assumption, the
Lemma is established as follows.

Lemma: When we quantize two layers (denoted by B1 and B2)

with same amount of perturbation, namely jjDW�
1jj22 = jjDW�

2jj22,
we will have:

LðW�
1 þ DW�

1;W
�
2; � � � ;W�

LÞ 6 LðW�
1;W

�
2

þ DW�
2;W

�
3; � � � ;W�

LÞ ð19Þ

if

1
m1

TrðHiÞ 6 1
m2

TrðHiÞ: ð20Þ

where Lð�Þ is the loss of the model, Trð�Þ is the function of calculat-
ing the trace, and Hi 2 Rmi�mi is the Hessian matrix of layer i. The
layer’s average Hessian trace can represent the impact of this layer
on the overall performance of the model after being perturbed, thus
it can be used as a measure of importance.
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