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   Abstract—Process  discovery,  as  one  of  the  most  challenging
process  analysis  techniques,  aims  to  uncover  business  process
models from event logs. Many process discovery approaches were
invented  in  the  past  twenty  years;  however,  most  of  them  have
difficulties  in  handling  multi-instance  sub-processes.  To  address
this  challenge,  we  first  introduce  a  multi-instance  business  pro-
cess  model  (MBPM)  to  support  the  modeling  of  processes  with
multiple sub-process instantiations. Formal semantics of MBPMs
are  precisely  defined  by  using  multi-instance  Petri  nets  (MPNs)
that  are  an  extension  of  Petri  nets  with  distinguishable  tokens.
Then,  a  novel  process  discovery  technique  is  developed  to  sup-
port  the  discovery  of  MBPMs  from  event  logs  with  sub-process
multi-instantiation  information.  In  addition,  we  propose  to  mea-
sure the quality of the discovered MBPMs against the input event
logs by transforming an MBPM to a classical Petri net such that
existing  quality  metrics,  e.g.,  fitness  and  precision,  can  be  used.
The  proposed  discovery  approach  is  properly  implemented  as
plugins in the ProM toolkit.  Based on a cloud resource manage-
ment case study, we compare our approach with the state-of-the-
art  process  discovery  techniques.  The  results  demonstrate  that
our  approach  outperforms  existing  approaches  to  discover  pro-
cess models with multi-instance sub-processes.
    Index Terms— Cloud resource management process, multi-instance
Petri  nets  (MPNs),  multi-instance  sub-processes,  process  discovery,
quality evaluation.
  

I.  Introduction

P ROCESS  mining  aims  at  extracting  process-related
insights from business process event logs [1], [2]. Process

discovery,  as  one  of  the  most  difficult  process  mining  tasks,
has  received  a  lot  of  attention  in  the  past  years.  Various  dis-
covery  techniques  that  take  as  input  event  logs  and  produce
process  models  have  been  proposed,  e.g.,  alpha  miner  [3],
heuristic  miner  [4],  and  inductive  miner  [5].  However,  exist-
ing process discovery techniques cannot be directly used when

an  event  log  contains  information  of  multi-instance  sub-pro-
cesses.  To  understand  multi-instance  sub-processes,  we  first
explain the notion of sub-processes. Consider a business pro-
cess  out-sourcing  scenario  where  one  organization  sub-con-
tracts  part  of  its  businesses  to  another  organization  [6].  The
sub-contracted process is regarded as a sub-process of the par-
ent (original) process. Multi-instance sub-processes mean that
multiple  concurrent  instances  of  a  sub-process  are  executed
within the same parent process instantiation [7]. Consider for
example  an  online  shopping  scenario,  multiple  delivery  sub-
processes can be instantiated in parallel when a consumer con-
firms  an  order  of  multiple  products  with  different  delivery
addresses. In this case, the delivery process is a multi-instance
sub-process of the order process.

The notion of multi-instance sub-process imposes new chal-
lenges for existing techniques to discover high-quality models.
To address this challenge, we present a novel technique to dis-
cover multi-instance business process models from event logs
with  sub-process  multi-instantiation  information.  The  main
contributions of this paper are summarized as follows:

1)  We  introduce  multi-instance  business  process  models
(MBPMs) to support the modeling of processes with multiple
sub-process instantiations;

2)  We  present  an  extension  of  classical  Petri  nets,  called
multi-instance  Petri  nets  (MPNs),  to  formalize  the  semantics
of MBPMs; and

3)  We present  a  novel  process  discovery  technique  to  sup-
port  the  discovery  of  MBPMs from event  logs  with  sub-pro-
cess multi-instantiation information.

The  rest  of  this  paper  is  organized  as  follows.  Section  II
reviews  some related  work.  Section  III  introduces  a  motivat-
ing  example,  based  on  which  we  showcase  the  main  chal-
lenges. Section IV reviews some preliminaries. Then, Section
V formalizes  the  multi-instance  Petri  nets.  Section  VI  shows
how  to  discover  MBPMs  from  event  logs.  Section  VII
presents tool support. Section VIII performs the experimental
evaluation. Finally, Section IX concludes the paper.  

II.  Related Work

Process  discovery  can  be  used  to  reconstruct  business  pro-
cess  models  from event  logs  [1].  As  an  often  cited  example,
the alpha miner defines four kinds of ordering relations among
activities,  including  directly-follow  relation,  choice  relation,
concurrency relation, and causality relation, based on which a
Petri  net  is  constructed  to  describe  the  behavior  recorded  in
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the  event  log  [3].  Several  improvements  on  the  alpha  miner
are  made  to  deal  with  short  loops  [8],  non-free-choice  con-
structs [9], etc. To handle noise and infrequent behavior, Wei-
jters et al. [4] introduce the heuristic miner by considering the
frequency  of  each  dependency  relation,  which  is  robust  to
noise.  More recently,  inductive miner [5],  as the state-of-the-
art  process  discovery  algorithm,  is  proposed  to  handle  both
noisy and incomplete event logs.

Different  from majority  discovery  algorithms  that  generate
flat  process  models,  Conforti et  al. [10]  propose  to  mine
BPMN  models  with  multi-instance  markers  and  sub-process
information. However, this approach relies heavily on the pri-
mary  and  foreign  key  attributes  to  obtain  inter-relations
between parent processes and sub-processes as well as multi-
instance  markers.  Another  related  area  is  the  artifact-centric
process discovery that focuses on the discovery of artifact life-
cycle models and their interactions [11]. An artifact describes
the lifecycle of a business object (e.g., a purchase order). van
Eck et al. [12] propose to discover both artifact lifecycle mod-
els and interactions among them. However, an artifact lifecy-
cle model is usually represented as a flat model which cannot
handle  the  hierarchical  behavior  properly.  To  formalize
semantics  of  BPMN,  a  recursive  ECATNet  is  introduced  in
[13].  Based  on  the  recursive  ECATNet,  typical  BPMN  fea-
tures,  e.g.,  cancellation,  multiple  instantiation  of  sub-pro-
cesses, and exception handling, are supported. More recently,
we propose to discover hierarchical Petri nets from event logs
by  identifying  sub-processes  in  [14]  and  [15].  However,  the
multi-instance feature of sub-processes is not supported.

Another related research domain is software process mining.
The  main  focus  is  to  distil  behavioral  models  from  software
execution  traces.  A  software  behavioral  model  is  typically
expressed as process models with hierarchical (or nested) sub-
processes [16], [17]. The discovery of sub-processes depends
on the calling relations among method calls that are software
specific  and  not  available  in  a  more  general  case.  More
recently,  Leemans et  al. [18]  propose  an  integrated  tool  that
aims  to  discover  hierarchical  process  models  from  software
execution  logs.  However,  these  approaches  [16]−[18]  do  not
support the discovery of multi-instance sub-processes.  

III.  Motivating Example

Cloud  computing  is  a  new  paradigm  that  provides  on-
demand  computing  resources,  e.g.,  servers  and  platforms,  to
users  [19].  Netflix  Asgard1 is  an  open-source  cloud  resource
management  tool  on  Amazon  Web  Services.  Consider  for
example  its  rolling  upgrade  process.  This  upgrade  process
replaces  a  group of  virtual  machines  at  one time on Amazon
Web Services. Assume that an application is running on 3 vir-
tual machines, and these virtual machines are with version v1.
Now  we  need  to  upgrade  and  replace  all  these  virtual
machines with version v2. This is done by taking the 3 virtual
machines  running  version  v1  out  of  service  and  replacing
them with 3 virtual machines running version v2.

The whole upgrading process is described as Fig. 1. It starts
with  four  activities  (SRU  (start  rolling  upgrade  task),  ULC

(update  launch  configuration),  SOI  (sort  instances)  and  GSI
(get  status  information))  to  prepare  the  upgrading  process.
Then,  activity  UPI  (upgrading  instances)  is  instantiated  to
invoke  three  sub-process  instances  that  each  upgrades  a  vir-
tual  machine  with  four  activities  (DI  (deregister  an  old
instance),  TI  (terminate  an  old  instance),  SI  (start  a  new
instance),  and  RI  (register  a  new  instance)).  These  three
upgrading  sub-processes  are  executed  in  parallel.  After  all
sub-process  instances  have  been  finished,  the  process  com-
pletes with CRU (rolling upgrade task completed).
 

TI SIDI RI

Upgrading virtual
machine 1

Upgrading virtual
machine 2

Upgrading virtual
machine 3

Upgrading process

SRU ULC SOI GSI UPI CRU

TI SIDI RI

TI SIDI RI

 
Fig. 1.     Upgrading process.
 

During  execution  of  the  upgrading  process,  event  logs  are
recorded. Note that the multi-instance sub-processes typically
generate events that are interleaved with the events generated
from the parent process in the resulting sequential event logs.
Table I shows an event log that is collected during one execu-
tion  of  the  upgrading  process.  Each  row refers  to  a  recorded
event  and  an  activity  execution  is  recorded  as  two  indepen-
dent events representing its start and completion.

By  examining  these  event  logs,  we  aim  to  1)  understand
how the upgrading process is actually executed; and 2) check
if the actual execution follows the pre-defined process. To this
end,  we  need  1)  a  suitable  formalization  model  to  precisely
describe the behavior of underlying processes, especial for the
multi-instance sub-process behavior; and 2) an effective tech-
nique to discover such models from interleaved event logs.  

IV.  Preliminaries

N = {0,1,2, . . .}
S m : S → N s ∈ S , m(s)

s m = [p3,q2]
S = {p,q} m(p) = 3 m(q) = 2

S NS S
P(S ) = {S ′|S ′ ⊆ S } S

S ∗ f : X→ Y dom( f ) = X
rng( f ) = { f (x)|x ∈ dom( f )} ⊆ Y

Let  be  the  natural  number  set.  A  multi-set
over  is  defined  as  where  for  any   is
the  multiplicity  of ,  e.g.,  is  a  multi-set  over

 where  and .  The  set  of  all  multi-
sets over  is denoted by . The powerset of  is denoted by

.  The set  of  all  finite  sequences over set 
is  denoted by .  is  a function, i.e.,  is
the domain and  is the range.

X Q ⊆ X
↾Q ∈X∗→Q∗

⟨ ⟩ ↾Q = ⟨ ⟩ σ∈X∗ x∈X

Definition  1: Let  be  a  set  and  be  its  subset.
 is  a  projection  function  and  is  defined  recur-

sively: ; and for  and :
 

(⟨x⟩ ◦σ) ↾Q =

{
σ↾Q, if x < Q
⟨x⟩ ◦ (σ↾Q), if x ∈ Q.

(1)
  

A.  Petri Nets and Workflow Nets
Petri  nets  are  widely  used  to  model  and  analyze  business

  
1 https://github.com/Netflix/asgard
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processes [20]–[25] emergency response processes [26], [27],
manufacturing  processes  [28],  etc.  Basic  concepts  and  nota-
tions on Petri nets are reviewed following [29].

PN = (P,T,F, l)Definition 2: A Petri  net is a 4-tuple ,  satis-
fying:

P T
P∩T = ∅

1)  is  a  finite  set  of  places and  is  a  finite  set  of  transi-
tions where ;

F ⊆ (P×T )∪ (T ×P)2)  is a set of directed arcs, called flow
relation; and

l : T →A A
τ ∈ A

3)  is a labeling function where  is a set of labels
and  denotes the invisible label.

PN = (P,T,F, l)
x ∈ P∪T •x = {y|(y, x) ∈ F}

x• = {y|(x,y) ∈ F}

m ∈ NP

(PN,m0) m0

[source] t ∈ T
m (PN,m)[t⟩ ∀p ∈• t : m(p) ≥ 1

m = [p3, p4] d
(PN,m)[d⟩ t

Given a , we define the preset and postset of
transitions and places. For each ,  is
the preset  and  is  the postset.  We use mark-
ings  to  describe  the  semantics  of  a  Petri  net.  A  marking

 is  a  multiset  of  places,  which  indicates  how  many
tokens each place contains.  is a marked net where 
is its initial marking. Fig. 2 shows a marked Petri net example.

 is its initial marking. A transition  is enabled in
marking ,  denoted  as  if .  Con-
sider  the  example  Petri  net  with ,  transition  is
enabled, i.e., . An enabled transition  may fire and

 

TABLE I 

A Fragment of Event Log

Case Event Activity Timestamp Transaction Virtual machine

1 e1 SRU 04-05-2014 09:30 start –

1 e2 SRU 04-05-2014 09:32 complete –

1 e3 ULC 04-05-2014 09:34 start –

1 e4 ULC 04-05-2014 09:38 complete –

1 e5 SOI 04-05-2014 09:41 start –

1 e6 SOI 04-05-2014 09:45 complete –

1 e7 GSI 04-05-2014 09:46 start –

1 e8 GSI 04-05-2014 09:49 complete –

1 e9 UPI 04-05-2014 09:50 start –

1 e10 DI 04-05-2014 09:56 start VM1

1 e11 DI 04-05-2014 09:57 start VM2

1 e12 DI 04-05-2014 09:58 start VM3

1 e13 DI 04-05-2014 10:08 complete VM1

1 e14 DI 04-05-2014 10:10 complete VM2

1 e15 TI 04-05-2014 10:11 start VM1

1 e16 DI 04-05-2014 10:15 complete VM3

1 e17 TI 04-05-2014 10:12 start VM2

1 e18 TI 04-05-2014 10:28 complete VM1

1 e19 TI 04-05-2014 10:30 complete VM2

1 e20 SI 04-05-2014 10:31 start VM1

1 e21 SI 04-05-2014 10:33 start VM2

1 e22 TI 04-05-2014 10:36 start VM3

1 e23 TI 04-05-2014 10:56 complete VM3

1 e24 SI 04-05-2014 11:12 complete VM1

1 e25 RI 04-05-2014 11:16 start VM1

1 e26 SI 04-05-2014 11:22 complete VM2

1 e27 RI 04-05-2014 11:26 complete VM1

1 e28 RI 04-05-2014 11:28 start VM2

1 e29 SI 04-05-2014 11:30 start VM3

1 e30 RI 04-05-2014 11:40 complete VM2

1 e31 SI 04-05-2014 11:48 complete VM3

1 e32 RI 04-05-2014 11:53 start VM3

1 e33 RI 04-05-2014 12:12 complete VM3

1 e34 UPI 04-05-2014 12:20 complete –

1 e35 CRU 04-05-2014 12:25 start –

1 e36 CRU 04-05-2014 12:30 complete –
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m′ m′ = (m \• t)∪ t•

(PN,m)[t⟩(PN,m′)

d m = [p3, p4] (PN, [p3,
p4])[d > (PN, [p5])

result in a new marking  with , denoted by
, i.e., one token is removed from each of its

preset and one token is added for each of its postset. By firing
transition  under  marking ,  we  have 

 for the example Petri net.
 

b

c
a d e

Source Sink
p1

p2

p3

p4
p5

τ

 
Fig. 2.     A labeled Petri net example.
 

In this paper, we consider a special type of Petri net which
is known as workflow net (WF-net) [30]. A WF-net is a Petri
net with a dedicated source place where the process starts and
a dedicated sink place  where  the  process  ends,  and all  nodes
are on a path from source to sink.

PN = (P,T,F, l) t̄
T PN

Definition 3: Let  be a labeled Petri net and 
be a transition not in .  is a WF-net if:

P i •i = ∅1)  contains one source place  such that ;
P o o• = ∅2)  contains one sink place  such that ;
l(t̄) = τ3) ; and
PN = (P,T ∪{t̄},F ∪{(o, t̄), (t̄, i)})

PN
4)  is  strongly  connected,

i.e., there is a directed arc between any pair of nodes in .
PN

o i PN

i = source o = sink

 is referred to as the short-circuited net. The unique sink
place  is  connected  to  the  unique  source  place  in .  A
WF-net  is  sound  if  and  only  if  its  corresponding  short-cir-
cuited net is 1-bounded and live [30]. Fig. 2 shows an exam-
ple of sound WF-net with  and .  

B.  Event Logs
An event log is composed of a finite set of events with vari-

ous  attributes,  e.g.,  activity,  timestamp,  and  transaction  (or
lifecycle) information. In the following, standard attributes of
events are defined.

ξ

e ∈ ξ #n(e) n e

Definition 4: Let  be the event universe, i.e., the set of all
possible event identifiers. Events may have various attributes.
For any ,  is the value of attribute  for event .

e ∈ ξ

An activity may take time and have transactional states, e.g.,
schedule, start, suspend and complete. Note that we only con-
sider the start and complete states, i.e., events are recorded at
the moment an activity is started and completed. For an arbi-
trary event , the following attributes are involved:

#case(e) e1)  is the belonging case of ;
#act(e) e2)  is the activity name of ;
#trans(e) e3)  is the transaction type of ;
#time(e) e4)  is the timestamp of ; and
#vm(e) e5)  is the virtual machine information of .

ξ
σ ∈ ξ∗

1≤ i< j≤|σ|
σ(i),σ( j)∧#case(σ(i)) = #case(σ( j))

L ⊆ ξ∗

Definition 5: A case over some event universe  is  a  finite
sequence  of  events  such  that  each  event  appears  only
once  and  all  events  have  the  same  case  id,  i.e., :

.  An  event  log  is  defined
as a finite set of cases, i.e., .

e10 #case(e10) = 1

Consider  for  example  the  event  log  in Table I.  It  contains
one  case  that  records  all  events  generated  during  one  run  of
the upgrading process. In total 36 events are included and they
are fully ordered based on timestamps. For example, we have
the  following  observation  for :  1)  means  the

e10 #act(e10) = DI
e10 DI #trans(e10) = start
#time(e10) = 04-05-2014 09 : 56
04-05-2014 09 : 56 #vm(e10) = V M1

case id of  is  1;  2)  means the activity name
of  is ;  3)  means  it  is  the  start  event;
4)  means the start event occurs
at ;  and  5)  indicates  the
upgrading process is working on virtual machine 1.  

V.  Formal Modeling of Multi-Instance Processes

In this section, we first introduce an informal description of
multi-instance  business  process  models.  Then,  we  introduce
the  multi-instance  Petri  net,  based  on  which  the  execution
semantics  of  multi-instance  business  process  models  are
defined.  

A.  Multi-Instance Business Processes
A  multi-instance  process  is  composed  of  a  set  of  sub-pro-

cesses such that they form a tree-like invocation relations. To
specify  the  invocation  relations,  we  introduce  the  Petri  net
with  nested  transitions  where  nested  transitions  may  trigger
multi-instance sub-processes.

PNN = (PN,N)
Definition 6: A Petri net with nested transitions is a 2-tuple

 where
PN = (P,T,F, l)1)  is a labeled Petri net; and
N : T → {A,N} ∀t ∈ T

N(t) = A t N(t) = N
t

2)  is  a  mapping  function  such  that ,
 represents  is an atomic transition and  rep-

resents  is a nested transition.
PNN Ta= {t∈T |N(t)=A}

Tn= {t∈T |N(t)=N}
Ta0 Tn0 PNN0

Given a ,  we denote by  the atomic
transition set and  the nested transition set.
Specially, we use the notation  and  for . The for-
mer is used to represent atomic activities while the latter rep-
resents  nested  activities  that  may  trigger  multi-instance  sub-
processes. Fig. 3 shows  an  example  of  the  Petri  net  with
nested  transitions  where  single-line  rectangles  represent
atomic transitions (e.g., SRU) and double-line rectangle repre-
sent nested transitions (e.g., UPI).
 

SRU ULC SIO GSI UPI CRU

 
Fig. 3.     An example of Petri net with nested transitions.
 

The definition of multi-instance process models is given.

MBPM = (Q,PNN0,T N ,map)
Definition  7: A  multi-instance  business  process  model  is

defined as  such that
Q PNN1)  is a set of ;
PNN02)  is the top-level process;
T N =

∪
PNN∈Q Tn3)  is the set of nested transitions; and

map : T N → Q \ {PNN0}4)  is  a  function  that  maps  each
nested transition onto a sub-process that is instantiated multi-
ple times.

PNN

PNN1 PNN1

An example of multi-instance business process is shown in
Fig. 4. The top-level  contains five normal transitions and
one  nested  transition  that  refers  to  a  Petri  net.  More  specifi-
cally,  nested  transition  UPI  refers  to .  Because 
does  not  contain  any  nested  transitions,  the  recursive  defini-
tion stops at this level.  

B.  Multi-Instance Petri Nets
In the following, we introduce the semantic interpretation of
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the  multi-instance  process  model  using  multi-instance  Petri
net  that  is  a  type  of  extended  Petri  nets  with  distinguishable
tokens as defined in the following sub-section.

ν

Tokens of classical Petri nets (or workflow nets) are undis-
tinguishable,  therefore  they  cannot  represent  a  process  with
multiple different instances explicitly. Based on the Petri net,
we define our multi-instance Petri net (MPN) with the follow-
ing  extensions:  1)  tokens  are  distinguishable  for  MPN,  i.e.,
each token has a unique identifier;  and 2) tokens can be pro-
duced  (like -net  [31])  and  consumed  during  the  net  execu-
tion and each newly produced token explicitly refers to its par-
ent token. The definition of MPN is given as follows.

MPN = (P,T,F, l,W,Γ)
Definition  8: A  multi-instance  Petri  net  is  defined  as  a  6-

tuple , satisfying:
(P,T,F, l)1)  is a Petri net;
W : F→{1,+}2)  is a cardinality function for arcs;
Γ : T→{ν,ω,ϵ}3)  is a type function for transitions;
∀t ∈ T Γ(t) = ν ∀p ∈•t : W((p, t)) = 1 ∀p1,

p2 ∈ t• :W((t, p1)) =W((t, p2))
4) ,  if  then  and 

 ; and
∀t ∈ T Γ(t) ∈ {ω,ϵ} ∀p1 ∈•t : W((p1, t)) = 1

∀p2 ∈ t• :W((t, p2)) = 1
5) ,  if  then  and

.
ν ω

ϵ ν

ω

ϵ

Three  types  of  transitions,  including -transition, -transi-
tion, and -transition, are involved in Definition 8. The -tran-
sition  is  used  to  produce  new  tokens  that  refer  back  to  an
existing parent token and the -transition is used to consume
a set of existing tokens and generates their parent token. Dif-
ferently,  the -transition  is  the  same  to  traditional  Petri  net
transitions as defined in Definition 2.

MPN T ϵ T ν Tω
T ϵ = {t ∈T |Γ(t)=ϵ} T ν= {t∈T |
Γ(t)=ν} ν Tω= {t∈T |Γ(t)=ω} ω

T ϵ∪T ν∪Tω =T T ϵ∩T ν= ∅ T ν∩Tω=
∅ T ϵ∩Tω= ∅

Before  describing  the  formal  execution  semantics  of  an
MPN, we first introduce some useful notations. Whenever we
define , we assume , ,  to be defined as follows:

 is  the  normal  transition  set, 
 is -transition set, and  is -transi-

tion  set  such  that , , 
 and .

P = {source, p1, p2, p3,
sink} T = {a,b,c} F= {(source,a), (a, p1), (a, p2), (p1,b), (p2,c),
(c, p3), (p3,b), (b, sink)} W= {W((source,a))=1,W((a, p1))=+,
W((a, p2))=+, W((p1,b)0 = 1,W((p2,c)) = 1,W((c, p3)) =1,
W((p3,b)) =1,W((b, sink))=1} Γ = {Γ(a) = ν,Γ(b) = ω,
Γ(c) = ϵ} ν

ω

ϵ

Fig. 5 shows an example of MPN and it  can be formalized
as  follows  according  to  Definition  8: 

, ,  
,  

  
 ,  and 

.  Graphically, a -transition is represented by a rect-
angle  colored  with  green,  an -transition  is  represented  by  a
rectangle  colored  with  red  and  an -transition  is  represented
by a rectangle colored with white.

After  defining  the  syntax  structure  and  basic  notation  of
MPN, we define its execution semantics.

I κ : I→P(I)

i1, i2 ∈ I : κ(i1)∩ κ(i2) = ∅

Let  be the universe of token identifiers.  is a
function  from  parent  identifiers  to  children  identifiers,  such
that .  The token identifiers and their

Tree = (I,E)
I E = {(i1, i2) ∈ I×I|i2 ∈

κ(i1)} ⊥ ∈ I

∄i1 ∈ I : ⊥ ∈ κ(i1)

parent-children  relationships  form  a  tree  structure,  named
token identifier tree. Note that a tree structure is essentially a
directed acyclic graph. Formally,  it  is  a 2-tuple 
where 1)  is the set of nodes; and 2) 

 is  the  set  of  edges.  Specially,  is  the  root  token
identifier  of  a  tree  and  it  does  not  have  parent,  i.e.,

.
i1, i2, . . . , in

in+1 ∈ κ(in) n ∈ N i1 in
i1→ in i1 ∈ I, i1 , ⊥ : ⊥→ i1

i1

A  path  in  the  tree  is  a  sequence  of  nodes  such
that  where . The path from  to  is denoted
as .  Specially, for any , i.e.,  there
is always a path from the root to .

I = {⊥,m,n} κ(⊥) = {m,n}
κ(m) = κ(n) = ∅

Fig. 6 shows  an  example  of  the  token  identifier  tree  and  it
can  be  formalized  as  follows: ,  and

.
 

⊥κ(⊥) = {m, n}

m n
κ(m) = κ(n) = 

 
Fig. 6.     A tree example.
 

m : P→P(I)

M

Definition 9: A marking of MPN is a function 
from  places  to  token  identifiers.  The  set  of  all  markings  is
denoted as .

m0
m0(source)={⊥}

m0= {source{⊥}}

For the example of MPN in Fig. 5, its initial marking is 
such that . In the following, we simply denote

.
t∈T

m ∈ M i ∈ I
Definition  10: A  transition  is  enabled  at  marking

 for  if and only if:
∀p∈• t: i∈ m(p)∧∀q ∈ t•, i < m(q) t∈T \Tω1)  if ; and
∀p∈•t : κ(i)⊆m(p)∧∀q∈ t•, κ(i)∩m(q)=∅ t∈Tω2)  if .

m0 t
m m′ ∈ M

Note that the enabledness of transitions in MPN is the same
to that of an elementary net [32], i.e., each place contains each
identifier at most once. According to Definition 10, transition
a in Fig. 5 is  enabled at .  An enabled transition  can fire,
thereby changing the marking  to a new marking . If
an enabled transition fires, it consumes tokens from each of its
input places and produces tokens to each of its output places.
The transition firing rules are explained in the following defi-
nition.

t∈T
m ∈ M i ∈ I t

m′ ∈ M

Definition 11: Given a transition , it is enabled at mark-
ing  for .  The  firing  of  yields  a  new  marking

, satisfying:
p ∈•t1) for any place ,

t ∈ T \Tω m′(p) = m(p) \ {i}a) if , ; and
t ∈ Tω m′(p) = m(p) \ κ(i)b) if , .

p ∈ t•2) for any place ,
t ∈ T \T ν m′(p) = m(p)∪{i}a) if , ; and
t ∈ T ν m′(p) = m(p)∪ κ(i)b) if , .

Given  an  MPN  and  its  initial  marking,  we  want  to  know

 

PNN1
+

SRU ULC SIO GSI UPI CRU

DI TI SI RI

 
Fig. 4.     A multi-instance business process model example.
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Fig. 5.     An MPN example.
 

LIU: FORMAL MODELING AND DISCOVERY OF MBP: A CLOUD RESOURCE MANAGEMENT CASE STUDY 2155 



m0 = {source{⊥}} m0

⊥
m n p1 p2

m1 = {p1{m,n},
p2{m,n}}

p2 p3
m4= {p1{m,n}, p3{m,n}}

p1 p3
⊥

m5 = {sink{⊥}}

more  about  its  behavior  with  respect  to  the  firing  rules  as
defined in Definition 11. Consider the MPN example in Fig. 5,
the token identifier relationships in Fig. 6, and its initial mark-
ing . Transition a is enabled at  and the fir-
ing of a will  consume token  from source and produce two
tokens  and  to  both  and .  As  shown  in Fig. 7,  the
marking  after  firing  transition a is  denoted  as 

. Then, transition c is enabled and can be fired until all
tokens  in  are  moved  one  by  one  to  reaching  marking

.  After  this,  transition b is  enabled.  The
firing of b will consume all tokens in  and , and produce
their  parent  token  to  sink.  As  depicted  in Fig. 7,

 is reached finally.

 
m0={source{⊥}}

m1={p1{m,n}, p2{m,n}}

m3={p1{m,n}, p2{n}, p3{m}}m2={p1{m,n}, p2{m}, p3{n}}

a

c

c

c

c

b

m4={p1{m,n}, p3{m,n}}

m5={sink{⊥}}
 
Fig. 7.     One example reachability graph.
 

t
S P

ps pc

We  define  the  semantic  interpretation  of  MBPM  based  on
the MPN constructs. Given an example of MBPM with  being
the nested transition, and  being the invoked multi-instance
sub-process  where  is  the  source  place  and  is  the  sink
place. The transformation is shown in Fig. 8.

 
t ts tc

+

+ +

source source sinksink

pc pcps ps

pe

PNe

{source{⊥}}

 
Fig. 8.     MPN-based semantics.
 

t
ts tc pe

(ts, pe) (pe, tc)
(ts, ps) (pc, tc) ts tc

Γ(ts) = ν
W((ts, pe)) = + W((ts, ps)) = + Γ(tc) = ω

Detailed transformation is  defined as  follows:  1)  is  trans-
formed to two transitions, denoted as  and , and a place 
is  used  to  connect  them with  arcs  and ;  2)  arcs

 and  are added to connect  and  as well as the
invoked sub-process  model;  and 3)  the  following weight  and
type  functions  are  given  for  transitions  and  arcs: ,

, , and .  

VI.  Discovering MBPM From Event Logs

This section introduces the discovery of MBPM from event
logs with sub-process multi-instantiation information.  

A.  An Approach Overview
The whole MBPM discovery approach involves the follow-

ing three steps:
Phase  1  (Nesting  Relation  Detection): By  taking  an  event

log as input, we first perform nesting relation detection among
activities.  The  output  is  a  nested  activity  relation  tree  where
nesting relations among activities are represented as arcs.

Phase 2 (Hierarchical  Event  Log Construction): By taking
an event log and the nested activity relation tree as input, we
construct  a  hierarchical  event  log  by  using  the  nesting  rela-
tions among activities. Note that we need to refactor each sub-
log in such a way that no interleaved instances are included in
the same trace.

Phase  3  (Multi-instance  Business  Process  Model  Discov-
ery): After obtaining a hierarchical event log, we can visit dif-
ferent  levels  of  logs  and  discover  a  process  model  for  each
sub-log.  Note  that  any  existing  discovery  approaches  can  be
reused.  

B.  Nesting Relation Detection
Existing  discovery  algorithms  cannot  handle  sub-processes

or nesting relation among activities. To detect nesting relation,
the next three basic ordering relations are introduced.

a,b ∈ UA σ ∈ LDefinition 12: For any  and , we have
a b σ a > b

i ∈ {1, . . . , |σ| −1} #act(σ(i))=a∧#trans(σ(i))=complete∧
#act(σ(i+1)) = b∧#trans(σ(i+1)) = start

1)  is directly followed by  in , denoted as , if there
exists : 

;
a b σ a ≳ b i,

j,k, l ∈ {1, . . . , |σ|} i < j < k < l #act(σ(i)) = a∧#trans(σ(i)) =
∧#act(σ( j))=b∧#trans(σ( j))= start∧#act(σ(k))=a∧#trans

(σ(k)) = complete∧#act(σ(l)) = b∧#trans(σ(l)) = complete

2)  overlaps with  in , denoted as  if there exists 
 and : 

start 
;

and
a b σ a ▷ b i, j,

k, l ∈ {1, . . . , |σ|} i < j < k < l #act(σ(i)) = a∧#trans(σ(i)) =
∧#act(σ( j)) = b∧#trans(σ( j)) = start∧#act(σ(k)) = b∧

#trans(σ(k))=complete∧#act(σ(l)) = a∧#trans(σ(l)) = complete

3)  contains  in ,  denoted  as  if  there  exists 
 and : 

start 
.

Definition  12  introduces  the  directly-follow,  overlapping
and  containment.  Then,  nesting  relations  are  defined  as  fol-
lows.

a,b ∈ UA a b
a ⋐ b a ▷ b ∧ b ⋫ a ∧ a � b

∧ b � a ∧ a ≯ b ∧ b ≯ a

Definition 13: For any ,  and  are in nesting rela-
tion, denoted as , if and only if ( )  ( )  ( )

 ( )  ( )  ( ).
Similarity  to  casuality  relation,  concurrency  relation,  and

choice relation, nesting relation is defined as a kind of derived
relation among activities. The main difference is that the nest-
ing  relation  is  specifically  for  hierarchical  process  models
while  other  derived  relations  are  dedicated  for  flat  process
models.  After  formally  introducing  the  nesting  relation,  pro-
cess models with sub-processes can be discovered.

L A⊆UA
NA(L) = {a∈A|∃b∈A: a⋐b}

L

Definition 14: Let  be a lifecycle event log and  be
its  activity  set.   is  the  nesting
activity set of .

{UPI}
Consider the example log in Table I, its nesting activity set

is .  After defining the nesting relations,  we introduce a
tree-like  structure  to  represent  the  nesting  relations  among
activities detected from a lifecycle event log.

ADefinition  15: The  nesting  relations  among  activities  in 
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(A,rootAct,η)form a tree structure, denoted as , such that:
rootAct ⊆ A1)  is a set of root activities such that
∀r1,r2 ∈rootAct: r1>r2∧r2>r1a) ,  i.e.,  root  activities  have

no nesting relation with each other; and
∀r ∈ rootAct ∄a ∈ A \ rootAct : a ⋐ rb) , .
η : A↛ P(A) \ rootAct2)  is  a  partial  function  that  maps

each activity onto its nesting activities.
a ∈ A b ∈ η(a) a ⋐ ba) for any , : ;
b,c ∈ η(a) b > c∧ c > bb) for any : ; and
a,b ∈ A η(a)∩η(b) = ∅c) for any : , i.e., the nesting relations

form a tree.
The  activity  nesting  relation  tree  of  the  log  in Table I is

shown  in Fig. 9,  based  on  which  we  can  see  that:  1)  SRU,
ULC, SOI, GSI, UPI, and CRU are root activities; and 2) DI,
TI, SI and RI are in nesting relation with UPI.
 

CRU

SRUULC

SOI

GSI

UPI

RISI TIDI

 
Fig. 9.     An activity nesting relation tree example.
   

C.  Hierarchical Log Construction and MBPM Discovery
After obtaining the activity nesting relation tree, a hierarchi-

cal event log can be constructed. Formal definition of hierar-
chical event log is given in the following.

L (A,rootAct,η)
L (rootLog,γ)

L

Definition  16: Let  be  an  event  log  and  be
the activity nesting relation tree of .  is the hier-
archical event log of  where:

rootLog =
∪
σ∈Lσ↾rootAct L1)  is the root event log of ; and

γ : NA(L)→UL
∀na ∈ NA(L)} γ(na) =

∪
σ∈Lσ↾η(na)

2)  is  a function that  maps a nesting activ-
ity to its sub-log. , .

According to Definition 16, given an event log we can con-
struct  its  hierarchical  log  by  recursively  referring  to  its  nest-
ing relation using the projection in Definition 1.

Before  discovering  MBPMs,  we  need  to  traverse  different
sub-logs to check if there exist multiple interleaved instances
within the same traces. Consider for example the event log in
Table I,  the  sub-log  invoked  by  UPI  contains  one  case  that
contains  three  interleaved  sub-process  instances.  To  guaran-
tee  the  quality  of  discovered  models,  we  need  to  refactor  all
sub-process  logs  in  such  a  way  that  no  interleaved  instances
are included in a single case. Please note that the sub-process
instance  identification  is  typically  application-specific,  and
heavily relies on the specific domain knowledge of the under-
lying process. For our cloud resource management case, each
sub-process  instance  is  uniquely  identified  by  the  virtual
machine information.

After  refactoring  all  sub-logs,  we  are  ready  to  discover
MBPMs from hierarchical logs. We traverse different sub-logs
and discover a process model for each sub-log. The inductive

miner is used for sub-log discovery as it is the state-of-the-art
algorithm  [5]. Fig. 4 is  the  discovered  MBPM  by  taking  the
event log in Table I as input.  

VII.  Tool Implementation

The  proposed  multi-instance  business  process  model  dis-
covery approaches have been implemented as a plug-in (called
multi-instance business process model discovery) in the open-
source process mining framework ProM 6 2. It takes an XES-
based event log as input,  and returns an MBPM as output.  A
snapshot  of  this  plug-in  is  shown  in Fig. 10.  In  addition,  to
evaluate  the  quality  of  the  discovered  model  with  respect  to
the  input  event  log,  we  have  implemented  another  plugin,
called,  convert  a  multi-instance  business  process  model  to  a
flat Petri net. It takes an MBPM as input, and returns its corre-
sponding  flat  Petri  net.  The  following  experiments  are  all
based on these two plug-ins.
 

Input: lifecycle event log
Plugin Output: MBPM

Plugin description

 
Fig. 10.     Screenshot of the MBPM discovery plugin.
   

VIII.  Experimental Evaluation

In  this  section,  we perform a comparative evaluation using
the  event  log  collected  from the  cloud  resource  management
case study in Section III. This event log contains 12 870 cases,
and 360 360 events in total. Note that we have pre-processed
the  event  log  to  be  lifecycle  consistent  [9].  For  these  experi-
ments, we used a laptop with a 2.40 GHz CPU, Windows 8.1
and Java SE 1.7.0 67 (64 bit) with 4 GB of allocated RAM.  

A.  Quality Metrics
To measure  the  quality  of  an  MBPM against  an  event  log,

we  need  to  first  transform  it  to  a  flat  Petri  net.  Therefore,
existing quality metrics can be applied.

t
ts tc pe

(ts, pe) (pe, tc) (ts, ps) (pc, tc)
ts ps pc tc

τ1 τ2 px
(pe, τ1) (τ1, pe) (pe, τ2) (τ2, pe) (τ1, px) (px, τ2) (τ1, ps)
(pc, τ2)

ps pc

A  transformation  example  is  shown  in Fig. 11,  based  on
which  the  transformation  rule  is  described  as  follows:  1)  a
nested  transition  is  transformed  to  two  normal/flat  transi-
tions,  denoted  as  and ,  and  a  place  is  used  to  connect
them with  arcs  and ;  2)  arcs  and 
are added to connect  and , and  and ; and 3) a Petri net
controller  including  transitions  and ,  place ,  arcs

, , , , , , ,
, is inserted to control the multiple instantiation behav-

ior of the sub-process between  and .
Fig. 12 shows  the  corresponding  flat  Petri  net  transformed  

2 https://svn.win.tue.nl/repos/prom/Packages/CongLiu
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UPIs UPIc
UPIs UPI UPIc

UPI UPI

from the MBPM in Fig. 4.  Each nested transition in Fig. 4 is
transformed  to  two  normal  transitions.  For  example,  nested
transition UPI is  transformed to  and .  Specifically,

 represents  the  start  of  activity  and  represents
its  completion.  The  sub-process  is  invoked  after  the  start  of

 and completed before the completion of .
Once  we  transform  MBPMs  to  flat  ones,  we  can  use  the

well-defined  metrics  (fitness  and  precision)  to  measure  the
quality of the discovered models with respect to input logs.

a) Fitness: Fitness aims to measure the ability of the discov-
ered model to replay the behavior recorded in the input event
log.  It  measures  the  ability  of  the  model  to  re-produce  the
behavior  recorded  in  the  event  log.  A  fitness  of  1  indicates
that  the  discovered  model  can  re-produce  all  traces  of  the
input event log. Low fitness values normally indicate that the
event  log  contains  much  more  behaviour  that  is  not  allowed
by the process model. Note that the fitness definition in [33] is
adopted in this paper.

b)  Precision: Precision  aims  to  measure  the  ability  of  the
discovered  model  to  generate  only  the  behavior  recorded  in
the  input  event  log.  It  measures  the  ability  of  the  model  to
generate only the behavior recorded in the log. A precision of
1 indicates that all traces that are produced by the discovered
model are contained in the input event log. Low precision val-
ues  normally  indicate  that  the  process  model  contains  much
more behaviour that is not included in the event log. The pre-
cision definition in [34] is adopted in this paper.

According  to  [35],  there  is  a  trade-off  between  fitness  and
precision,  adding  a  small  fraction  of  behaviour  in  the  event
log may cause a slight decrease in fitness while the precision
value may increase a lot. Therefore, we introduce the F-Mea-
sure.

c)  F-measure: F-measure  is  defined  as  the  harmonic  mean
of fitness and precision. Its definition is shown in the follow-
ing equation:
 

F-measure =
2× f itness× precision

f itness+ precision
. (2)

The  F-measure  only  states  how well  the  discovered  model
can  reproduce  the  log.  To  quantify  the  understandability  of
discovered models, the complexity metric is introduced.

d) Complexity: The complexity of discovered models plays
an important role in the comprehension. To quantify the com-
plexity of discovered models, we use the following two com-
plexity  metrics  with  the  assumption  that  models  are  repre-
sented  by  workflow  nets  [36]:  i)  extended  Cardoso  metric
(ECaM);  and  ii)  extended  cyclomatic  metric  (ECyM).  The
ECaM metric measures the structural complexity of the model
by counting the various splits (XOR, OR and AND) and gives
each  of  them  a  certain  penalty.  The  ECaM  metric  measures

the behavioral complexity of the model by analyzing its reach-
ability graph.

ECaM  focuses  on  the  syntax  (structure)  complexity  of  the
model itself and ECyM focuses on the resulting behavior. The
complexity metric is defined as the harmonic mean of ECaM
and ECyM metrics. A low complexity value indicates that the
component behavior is simple to understand.
 

Complexity =
2×ECaM×ECyM

ECaM+ECyM
. (3)

  

B.  Experimental Results
To  evaluate  the  effectiveness  of  the  proposed  approach,

existing process discovery algorithms that  can 1) handle life-
cycle event logs and sub-processes; and 2) provide a publicly
available implementation, are included. More specifically, we
compare  inductive  miner  lifecycle  (IMlc)  [37],  statechart
workbench (SW) [18] and hierarchical miner (HM) with noise
threshold 0.85 [14] with our approach.

Detailed evaluation results are shown in Table II. Based on
Table II,  we  have  the  following  observations  and  explana-
tions:

1)  The  F-measure  values  of  our  approach  are  much  higher
than  those  of  other  approaches.  Normally,  a  high  F-measure
value indicates better model quality. It can be explained by the
fact  that  our  approach  improves  the  precision  of  discovered
models by identifying sub-processes and distinguishing inter-
leaved sub-process instances.

2)  Both  HM  and  SW  are  able  to  identify  nesting  relations
and  sub-processes.  However,  when  sub-processes  are  mixed
with  concurrent  activities,  SW  cannot  precisely  distinguish
concurrency  and  nesting  relations.  Therefore,  HM  performs
better than SW. In addition, these two approaches cannot han-
dle  interleaved  sub-process  instances,  and  therefore,  their  F-
measure values are lower than that of our approach.

3) As for the IMlc, it cannot handle sub-processes nor multi-
ple  instantiations,  and  therefore,  they  are  simply  treated  as
concurrency. As a result, the precision of discovered models is
very low.

4)  The  complexity  value  of  IMlc  is  the  highest,  i.e.,  IMlc
leads  to  the  most  complex  model.  The  complexity  values  of
HM and  SW are  much  lower  than  that  of  IMlc  as  these  two
approaches  applied  nesting  relation  detection  to  improve  the
quality of the discovered models. The complexity value of our
approach  is  the  lowest  compared  to  the  other  three
approaches,  this  is  because  interleaved  sub-process  instances
are handled, and therefore, the understandability of the discov-
ered model is improved.

As  a  conclusion,  we  show  that  the  proposed  approach  can
discover process models with better quality in terms of F-mea-
sure and understandability from logs containing lifecycle and
multiple sub-process instantiation information compared with
existing process discovery approaches.  

IX.  Conclusion

This paper proposes a novel process discovery technique to
support  multi-instance  sub-process  identification  and  MBPM
discovery  from  event  logs  with  sub-process  multi-instantia-
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Fig. 11.     Transformation from an MBPM to a flat Petri net.
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tion information. Formal semantics of discovered MBPM are
precisely defined by MPNs. In addition, we also measure the
quality of the discovered MBPMs against the input event logs
by  transforming  an  MBPM  to  a  classical  Petri  net  such  that
existing  quality  metrics,  e.g.,  fitness  and  precision,  can  be
used.  All  proposed  approaches  are  fully  implemented  in  the
ProM toolkit. Using a cloud resource management case study,
we compared our approach against the state-of-the-art process
discovery  techniques.  The  results  demonstrate  that  our  pro-
posed  approach  outperforms  existing  approaches  to  discover
process models with multi-instance sub-processes.

Our  future  work  lies  in  quantitatively  evaluating  how  the
proposed nesting relation detection approach can handle noisy
event logs.  As for the sub-process instance identification,  the
current approach is application-specific and relies on the input
event  log.  It  is  highly  desired  to  propose  general  approaches
by investigating temporal and interval relations among events
[38].  In addition,  we would like to evaluate the scalability of
the proposed approach using large-scale real-life event logs.
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