

Formal Modeling and Discovery of Multi-instance
Business Processes: A Cloud Resource

Management Case Study
Cong Liu, Member, IEEE

 Abstract—Process discovery, as one of the most challenging
process analysis techniques, aims to uncover business process
models from event logs. Many process discovery approaches were
invented in the past twenty years; however, most of them have
difficulties in handling multi-instance sub-processes. To address
this challenge, we first introduce a multi-instance business pro-
cess model (MBPM) to support the modeling of processes with
multiple sub-process instantiations. Formal semantics of MBPMs
are precisely defined by using multi-instance Petri nets (MPNs)
that are an extension of Petri nets with distinguishable tokens.
Then, a novel process discovery technique is developed to sup-
port the discovery of MBPMs from event logs with sub-process
multi-instantiation information. In addition, we propose to mea-
sure the quality of the discovered MBPMs against the input event
logs by transforming an MBPM to a classical Petri net such that
existing quality metrics, e.g., fitness and precision, can be used.
The proposed discovery approach is properly implemented as
plugins in the ProM toolkit. Based on a cloud resource manage-
ment case study, we compare our approach with the state-of-the-
art process discovery techniques. The results demonstrate that
our approach outperforms existing approaches to discover pro-
cess models with multi-instance sub-processes.
 Index Terms— Cloud resource management process, multi-instance
Petri nets (MPNs), multi-instance sub-processes, process discovery,
quality evaluation.

I. Introduction

P ROCESS mining aims at extracting process-related
insights from business process event logs [1], [2]. Process

discovery, as one of the most difficult process mining tasks,
has received a lot of attention in the past years. Various dis-
covery techniques that take as input event logs and produce
process models have been proposed, e.g., alpha miner [3],
heuristic miner [4], and inductive miner [5]. However, exist-
ing process discovery techniques cannot be directly used when

an event log contains information of multi-instance sub-pro-
cesses. To understand multi-instance sub-processes, we first
explain the notion of sub-processes. Consider a business pro-
cess out-sourcing scenario where one organization sub-con-
tracts part of its businesses to another organization [6]. The
sub-contracted process is regarded as a sub-process of the par-
ent (original) process. Multi-instance sub-processes mean that
multiple concurrent instances of a sub-process are executed
within the same parent process instantiation [7]. Consider for
example an online shopping scenario, multiple delivery sub-
processes can be instantiated in parallel when a consumer con-
firms an order of multiple products with different delivery
addresses. In this case, the delivery process is a multi-instance
sub-process of the order process.

The notion of multi-instance sub-process imposes new chal-
lenges for existing techniques to discover high-quality models.
To address this challenge, we present a novel technique to dis-
cover multi-instance business process models from event logs
with sub-process multi-instantiation information. The main
contributions of this paper are summarized as follows:

1) We introduce multi-instance business process models
(MBPMs) to support the modeling of processes with multiple
sub-process instantiations;

2) We present an extension of classical Petri nets, called
multi-instance Petri nets (MPNs), to formalize the semantics
of MBPMs; and

3) We present a novel process discovery technique to sup-
port the discovery of MBPMs from event logs with sub-pro-
cess multi-instantiation information.

The rest of this paper is organized as follows. Section II
reviews some related work. Section III introduces a motivat-
ing example, based on which we showcase the main chal-
lenges. Section IV reviews some preliminaries. Then, Section
V formalizes the multi-instance Petri nets. Section VI shows
how to discover MBPMs from event logs. Section VII
presents tool support. Section VIII performs the experimental
evaluation. Finally, Section IX concludes the paper.

II. Related Work

Process discovery can be used to reconstruct business pro-
cess models from event logs [1]. As an often cited example,
the alpha miner defines four kinds of ordering relations among
activities, including directly-follow relation, choice relation,
concurrency relation, and causality relation, based on which a
Petri net is constructed to describe the behavior recorded in

Manuscript received July 10, 2020; revised October 8, 2020; accepted

December 6, 2020. This work was supported by the National Natural Science
Foundation of China (61902222), the Taishan Scholars Program of Shandong
Province (tsqn201909109), the Natural Science Excellent Youth Foundation
of Shandong Province (ZR2021YQ45), and the Youth Innovation Science and
Technology Team Foundation of Shandong Higher School (2021KJ031).
Recommended by Associate Editor Shouguang Wang.

Citation: C. Liu, “Formal modeling and discovery of multi-instance
business processes: A cloud resource management case study,” IEEE/CAA J.
Autom. Sinica, vol. 9, no. 12, pp. 2151–2160, Dec. 2022.

The author is with the School of Computer Science and Technology,
Shandong University of Technology, Zibo 255000, and also with the College
of Computer Science and Engineering, Shandong University of Science and
Technology, Qingdao 266590, China (e-mail: liucongchina@sdust.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2022.106109

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 12, DECEMBER 2022 2151

http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2022.106109

the event log [3]. Several improvements on the alpha miner
are made to deal with short loops [8], non-free-choice con-
structs [9], etc. To handle noise and infrequent behavior, Wei-
jters et al. [4] introduce the heuristic miner by considering the
frequency of each dependency relation, which is robust to
noise. More recently, inductive miner [5], as the state-of-the-
art process discovery algorithm, is proposed to handle both
noisy and incomplete event logs.

Different from majority discovery algorithms that generate
flat process models, Conforti et al. [10] propose to mine
BPMN models with multi-instance markers and sub-process
information. However, this approach relies heavily on the pri-
mary and foreign key attributes to obtain inter-relations
between parent processes and sub-processes as well as multi-
instance markers. Another related area is the artifact-centric
process discovery that focuses on the discovery of artifact life-
cycle models and their interactions [11]. An artifact describes
the lifecycle of a business object (e.g., a purchase order). van
Eck et al. [12] propose to discover both artifact lifecycle mod-
els and interactions among them. However, an artifact lifecy-
cle model is usually represented as a flat model which cannot
handle the hierarchical behavior properly. To formalize
semantics of BPMN, a recursive ECATNet is introduced in
[13]. Based on the recursive ECATNet, typical BPMN fea-
tures, e.g., cancellation, multiple instantiation of sub-pro-
cesses, and exception handling, are supported. More recently,
we propose to discover hierarchical Petri nets from event logs
by identifying sub-processes in [14] and [15]. However, the
multi-instance feature of sub-processes is not supported.

Another related research domain is software process mining.
The main focus is to distil behavioral models from software
execution traces. A software behavioral model is typically
expressed as process models with hierarchical (or nested) sub-
processes [16], [17]. The discovery of sub-processes depends
on the calling relations among method calls that are software
specific and not available in a more general case. More
recently, Leemans et al. [18] propose an integrated tool that
aims to discover hierarchical process models from software
execution logs. However, these approaches [16]−[18] do not
support the discovery of multi-instance sub-processes.

III. Motivating Example

Cloud computing is a new paradigm that provides on-
demand computing resources, e.g., servers and platforms, to
users [19]. Netflix Asgard1 is an open-source cloud resource
management tool on Amazon Web Services. Consider for
example its rolling upgrade process. This upgrade process
replaces a group of virtual machines at one time on Amazon
Web Services. Assume that an application is running on 3 vir-
tual machines, and these virtual machines are with version v1.
Now we need to upgrade and replace all these virtual
machines with version v2. This is done by taking the 3 virtual
machines running version v1 out of service and replacing
them with 3 virtual machines running version v2.

The whole upgrading process is described as Fig. 1. It starts
with four activities (SRU (start rolling upgrade task), ULC

(update launch configuration), SOI (sort instances) and GSI
(get status information)) to prepare the upgrading process.
Then, activity UPI (upgrading instances) is instantiated to
invoke three sub-process instances that each upgrades a vir-
tual machine with four activities (DI (deregister an old
instance), TI (terminate an old instance), SI (start a new
instance), and RI (register a new instance)). These three
upgrading sub-processes are executed in parallel. After all
sub-process instances have been finished, the process com-
pletes with CRU (rolling upgrade task completed).

TI SIDI RI

Upgrading virtual
machine 1

Upgrading virtual
machine 2

Upgrading virtual
machine 3

Upgrading process

SRU ULC SOI GSI UPI CRU

TI SIDI RI

TI SIDI RI

Fig. 1. Upgrading process.

During execution of the upgrading process, event logs are
recorded. Note that the multi-instance sub-processes typically
generate events that are interleaved with the events generated
from the parent process in the resulting sequential event logs.
Table I shows an event log that is collected during one execu-
tion of the upgrading process. Each row refers to a recorded
event and an activity execution is recorded as two indepen-
dent events representing its start and completion.

By examining these event logs, we aim to 1) understand
how the upgrading process is actually executed; and 2) check
if the actual execution follows the pre-defined process. To this
end, we need 1) a suitable formalization model to precisely
describe the behavior of underlying processes, especial for the
multi-instance sub-process behavior; and 2) an effective tech-
nique to discover such models from interleaved event logs.

IV. Preliminaries

N = {0,1,2, . . .}
S m : S → N s ∈ S , m(s)

s m = [p3,q2]
S = {p,q} m(p) = 3 m(q) = 2

S NS S
P(S) = {S ′|S ′ ⊆ S } S

S ∗ f : X→ Y dom(f) = X
rng(f) = { f (x)|x ∈ dom(f)} ⊆ Y

Let be the natural number set. A multi-set
over is defined as where for any is
the multiplicity of , e.g., is a multi-set over

 where and . The set of all multi-
sets over is denoted by . The powerset of is denoted by

. The set of all finite sequences over set
is denoted by . is a function, i.e., is
the domain and is the range.

X Q ⊆ X
↾Q ∈X∗→Q∗

⟨ ⟩ ↾Q = ⟨ ⟩ σ∈X∗ x∈X

Definition 1: Let be a set and be its subset.
 is a projection function and is defined recur-

sively: ; and for and :

(⟨x⟩ ◦σ) ↾Q =

{
σ↾Q, if x < Q
⟨x⟩ ◦ (σ↾Q), if x ∈ Q.

(1)

A. Petri Nets and Workflow Nets
Petri nets are widely used to model and analyze business

1 https://github.com/Netflix/asgard

 2152 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 12, DECEMBER 2022

https://github.com/Netflix/asgard

processes [20]–[25] emergency response processes [26], [27],
manufacturing processes [28], etc. Basic concepts and nota-
tions on Petri nets are reviewed following [29].

PN = (P,T,F, l)Definition 2: A Petri net is a 4-tuple , satis-
fying:

P T
P∩T = ∅

1) is a finite set of places and is a finite set of transi-
tions where ;

F ⊆ (P×T)∪ (T ×P)2) is a set of directed arcs, called flow
relation; and

l : T →A A
τ ∈ A

3) is a labeling function where is a set of labels
and denotes the invisible label.

PN = (P,T,F, l)
x ∈ P∪T •x = {y|(y, x) ∈ F}

x• = {y|(x,y) ∈ F}

m ∈ NP

(PN,m0) m0

[source] t ∈ T
m (PN,m)[t⟩ ∀p ∈• t : m(p) ≥ 1

m = [p3, p4] d
(PN,m)[d⟩ t

Given a , we define the preset and postset of
transitions and places. For each , is
the preset and is the postset. We use mark-
ings to describe the semantics of a Petri net. A marking

 is a multiset of places, which indicates how many
tokens each place contains. is a marked net where
is its initial marking. Fig. 2 shows a marked Petri net example.

 is its initial marking. A transition is enabled in
marking , denoted as if . Con-
sider the example Petri net with , transition is
enabled, i.e., . An enabled transition may fire and

TABLE I

A Fragment of Event Log

Case Event Activity Timestamp Transaction Virtual machine

1 e1 SRU 04-05-2014 09:30 start –

1 e2 SRU 04-05-2014 09:32 complete –

1 e3 ULC 04-05-2014 09:34 start –

1 e4 ULC 04-05-2014 09:38 complete –

1 e5 SOI 04-05-2014 09:41 start –

1 e6 SOI 04-05-2014 09:45 complete –

1 e7 GSI 04-05-2014 09:46 start –

1 e8 GSI 04-05-2014 09:49 complete –

1 e9 UPI 04-05-2014 09:50 start –

1 e10 DI 04-05-2014 09:56 start VM1

1 e11 DI 04-05-2014 09:57 start VM2

1 e12 DI 04-05-2014 09:58 start VM3

1 e13 DI 04-05-2014 10:08 complete VM1

1 e14 DI 04-05-2014 10:10 complete VM2

1 e15 TI 04-05-2014 10:11 start VM1

1 e16 DI 04-05-2014 10:15 complete VM3

1 e17 TI 04-05-2014 10:12 start VM2

1 e18 TI 04-05-2014 10:28 complete VM1

1 e19 TI 04-05-2014 10:30 complete VM2

1 e20 SI 04-05-2014 10:31 start VM1

1 e21 SI 04-05-2014 10:33 start VM2

1 e22 TI 04-05-2014 10:36 start VM3

1 e23 TI 04-05-2014 10:56 complete VM3

1 e24 SI 04-05-2014 11:12 complete VM1

1 e25 RI 04-05-2014 11:16 start VM1

1 e26 SI 04-05-2014 11:22 complete VM2

1 e27 RI 04-05-2014 11:26 complete VM1

1 e28 RI 04-05-2014 11:28 start VM2

1 e29 SI 04-05-2014 11:30 start VM3

1 e30 RI 04-05-2014 11:40 complete VM2

1 e31 SI 04-05-2014 11:48 complete VM3

1 e32 RI 04-05-2014 11:53 start VM3

1 e33 RI 04-05-2014 12:12 complete VM3

1 e34 UPI 04-05-2014 12:20 complete –

1 e35 CRU 04-05-2014 12:25 start –

1 e36 CRU 04-05-2014 12:30 complete –

LIU: FORMAL MODELING AND DISCOVERY OF MBP: A CLOUD RESOURCE MANAGEMENT CASE STUDY 2153

m′ m′ = (m \• t)∪ t•

(PN,m)[t⟩(PN,m′)

d m = [p3, p4] (PN, [p3,
p4])[d > (PN, [p5])

result in a new marking with , denoted by
, i.e., one token is removed from each of its

preset and one token is added for each of its postset. By firing
transition under marking , we have

 for the example Petri net.

b

c
a d e

Source Sink
p1

p2

p3

p4
p5

τ

Fig. 2. A labeled Petri net example.

In this paper, we consider a special type of Petri net which
is known as workflow net (WF-net) [30]. A WF-net is a Petri
net with a dedicated source place where the process starts and
a dedicated sink place where the process ends, and all nodes
are on a path from source to sink.

PN = (P,T,F, l) t̄
T PN

Definition 3: Let be a labeled Petri net and
be a transition not in . is a WF-net if:

P i •i = ∅1) contains one source place such that ;
P o o• = ∅2) contains one sink place such that ;
l(t̄) = τ3) ; and
PN = (P,T ∪{t̄},F ∪{(o, t̄), (t̄, i)})

PN
4) is strongly connected,

i.e., there is a directed arc between any pair of nodes in .
PN

o i PN

i = source o = sink

 is referred to as the short-circuited net. The unique sink
place is connected to the unique source place in . A
WF-net is sound if and only if its corresponding short-cir-
cuited net is 1-bounded and live [30]. Fig. 2 shows an exam-
ple of sound WF-net with and .

B. Event Logs
An event log is composed of a finite set of events with vari-

ous attributes, e.g., activity, timestamp, and transaction (or
lifecycle) information. In the following, standard attributes of
events are defined.

ξ

e ∈ ξ #n(e) n e

Definition 4: Let be the event universe, i.e., the set of all
possible event identifiers. Events may have various attributes.
For any , is the value of attribute for event .

e ∈ ξ

An activity may take time and have transactional states, e.g.,
schedule, start, suspend and complete. Note that we only con-
sider the start and complete states, i.e., events are recorded at
the moment an activity is started and completed. For an arbi-
trary event , the following attributes are involved:

#case(e) e1) is the belonging case of ;
#act(e) e2) is the activity name of ;
#trans(e) e3) is the transaction type of ;
#time(e) e4) is the timestamp of ; and
#vm(e) e5) is the virtual machine information of .

ξ
σ ∈ ξ∗

1≤ i< j≤|σ|
σ(i),σ(j)∧#case(σ(i)) = #case(σ(j))

L ⊆ ξ∗

Definition 5: A case over some event universe is a finite
sequence of events such that each event appears only
once and all events have the same case id, i.e., :

. An event log is defined
as a finite set of cases, i.e., .

e10 #case(e10) = 1

Consider for example the event log in Table I. It contains
one case that records all events generated during one run of
the upgrading process. In total 36 events are included and they
are fully ordered based on timestamps. For example, we have
the following observation for : 1) means the

e10 #act(e10) = DI
e10 DI #trans(e10) = start
#time(e10) = 04-05-2014 09 : 56
04-05-2014 09 : 56 #vm(e10) = V M1

case id of is 1; 2) means the activity name
of is ; 3) means it is the start event;
4) means the start event occurs
at ; and 5) indicates the
upgrading process is working on virtual machine 1.

V. Formal Modeling of Multi-Instance Processes

In this section, we first introduce an informal description of
multi-instance business process models. Then, we introduce
the multi-instance Petri net, based on which the execution
semantics of multi-instance business process models are
defined.

A. Multi-Instance Business Processes
A multi-instance process is composed of a set of sub-pro-

cesses such that they form a tree-like invocation relations. To
specify the invocation relations, we introduce the Petri net
with nested transitions where nested transitions may trigger
multi-instance sub-processes.

PNN = (PN,N)
Definition 6: A Petri net with nested transitions is a 2-tuple

 where
PN = (P,T,F, l)1) is a labeled Petri net; and
N : T → {A,N} ∀t ∈ T

N(t) = A t N(t) = N
t

2) is a mapping function such that ,
 represents is an atomic transition and rep-

resents is a nested transition.
PNN Ta= {t∈T |N(t)=A}

Tn= {t∈T |N(t)=N}
Ta0 Tn0 PNN0

Given a , we denote by the atomic
transition set and the nested transition set.
Specially, we use the notation and for . The for-
mer is used to represent atomic activities while the latter rep-
resents nested activities that may trigger multi-instance sub-
processes. Fig. 3 shows an example of the Petri net with
nested transitions where single-line rectangles represent
atomic transitions (e.g., SRU) and double-line rectangle repre-
sent nested transitions (e.g., UPI).

SRU ULC SIO GSI UPI CRU

Fig. 3. An example of Petri net with nested transitions.

The definition of multi-instance process models is given.

MBPM = (Q,PNN0,T N ,map)
Definition 7: A multi-instance business process model is

defined as such that
Q PNN1) is a set of ;
PNN02) is the top-level process;
T N =

∪
PNN∈Q Tn3) is the set of nested transitions; and

map : T N → Q \ {PNN0}4) is a function that maps each
nested transition onto a sub-process that is instantiated multi-
ple times.

PNN

PNN1 PNN1

An example of multi-instance business process is shown in
Fig. 4. The top-level contains five normal transitions and
one nested transition that refers to a Petri net. More specifi-
cally, nested transition UPI refers to . Because
does not contain any nested transitions, the recursive defini-
tion stops at this level.

B. Multi-Instance Petri Nets
In the following, we introduce the semantic interpretation of

 2154 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 12, DECEMBER 2022

the multi-instance process model using multi-instance Petri
net that is a type of extended Petri nets with distinguishable
tokens as defined in the following sub-section.

ν

Tokens of classical Petri nets (or workflow nets) are undis-
tinguishable, therefore they cannot represent a process with
multiple different instances explicitly. Based on the Petri net,
we define our multi-instance Petri net (MPN) with the follow-
ing extensions: 1) tokens are distinguishable for MPN, i.e.,
each token has a unique identifier; and 2) tokens can be pro-
duced (like -net [31]) and consumed during the net execu-
tion and each newly produced token explicitly refers to its par-
ent token. The definition of MPN is given as follows.

MPN = (P,T,F, l,W,Γ)
Definition 8: A multi-instance Petri net is defined as a 6-

tuple , satisfying:
(P,T,F, l)1) is a Petri net;
W : F→{1,+}2) is a cardinality function for arcs;
Γ : T→{ν,ω,ϵ}3) is a type function for transitions;
∀t ∈ T Γ(t) = ν ∀p ∈•t : W((p, t)) = 1 ∀p1,

p2 ∈ t• :W((t, p1)) =W((t, p2))
4) , if then and

 ; and
∀t ∈ T Γ(t) ∈ {ω,ϵ} ∀p1 ∈•t : W((p1, t)) = 1

∀p2 ∈ t• :W((t, p2)) = 1
5) , if then and

.
ν ω

ϵ ν

ω

ϵ

Three types of transitions, including -transition, -transi-
tion, and -transition, are involved in Definition 8. The -tran-
sition is used to produce new tokens that refer back to an
existing parent token and the -transition is used to consume
a set of existing tokens and generates their parent token. Dif-
ferently, the -transition is the same to traditional Petri net
transitions as defined in Definition 2.

MPN T ϵ T ν Tω
T ϵ = {t ∈T |Γ(t)=ϵ} T ν= {t∈T |
Γ(t)=ν} ν Tω= {t∈T |Γ(t)=ω} ω

T ϵ∪T ν∪Tω =T T ϵ∩T ν= ∅ T ν∩Tω=
∅ T ϵ∩Tω= ∅

Before describing the formal execution semantics of an
MPN, we first introduce some useful notations. Whenever we
define , we assume , , to be defined as follows:

 is the normal transition set,
 is -transition set, and is -transi-

tion set such that , ,
 and .

P = {source, p1, p2, p3,
sink} T = {a,b,c} F= {(source,a), (a, p1), (a, p2), (p1,b), (p2,c),
(c, p3), (p3,b), (b, sink)} W= {W((source,a))=1,W((a, p1))=+,
W((a, p2))=+, W((p1,b)0 = 1,W((p2,c)) = 1,W((c, p3)) =1,
W((p3,b)) =1,W((b, sink))=1} Γ = {Γ(a) = ν,Γ(b) = ω,
Γ(c) = ϵ} ν

ω

ϵ

Fig. 5 shows an example of MPN and it can be formalized
as follows according to Definition 8:

, ,
,

 , and

. Graphically, a -transition is represented by a rect-
angle colored with green, an -transition is represented by a
rectangle colored with red and an -transition is represented
by a rectangle colored with white.

After defining the syntax structure and basic notation of
MPN, we define its execution semantics.

I κ : I→P(I)

i1, i2 ∈ I : κ(i1)∩ κ(i2) = ∅

Let be the universe of token identifiers. is a
function from parent identifiers to children identifiers, such
that . The token identifiers and their

Tree = (I,E)
I E = {(i1, i2) ∈ I×I|i2 ∈

κ(i1)} ⊥ ∈ I

∄i1 ∈ I : ⊥ ∈ κ(i1)

parent-children relationships form a tree structure, named
token identifier tree. Note that a tree structure is essentially a
directed acyclic graph. Formally, it is a 2-tuple
where 1) is the set of nodes; and 2)

 is the set of edges. Specially, is the root token
identifier of a tree and it does not have parent, i.e.,

.
i1, i2, . . . , in

in+1 ∈ κ(in) n ∈ N i1 in
i1→ in i1 ∈ I, i1 , ⊥ : ⊥→ i1

i1

A path in the tree is a sequence of nodes such
that where . The path from to is denoted
as . Specially, for any , i.e., there
is always a path from the root to .

I = {⊥,m,n} κ(⊥) = {m,n}
κ(m) = κ(n) = ∅

Fig. 6 shows an example of the token identifier tree and it
can be formalized as follows: , and

.

⊥κ(⊥) = {m, n}

m n
κ(m) = κ(n) =

Fig. 6. A tree example.

m : P→P(I)

M

Definition 9: A marking of MPN is a function
from places to token identifiers. The set of all markings is
denoted as .

m0
m0(source)={⊥}

m0= {source{⊥}}

For the example of MPN in Fig. 5, its initial marking is
such that . In the following, we simply denote

.
t∈T

m ∈ M i ∈ I
Definition 10: A transition is enabled at marking

 for if and only if:
∀p∈• t: i∈ m(p)∧∀q ∈ t•, i < m(q) t∈T \Tω1) if ; and
∀p∈•t : κ(i)⊆m(p)∧∀q∈ t•, κ(i)∩m(q)=∅ t∈Tω2) if .

m0 t
m m′ ∈ M

Note that the enabledness of transitions in MPN is the same
to that of an elementary net [32], i.e., each place contains each
identifier at most once. According to Definition 10, transition
a in Fig. 5 is enabled at . An enabled transition can fire,
thereby changing the marking to a new marking . If
an enabled transition fires, it consumes tokens from each of its
input places and produces tokens to each of its output places.
The transition firing rules are explained in the following defi-
nition.

t∈T
m ∈ M i ∈ I t

m′ ∈ M

Definition 11: Given a transition , it is enabled at mark-
ing for . The firing of yields a new marking

, satisfying:
p ∈•t1) for any place ,

t ∈ T \Tω m′(p) = m(p) \ {i}a) if , ; and
t ∈ Tω m′(p) = m(p) \ κ(i)b) if , .

p ∈ t•2) for any place ,
t ∈ T \T ν m′(p) = m(p)∪{i}a) if , ; and
t ∈ T ν m′(p) = m(p)∪ κ(i)b) if , .

Given an MPN and its initial marking, we want to know

PNN1
+

SRU ULC SIO GSI UPI CRU

DI TI SI RI

Fig. 4. A multi-instance business process model example.

b

c

a
Source Sinkp1

p2 p3

+

+

{source{⊥}} Γ(a) = v Γ(b) = w

Fig. 5. An MPN example.

LIU: FORMAL MODELING AND DISCOVERY OF MBP: A CLOUD RESOURCE MANAGEMENT CASE STUDY 2155

m0 = {source{⊥}} m0

⊥
m n p1 p2

m1 = {p1{m,n},
p2{m,n}}

p2 p3
m4= {p1{m,n}, p3{m,n}}

p1 p3
⊥

m5 = {sink{⊥}}

more about its behavior with respect to the firing rules as
defined in Definition 11. Consider the MPN example in Fig. 5,
the token identifier relationships in Fig. 6, and its initial mark-
ing . Transition a is enabled at and the fir-
ing of a will consume token from source and produce two
tokens and to both and . As shown in Fig. 7, the
marking after firing transition a is denoted as

. Then, transition c is enabled and can be fired until all
tokens in are moved one by one to reaching marking

. After this, transition b is enabled. The
firing of b will consume all tokens in and , and produce
their parent token to sink. As depicted in Fig. 7,

 is reached finally.

m0={source{⊥}}

m1={p1{m,n}, p2{m,n}}

m3={p1{m,n}, p2{n}, p3{m}}m2={p1{m,n}, p2{m}, p3{n}}

a

c

c

c

c

b

m4={p1{m,n}, p3{m,n}}

m5={sink{⊥}}

Fig. 7. One example reachability graph.

t
S P

ps pc

We define the semantic interpretation of MBPM based on
the MPN constructs. Given an example of MBPM with being
the nested transition, and being the invoked multi-instance
sub-process where is the source place and is the sink
place. The transformation is shown in Fig. 8.

t ts tc

+

+ +

source source sinksink

pc pcps ps

pe

PNe

{source{⊥}}

Fig. 8. MPN-based semantics.

t
ts tc pe

(ts, pe) (pe, tc)
(ts, ps) (pc, tc) ts tc

Γ(ts) = ν
W((ts, pe)) = + W((ts, ps)) = + Γ(tc) = ω

Detailed transformation is defined as follows: 1) is trans-
formed to two transitions, denoted as and , and a place
is used to connect them with arcs and ; 2) arcs

 and are added to connect and as well as the
invoked sub-process model; and 3) the following weight and
type functions are given for transitions and arcs: ,

, , and .

VI. Discovering MBPM From Event Logs

This section introduces the discovery of MBPM from event
logs with sub-process multi-instantiation information.

A. An Approach Overview
The whole MBPM discovery approach involves the follow-

ing three steps:
Phase 1 (Nesting Relation Detection): By taking an event

log as input, we first perform nesting relation detection among
activities. The output is a nested activity relation tree where
nesting relations among activities are represented as arcs.

Phase 2 (Hierarchical Event Log Construction): By taking
an event log and the nested activity relation tree as input, we
construct a hierarchical event log by using the nesting rela-
tions among activities. Note that we need to refactor each sub-
log in such a way that no interleaved instances are included in
the same trace.

Phase 3 (Multi-instance Business Process Model Discov-
ery): After obtaining a hierarchical event log, we can visit dif-
ferent levels of logs and discover a process model for each
sub-log. Note that any existing discovery approaches can be
reused.

B. Nesting Relation Detection
Existing discovery algorithms cannot handle sub-processes

or nesting relation among activities. To detect nesting relation,
the next three basic ordering relations are introduced.

a,b ∈ UA σ ∈ LDefinition 12: For any and , we have
a b σ a > b

i ∈ {1, . . . , |σ| −1} #act(σ(i))=a∧#trans(σ(i))=complete∧
#act(σ(i+1)) = b∧#trans(σ(i+1)) = start

1) is directly followed by in , denoted as , if there
exists :

;
a b σ a ≳ b i,

j,k, l ∈ {1, . . . , |σ|} i < j < k < l #act(σ(i)) = a∧#trans(σ(i)) =
∧#act(σ(j))=b∧#trans(σ(j))= start∧#act(σ(k))=a∧#trans

(σ(k)) = complete∧#act(σ(l)) = b∧#trans(σ(l)) = complete

2) overlaps with in , denoted as if there exists
 and :

start
;

and
a b σ a ▷ b i, j,

k, l ∈ {1, . . . , |σ|} i < j < k < l #act(σ(i)) = a∧#trans(σ(i)) =
∧#act(σ(j)) = b∧#trans(σ(j)) = start∧#act(σ(k)) = b∧

#trans(σ(k))=complete∧#act(σ(l)) = a∧#trans(σ(l)) = complete

3) contains in , denoted as if there exists
 and :

start
.

Definition 12 introduces the directly-follow, overlapping
and containment. Then, nesting relations are defined as fol-
lows.

a,b ∈ UA a b
a ⋐ b a ▷ b ∧ b ⋫ a ∧ a � b

∧ b � a ∧ a ≯ b ∧ b ≯ a

Definition 13: For any , and are in nesting rela-
tion, denoted as , if and only if () () ()

 () () ().
Similarity to casuality relation, concurrency relation, and

choice relation, nesting relation is defined as a kind of derived
relation among activities. The main difference is that the nest-
ing relation is specifically for hierarchical process models
while other derived relations are dedicated for flat process
models. After formally introducing the nesting relation, pro-
cess models with sub-processes can be discovered.

L A⊆UA
NA(L) = {a∈A|∃b∈A: a⋐b}

L

Definition 14: Let be a lifecycle event log and be
its activity set. is the nesting
activity set of .

{UPI}
Consider the example log in Table I, its nesting activity set

is . After defining the nesting relations, we introduce a
tree-like structure to represent the nesting relations among
activities detected from a lifecycle event log.

ADefinition 15: The nesting relations among activities in

 2156 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 12, DECEMBER 2022

(A,rootAct,η)form a tree structure, denoted as , such that:
rootAct ⊆ A1) is a set of root activities such that
∀r1,r2 ∈rootAct: r1>r2∧r2>r1a) , i.e., root activities have

no nesting relation with each other; and
∀r ∈ rootAct ∄a ∈ A \ rootAct : a ⋐ rb) , .
η : A↛ P(A) \ rootAct2) is a partial function that maps

each activity onto its nesting activities.
a ∈ A b ∈ η(a) a ⋐ ba) for any , : ;
b,c ∈ η(a) b > c∧ c > bb) for any : ; and
a,b ∈ A η(a)∩η(b) = ∅c) for any : , i.e., the nesting relations

form a tree.
The activity nesting relation tree of the log in Table I is

shown in Fig. 9, based on which we can see that: 1) SRU,
ULC, SOI, GSI, UPI, and CRU are root activities; and 2) DI,
TI, SI and RI are in nesting relation with UPI.

CRU

SRUULC

SOI

GSI

UPI

RISI TIDI

Fig. 9. An activity nesting relation tree example.

C. Hierarchical Log Construction and MBPM Discovery
After obtaining the activity nesting relation tree, a hierarchi-

cal event log can be constructed. Formal definition of hierar-
chical event log is given in the following.

L (A,rootAct,η)
L (rootLog,γ)

L

Definition 16: Let be an event log and be
the activity nesting relation tree of . is the hier-
archical event log of where:

rootLog =
∪
σ∈Lσ↾rootAct L1) is the root event log of ; and

γ : NA(L)→UL
∀na ∈ NA(L)} γ(na) =

∪
σ∈Lσ↾η(na)

2) is a function that maps a nesting activ-
ity to its sub-log. , .

According to Definition 16, given an event log we can con-
struct its hierarchical log by recursively referring to its nest-
ing relation using the projection in Definition 1.

Before discovering MBPMs, we need to traverse different
sub-logs to check if there exist multiple interleaved instances
within the same traces. Consider for example the event log in
Table I, the sub-log invoked by UPI contains one case that
contains three interleaved sub-process instances. To guaran-
tee the quality of discovered models, we need to refactor all
sub-process logs in such a way that no interleaved instances
are included in a single case. Please note that the sub-process
instance identification is typically application-specific, and
heavily relies on the specific domain knowledge of the under-
lying process. For our cloud resource management case, each
sub-process instance is uniquely identified by the virtual
machine information.

After refactoring all sub-logs, we are ready to discover
MBPMs from hierarchical logs. We traverse different sub-logs
and discover a process model for each sub-log. The inductive

miner is used for sub-log discovery as it is the state-of-the-art
algorithm [5]. Fig. 4 is the discovered MBPM by taking the
event log in Table I as input.

VII. Tool Implementation

The proposed multi-instance business process model dis-
covery approaches have been implemented as a plug-in (called
multi-instance business process model discovery) in the open-
source process mining framework ProM 6 2. It takes an XES-
based event log as input, and returns an MBPM as output. A
snapshot of this plug-in is shown in Fig. 10. In addition, to
evaluate the quality of the discovered model with respect to
the input event log, we have implemented another plugin,
called, convert a multi-instance business process model to a
flat Petri net. It takes an MBPM as input, and returns its corre-
sponding flat Petri net. The following experiments are all
based on these two plug-ins.

Input: lifecycle event log
Plugin Output: MBPM

Plugin description

Fig. 10. Screenshot of the MBPM discovery plugin.

VIII. Experimental Evaluation

In this section, we perform a comparative evaluation using
the event log collected from the cloud resource management
case study in Section III. This event log contains 12 870 cases,
and 360 360 events in total. Note that we have pre-processed
the event log to be lifecycle consistent [9]. For these experi-
ments, we used a laptop with a 2.40 GHz CPU, Windows 8.1
and Java SE 1.7.0 67 (64 bit) with 4 GB of allocated RAM.

A. Quality Metrics
To measure the quality of an MBPM against an event log,

we need to first transform it to a flat Petri net. Therefore,
existing quality metrics can be applied.

t
ts tc pe

(ts, pe) (pe, tc) (ts, ps) (pc, tc)
ts ps pc tc

τ1 τ2 px
(pe, τ1) (τ1, pe) (pe, τ2) (τ2, pe) (τ1, px) (px, τ2) (τ1, ps)
(pc, τ2)

ps pc

A transformation example is shown in Fig. 11, based on
which the transformation rule is described as follows: 1) a
nested transition is transformed to two normal/flat transi-
tions, denoted as and , and a place is used to connect
them with arcs and ; 2) arcs and
are added to connect and , and and ; and 3) a Petri net
controller including transitions and , place , arcs

, , , , , , ,
, is inserted to control the multiple instantiation behav-

ior of the sub-process between and .
Fig. 12 shows the corresponding flat Petri net transformed

2 https://svn.win.tue.nl/repos/prom/Packages/CongLiu

LIU: FORMAL MODELING AND DISCOVERY OF MBP: A CLOUD RESOURCE MANAGEMENT CASE STUDY 2157

https://svn.win.tue.nl/repos/prom/Packages/CongLiu

UPIs UPIc
UPIs UPI UPIc

UPI UPI

from the MBPM in Fig. 4. Each nested transition in Fig. 4 is
transformed to two normal transitions. For example, nested
transition UPI is transformed to and . Specifically,

 represents the start of activity and represents
its completion. The sub-process is invoked after the start of

 and completed before the completion of .
Once we transform MBPMs to flat ones, we can use the

well-defined metrics (fitness and precision) to measure the
quality of the discovered models with respect to input logs.

a) Fitness: Fitness aims to measure the ability of the discov-
ered model to replay the behavior recorded in the input event
log. It measures the ability of the model to re-produce the
behavior recorded in the event log. A fitness of 1 indicates
that the discovered model can re-produce all traces of the
input event log. Low fitness values normally indicate that the
event log contains much more behaviour that is not allowed
by the process model. Note that the fitness definition in [33] is
adopted in this paper.

b) Precision: Precision aims to measure the ability of the
discovered model to generate only the behavior recorded in
the input event log. It measures the ability of the model to
generate only the behavior recorded in the log. A precision of
1 indicates that all traces that are produced by the discovered
model are contained in the input event log. Low precision val-
ues normally indicate that the process model contains much
more behaviour that is not included in the event log. The pre-
cision definition in [34] is adopted in this paper.

According to [35], there is a trade-off between fitness and
precision, adding a small fraction of behaviour in the event
log may cause a slight decrease in fitness while the precision
value may increase a lot. Therefore, we introduce the F-Mea-
sure.

c) F-measure: F-measure is defined as the harmonic mean
of fitness and precision. Its definition is shown in the follow-
ing equation:

F-measure =
2× f itness× precision

f itness+ precision
. (2)

The F-measure only states how well the discovered model
can reproduce the log. To quantify the understandability of
discovered models, the complexity metric is introduced.

d) Complexity: The complexity of discovered models plays
an important role in the comprehension. To quantify the com-
plexity of discovered models, we use the following two com-
plexity metrics with the assumption that models are repre-
sented by workflow nets [36]: i) extended Cardoso metric
(ECaM); and ii) extended cyclomatic metric (ECyM). The
ECaM metric measures the structural complexity of the model
by counting the various splits (XOR, OR and AND) and gives
each of them a certain penalty. The ECaM metric measures

the behavioral complexity of the model by analyzing its reach-
ability graph.

ECaM focuses on the syntax (structure) complexity of the
model itself and ECyM focuses on the resulting behavior. The
complexity metric is defined as the harmonic mean of ECaM
and ECyM metrics. A low complexity value indicates that the
component behavior is simple to understand.

Complexity =
2×ECaM×ECyM

ECaM+ECyM
. (3)

B. Experimental Results
To evaluate the effectiveness of the proposed approach,

existing process discovery algorithms that can 1) handle life-
cycle event logs and sub-processes; and 2) provide a publicly
available implementation, are included. More specifically, we
compare inductive miner lifecycle (IMlc) [37], statechart
workbench (SW) [18] and hierarchical miner (HM) with noise
threshold 0.85 [14] with our approach.

Detailed evaluation results are shown in Table II. Based on
Table II, we have the following observations and explana-
tions:

1) The F-measure values of our approach are much higher
than those of other approaches. Normally, a high F-measure
value indicates better model quality. It can be explained by the
fact that our approach improves the precision of discovered
models by identifying sub-processes and distinguishing inter-
leaved sub-process instances.

2) Both HM and SW are able to identify nesting relations
and sub-processes. However, when sub-processes are mixed
with concurrent activities, SW cannot precisely distinguish
concurrency and nesting relations. Therefore, HM performs
better than SW. In addition, these two approaches cannot han-
dle interleaved sub-process instances, and therefore, their F-
measure values are lower than that of our approach.

3) As for the IMlc, it cannot handle sub-processes nor multi-
ple instantiations, and therefore, they are simply treated as
concurrency. As a result, the precision of discovered models is
very low.

4) The complexity value of IMlc is the highest, i.e., IMlc
leads to the most complex model. The complexity values of
HM and SW are much lower than that of IMlc as these two
approaches applied nesting relation detection to improve the
quality of the discovered models. The complexity value of our
approach is the lowest compared to the other three
approaches, this is because interleaved sub-process instances
are handled, and therefore, the understandability of the discov-
ered model is improved.

As a conclusion, we show that the proposed approach can
discover process models with better quality in terms of F-mea-
sure and understandability from logs containing lifecycle and
multiple sub-process instantiation information compared with
existing process discovery approaches.

IX. Conclusion

This paper proposes a novel process discovery technique to
support multi-instance sub-process identification and MBPM
discovery from event logs with sub-process multi-instantia-

t

PNe

ps pc

+

ts tc

pcps

pe

px
τ1 τ2

Fig. 11. Transformation from an MBPM to a flat Petri net.

 2158 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 12, DECEMBER 2022

tion information. Formal semantics of discovered MBPM are
precisely defined by MPNs. In addition, we also measure the
quality of the discovered MBPMs against the input event logs
by transforming an MBPM to a classical Petri net such that
existing quality metrics, e.g., fitness and precision, can be
used. All proposed approaches are fully implemented in the
ProM toolkit. Using a cloud resource management case study,
we compared our approach against the state-of-the-art process
discovery techniques. The results demonstrate that our pro-
posed approach outperforms existing approaches to discover
process models with multi-instance sub-processes.

Our future work lies in quantitatively evaluating how the
proposed nesting relation detection approach can handle noisy
event logs. As for the sub-process instance identification, the
current approach is application-specific and relies on the input
event log. It is highly desired to propose general approaches
by investigating temporal and interval relations among events
[38]. In addition, we would like to evaluate the scalability of
the proposed approach using large-scale real-life event logs.

References
 W. M. P. Van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes. New York, USA: Springer, 2011.

[1]

 C. Liu, H. Duan, Q. T. Zeng, M. C. Zhou, F. M. Lu, and J. J. Cheng,
“Towards comprehensive support for privacy preservation cross-
organization business process mining,” IEEE Trans. Serv. Comput.,
vol. 12, no. 4, pp. 639–653, Jul.–Aug. 2019.

[2]

 W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. Knowl.
Data Eng., vol. 16, no. 9, pp. 1128–1142, Sep. 2004.

[3]

 A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. A. De
Medeiros, “Process mining with the HeuristicsMiner algorithm,”
Technische Universiteit Eindhoven, Einhofen, Netherlands, Tech. Rep.
WP, 2006.

[4]

 S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
block-structured process models from event logs — A constructive
approach,” in Proc. 34th Int. Conf. Applications and Theory of Petri

[5]

Nets and Concurrency, Milan, Italy, 2013, pp. 311–329.
 Q. T. Zeng, S. X. Sun, H. Duan, C. Liu, and H. Q. Wang, “Cross-
organizational collaborative workflow mining from a multi-source log,”
Decis. Support Syst., vol. 54, no. 3, pp. 1280–1301, Feb. 2013.

[6]

 I. Weber, M. Farshchi, J. Mendling, and J. G. Schneider, “Mining
processes with multi-instantiation,” in Proc. 30th Annu. ACM Symp.
Applied Computing, Salamanca, Spain, 2015, pp. 1231–1237.

[7]

 L. J. Wen, J. M. Wang, W. M. P. van der Aalst, B. Q. Huang, and J. G.
Sun, “A novel approach for process mining based on event types,” J.
Intell. Inf. Syst., vol. 32, no. 2, pp. 163–190, Apr. 2009.

[8]

 L. J. Wen, W. M. P. van der Aalst, J. M. Wang, and J. G. Sun, “Mining
process models with non-free-choice constructs,” Data Min. Knowl.
Disc., vol. 15, no. 2, pp. 145–180, Oct. 2007.

[9]

 R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa, “BPMN
miner: Automated discovery of BPMN process models with hierarchical
structure,” Inf. Syst., vol. 56, pp. 284–303, Mar. 2016.

[10]

 X. X. Lu, M. Nagelkerke, D. van der Wiel, and D. Fahland,
“Discovering interacting artifacts from ERP systems,” IEEE Trans.
Serv. Comput., vol. 8, no. 6, pp. 861–873, Nov.–Dec. 2015.

[11]

 M. L. van Eck, N. Sidorova, and W. M. P. van der Aalst, “Multi-
instance mining: Discovering synchronisation in artifact-centric
processes,” in Proc. Int. Conf. Business Process Management, Sydney,
Australia, 2018, pp. 18–30.

[12]

 A. Kheldoun, K. Barkaoui, and M. Ioualalen, “Formal verification of
complex business processes based on high-level petri nets,” Inf. Sci.,
vol. 385–386, pp. 39–54, Apr. 2017.

[13]

 C. Liu, “Hierarchical business process discovery: Identifying sub-
processes using lifecycle information,” in Proc. Int. Conf. Web Services,
Beijing, China, 2020, pp. 423–427.

[14]

 C. Liu, L. Cheng, Q. T. Zeng, and L. J. Wen, “Formal modeling and
discovery of hierarchical business processes: A Petri net based
approach,” IEEE Trans. Syst., Man, and Cybern.: Syst., 2022. DOI:
10.1109/TSMC.2022.3195869

[15]

 C. Liu, “Automatic discovery of behavioral models from software
execution data,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 4, pp. 1897–
1908, Oct. 2018.

[16]

 C. Liu, “Discovery and quality evaluation of software component
behavioral models,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 4,
pp. 1538–1549, Oct. 2021.

[17]

 M. Leemans, W. M. P. van der Aalst, and M. G. J. van den Brand, “The
statechart workbench: Enabling scalable software event log analysis
using process mining,” in Proc. 25th Int. Conf. Software Analysis,
Evolution and Reengineering, Campobasso, Italy, 2018, pp. 502–506.

[18]

 M. H. Ghahramani, M. C. Zhou, and C. T. Hon, “Toward cloud
computing QoS architecture: Analysis of cloud systems and cloud
services,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 1, pp. 6–18, Jan. 2017.

[19]

 L. Wang, Y. Y. Du, and L. Qi, “Efficient deviation detection between a
process model and event logs,” IEEE/CAA J. Autom. Sinica, vol. 6,
no. 6, pp. 1352–1364, Nov. 2019.

[20]

 Q. Mo, W. Song, F. Dai, L. L. Lin, and T. Li, “Development of
collaborative business processes: A correctness enforcement approach,”
IEEE Trans. Serv. Comput., vol. 15, no. 2, pp. 752–765, Mar.–Apr.
2022.

[21]

 C. Liu, Q. T. Zeng, L. Cheng, H. Duan, M. C. Zhou, and J. J. Cheng,[22]

SRUs SRUc

τ1 τ2

ULCs ULCc SIOs SIOc GSIs GSIc

UPIs
UPIc CRUs CRUc

DIs TIs SIs RIs RIcSIcTIcDIc
Fig. 12. Transformed flat Petri net from the MBPM in Fig. 4.

TABLE II

Fitness, Precision and F-measure Results

Approaches Fitness Precision F-measure Complexity

IMlc 0.87 0.33 0.48 26.5

SW 1 0.4 0.57 18.6

HM 0.84 0.72 0.77 16.2

Our approach 1 0.73 0.84 13.3

LIU: FORMAL MODELING AND DISCOVERY OF MBP: A CLOUD RESOURCE MANAGEMENT CASE STUDY 2159

http://dx.doi.org/10.1109/TSC.2016.2617331
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1016/j.dss.2012.12.001
http://dx.doi.org/10.1007/s10844-007-0052-1
http://dx.doi.org/10.1007/s10844-007-0052-1
http://dx.doi.org/10.1007/s10618-007-0065-y
http://dx.doi.org/10.1007/s10618-007-0065-y
http://dx.doi.org/10.1016/j.is.2015.07.004
http://dx.doi.org/10.1109/TSC.2015.2474358
http://dx.doi.org/10.1109/TSC.2015.2474358
http://dx.doi.org/10.1016/j.ins.2016.12.044
http://dx.doi.org/10.1109/TASE.2018.2844725
http://dx.doi.org/10.1109/TASE.2020.3008897
http://dx.doi.org/10.1109/JAS.2017.7510313
http://dx.doi.org/10.1109/JAS.2019.1911750
http://dx.doi.org/10.1109/TSC.2019.2961346
http://dx.doi.org/10.1109/TSC.2016.2617331
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1016/j.dss.2012.12.001
http://dx.doi.org/10.1007/s10844-007-0052-1
http://dx.doi.org/10.1007/s10844-007-0052-1
http://dx.doi.org/10.1007/s10618-007-0065-y
http://dx.doi.org/10.1007/s10618-007-0065-y
http://dx.doi.org/10.1016/j.is.2015.07.004
http://dx.doi.org/10.1109/TSC.2015.2474358
http://dx.doi.org/10.1109/TSC.2015.2474358
http://dx.doi.org/10.1016/j.ins.2016.12.044
http://dx.doi.org/10.1109/TASE.2018.2844725
http://dx.doi.org/10.1109/TASE.2020.3008897
http://dx.doi.org/10.1109/JAS.2017.7510313
http://dx.doi.org/10.1109/JAS.2019.1911750
http://dx.doi.org/10.1109/TSC.2019.2961346

“Privacy-preserving behavioral correctness verification of cross-
organizational workflow with task synchronization patterns,” IEEE
Trans. Autom. Sci. Eng., vol. 18, no. 3, pp. 1037–1048, Jul. 2021.
 C. Liu, Q. T. Zeng, L. Cheng, H. Duan, and J. J. Cheng, “Measuring
similarity for data-awarebusiness processes,” IEEE Trans. Autom.
Science and Engineering, vol. 19, no. 2, pp. 1070–1082, Apr. 2022.

[23]

 C. Liu, Y. L. Pei, L. Cheng, Q. T. Zeng, and H. Duan, “Sampling
business process event logs using graph-based ranking model,”
Concurrency and Computation: Practice and Experience, vol. 33, no. 5,
pp. 1–14, 2021.

[24]

 C. Liu, H. L. Li, S. P. Zhang, L. Cheng, and Q. T. Zeng, “Cross-
Department collaborative healthcare process model discovery from
event logs”, IEEE Trans. Autom. Science and Engineering, 2022. DOI:
10.1109/TASE.2022.3194312

[25]

 H. Duan, C. Liu, Q. T. Zeng, and M. C. Zhou, “Refinement-based
hierarchical modeling and correctness verification of cross-organization
collaborative emergency response processes,” IEEE Trans. Syst., Man,
Cybern.: Syst., vol. 50, no. 8, pp. 2845–2859, Aug. 2020.

[26]

 Q. T. Zeng, C. Liu, H. Duan, and M. C. Zhou, “Resource conflict
checking and resolution controller design for cross-organization
emergency response processes,” IEEE Trans. Syst., Man, Cybern.: Syst.,
vol. 50, no. 10, pp. 3685–3700, Oct. 2020.

[27]

 S. G. Wang, W. L. Duo, X. Guo, X. N. Jiang, D. You, K. Barkaoui, and
M. C. Zhou, “Computation of an emptiable minimal siphon in a
subclass of Petri nets using mixed-integer programming,” IEEE/CAA J.
Autom. Sinica, vol. 8, no. 1, pp. 219–226, Jan. 2021.

[28]

 W. Reisig, Petri Nets: An Introduction, Vol 4. Springer Science &
Business Media, 2012.

[29]

 W. M. P. van der Aalst, “The application of petri nets to workflow
management,” J. Circuits, Syst., Comput., vol. 8, no. 1, pp. 21–66, Feb.
1998.

[30]

 F. Rosa-Velardo and D. de Frutos-Escrig, “Name creation vs. replica-
tion in petri net systems,” Fundam. Inform., vol. 88, no. 3, pp. 329–356,
Aug. 2008.

[31]

 F. Rosa-Velardo and D. de Frutos-Escrig, “Decidability and complexity
of petri nets with unordered data,” Theor. Comput. Sci., vol. 412, no. 34,
pp. 4439–4451, Aug. 2011.

[32]

 A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst,
“Conformance checking using cost-based fitness analysis,” in Proc.

[33]

15th Int. Enterprise Distributed Object Computing Conf., Helsinki,
Finland, 2011, pp. 55–64.
 A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and W.
M. P. van der Aalst, “Alignment based precision checking,” in Proc.
Int. Conf. Business Process Management, Tallinn, Estonia, 2012, pp.
137–149.

[34]

 J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A robust
F-measure for evaluating discovered process models,” in Proc. IEEE
Symp. Computational Intelligence and Data Mining, Paris, France,
2011, pp. 148–155.

[35]

 K. B. Lassen and W. M. P. van der Aalst, “Complexity metrics for
workflow nets,” Inf. Softw. Technol., vol. 51, no. 3, pp. 610–626, Mar.
2009.

[36]

 S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Using life
cycle information in process discovery,” in Proc. 13th Int. Conf.
Business Process Management, Innsbruck, Austria, 2016, pp. 204–217.

[37]

 J. G. Lou, Q. Fu, S. Q. Yang, J. Li, and B. Wu, “Mining program
workflow from interleaved traces,” in Proc. 16th ACM SIGKDD Int.
Conf. Knowledge Discovery and Data Mining, Washington, USA, 2010,
pp. 613–622.

[38]

Cong Liu (Member, IEEE) received the B.S. and
M.S. degrees in computer software and theory from
Shandong University of Science and Technology, in
2013 and 2015, respectively, and the Ph.D. degree in
computer science and information systems from the
Eindhoven University of Technology, the Nether-
lands, in 2019. He is currently a Full Professor at the
School of Computer Science and Technology, Shan-
dong University of Technology. He has more than 60
publications in journals and conferences like IEEE

Transactions on Services Computing, IEEE Transactions on Systems, Man,
and Cybernetics: Systems, IEEE Internet of Things Journal, IEEE Transac-
tions on Automation Science and Engineering, IEEE Transactions on Big
Data, IEEE Systems Journal, IEEE Transactions on Intelligent Transporta-
tion Systems, IEEE Network, Information Sciences, Future Generation Com-
puter Systems, Expert Systems with Applications, Decision Support Systems,
Enterprise Information Systems, International Conference on Web Services,
and International Conference on Program Comprehension, etc. His current
research interests include business process management, process mining, Petri
nets, and emergency management.

 2160 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 12, DECEMBER 2022

http://dx.doi.org/10.1109/TASE.2020.2993376
http://dx.doi.org/10.1109/TASE.2020.2993376
http://dx.doi.org/10.1016/j.tcs.2011.05.007
http://dx.doi.org/10.1016/j.infsof.2008.08.005
http://dx.doi.org/10.1109/TASE.2020.2993376
http://dx.doi.org/10.1109/TASE.2020.2993376
http://dx.doi.org/10.1016/j.tcs.2011.05.007
http://dx.doi.org/10.1016/j.infsof.2008.08.005
http://dx.doi.org/10.1109/TASE.2020.2993376
http://dx.doi.org/10.1109/TASE.2020.2993376
http://dx.doi.org/10.1016/j.tcs.2011.05.007
http://dx.doi.org/10.1109/TASE.2020.2993376
http://dx.doi.org/10.1109/TASE.2020.2993376
http://dx.doi.org/10.1016/j.tcs.2011.05.007
http://dx.doi.org/10.1016/j.infsof.2008.08.005
http://dx.doi.org/10.1016/j.infsof.2008.08.005

	I Introduction
	II Related Work
	III Motivating Example
	IV Preliminaries
	A Petri Nets and Workflow Nets
	B Event Logs

	V Formal Modeling of Multi-Instance Processes
	A Multi-Instance Business Processes
	B Multi-Instance Petri Nets

	VI Discovering MBPM From Event Logs
	A An Approach Overview
	B Nesting Relation Detection
	C Hierarchical Log Construction and MBPM Discovery

	VII Tool Implementation
	VIII Experimental Evaluation
	A Quality Metrics
	B Experimental Results

	IX Conclusion
	References

