Correction to "Global Practical Stabilization of Discrete-time Switched Affine Systems via a General Quadratic Lyapunov Function and a Decentralized Ellipsoid"

Mohammad Hejri

In [1], some corrections should be made in the statements of Lemmas 2 and 4, and proofs of Lemma 2 and Prop. 3 as follows. In what follows, all the equations, Lemmas and Propositions numbers are referred to the original article [1].

Lemma 2. Ellipsoid $\mathcal{E}(Q, c, \rho)$ with $Q=Q^{T} \succ 0$ and (8) is an attractive set for the system (2) according to Def. 2 and using switching function (12) if $\forall e(k) \notin \mathcal{E}(Q, c, \rho), \exists i \in \mathbb{K}$ and $\exists \gamma>0$ such that

$$
\begin{align*}
& {\left[\begin{array}{c}
A_{i} e(k)+l_{i} \\
1
\end{array}\right]^{T}\left[\begin{array}{ll}
Q & c \\
c^{T} & \rho
\end{array}\right]\left[\begin{array}{c}
A_{i} e(k)+l_{i} \\
1
\end{array}\right]-} \\
& {\left[\begin{array}{c}
e(k) \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
Q & c \\
c^{T} & \rho
\end{array}\right]\left[\begin{array}{c}
e(k) \\
1
\end{array}\right] \leq-\gamma} \tag{25}
\end{align*}
$$

Lemma 4. Let the conditions (6)-(8) be held. Ellipsoid $\mathcal{E}\left(Q, e_{c}, 1\right)$ in (5) with $Q=Q^{T} \succ 0$ is an attractive set for the system (2) according to Def. 2 and using switching function (12) if $\forall e(k) \notin \mathcal{E}\left(Q, e_{c}, 1\right), \exists i \in \mathbb{K}$ and $\exists \gamma>0$ such that

$$
\begin{aligned}
& \left(A_{i} e(k)+l_{i}-e_{c}\right)^{T} Q\left(A_{i} e(k)+l_{i}-e_{c}\right) \\
& -\left(e(k)-e_{c}\right)^{T} Q\left(e(k)-e_{c}\right) \leq-\gamma, \forall e(k) \notin \mathcal{E}\left(Q, e_{c}, 1\right)
\end{aligned}
$$

The proof of Prop. 3. is modified as follows. We show that the conditions of Prop. 3 imply the condition of Lemma 2. Using the similar arguments in the proof of Prop. 2, from (27) one can obtain

$$
\begin{align*}
& {\left[\begin{array}{c}
e(k) \\
1
\end{array}\right]^{T}\left[\begin{array}{ll}
Q & * \\
c^{T} & \rho
\end{array}\right]\left[\begin{array}{c}
e(k) \\
1
\end{array}\right]>0 \Rightarrow} \\
& \quad\left[\begin{array}{c}
e(k) \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
\tilde{M}_{1}^{\prime} & * \\
\tilde{M}_{2}^{\prime} & \tilde{M}_{3}^{\prime}
\end{array}\right]\left[\begin{array}{c}
e(k) \\
1
\end{array}\right] \leq-\gamma \tag{32}
\end{align*}
$$

where $\gamma>0$ is a positive constant. By substituting $\tilde{M}_{1}^{\prime}, \tilde{M}_{2}^{\prime}$, and \tilde{M}_{3}^{\prime} from (29)-(31) into (32) and after some algebra, one can reach

$$
\begin{align*}
& e(k) \notin \mathcal{E}(Q, c, \rho) \Rightarrow \\
& \sum_{i \in \mathbb{K}} \lambda_{2 i}^{\prime}\left[\left[\begin{array}{c}
A_{i} e(k)+l_{i} \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
Q & * \\
c^{T} & \rho
\end{array}\right]\left[\begin{array}{c}
A_{i} e(k)+l_{i} \\
1
\end{array}\right]-\right. \\
& \left.\quad\left[\begin{array}{c}
e(k) \\
1
\end{array}\right]^{T}\left[\begin{array}{ll}
Q & * \\
c^{T} & \rho
\end{array}\right]\left[\begin{array}{c}
e(k) \\
1
\end{array}\right]\right] \leq-\gamma \tag{33}
\end{align*}
$$

[^0]Now using (28) and (33), we have
$e(k) \notin \mathcal{E}(Q, c, \rho) \Rightarrow \exists i \in \mathbb{K}$ such that

$$
\begin{gather*}
{\left[\begin{array}{c}
A_{i} e(k)+l_{i} \\
1
\end{array}\right]^{T}\left[\begin{array}{ll}
Q & * \\
c^{T} & \rho
\end{array}\right]\left[\begin{array}{c}
A_{i} e(k)+l_{i} \\
1
\end{array}\right]-} \\
{\left[\begin{array}{c}
e(k) \\
1
\end{array}\right]^{T}\left[\begin{array}{cc}
Q & * \\
c^{T} & \rho
\end{array}\right]\left[\begin{array}{c}
e(k) \\
1
\end{array}\right] \leq-\gamma} \tag{34}
\end{gather*}
$$

The expression in (34) is identical to the condition of Lemma 2 , and as a result, the attractiveness of the ellipsoid $\mathcal{E}(Q, c, \rho)$ is concluded under switching rule (12). The proof of Prop. 3 is completed.

Within the proof of Lemma 2, the relation (60) must be modified as

$$
\begin{align*}
& e(k) \notin \mathcal{E}(Q, c, \rho) \Rightarrow \exists i \in \mathbb{K} \text { such that } \\
& v\left(A_{\sigma(e(k))} e(k)+l_{\sigma(e(k))}\right)-v(e(k))=\Delta v(e(k)) \\
& \quad \leq v\left(A_{i} e(k)+l_{i}\right)-v(e(k)) \leq-\gamma<0 \tag{60}
\end{align*}
$$

The proof is completed just after the forgoing modified relation (60) by the following statement:

Therefore, conditions (b) and (c) in Lemma 1 are fulfilled, and the attractive property of the ellipsoid $\mathcal{E}(Q, c, \rho)$ is concluded.

Indeed, the expressions just after (60) up to (66) in the proof of Lemma 2 in [1] must be omitted. The problem returns to the definition of function $\phi(s)$ in (62) where $\|e(k)\|$ must be replaced by the distance function $\|e(k)\|_{\mathcal{E}}=\inf _{y \in \mathcal{E}}\|e(k)-y\|$ denoting the distance from point $e(k)$ to the ellipsoid \mathcal{E}. Therefore, using (60) in [1] and Lyapunov set asymptotic stability arguments [2], we can only conclude that $\phi\left(\|e(k)\|_{\mathcal{E}}\right) \rightarrow 0$ as $k \rightarrow \infty$, and the existence of a positive constant γ is not proved.

REFERENCES

[1] M. Hejri, "Global practical stabilization of discrete-time switched affine systems via a general quadratic Lyapunov function and a decentralized ellipsoid," IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 11, pp. 1837-1851, November 2021.
[2] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: Modeling, Stability and Robustness. Princeton University Press, 2012.

[^0]: M. Hejri is with the Department of Electrical Engineering, Sahand University of Technology, Sahand New Town, Tabriz 51335-1996, Iran (e-mail: hejri@sut.ac.ir).
 Digital Object Identifier 10.1109/JAS.2022.106145

