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Abstract

Dialogue state tracking (DST), as an essential component of task-
oriented dialogue systems, refers to keeping track of the user’s intentions
as a conversation progresses. Typical methods formulate it as a classifi-
cation task with fixed pre-defined slot-value pairs, or generate slot-value
candidates given the dialogue history. Most of them have limitations
on considering interactions of slots with utterance sentences and other
slots progressively. To tackle this problem, we propose a Dialogue State
Tracker with Hierarchical Temporal Slot Interactions (DST-HTSI) to
capture slot-related semantic information from utterance sentences and
slots. It firstly captures interactive information among slots within a turn
and across turns by applying hierarchical slot interactions. Then a tem-
poral slot interaction module is employed to establish slot dependencies
along the time. Finally, a GRU is applied as the decoder to generate
values for each slot correspondingly. Furthermore, we also leverage pre-
trained language models as the backbone of our model. Experiments show
that DST-HTSI outperforms previous state-of-the-art on MultiWOZ
2.2 and WOZ 2.0, and achieves competitive results on MultiWOZ 2.1.

Keywords: Dialogue state tracking, Attention mechanism, Task-oriented
dialogue system, Slot interaction.

1



Springer Nature 2021 LATEX template

2 Article Title

1 Introduction

Task-oriented dialogue (TOD) systems aim at assisting users in completing
specific tasks (e.g., finding restaurants, booking hotel reservation and tick-
ets) in natural language [1]. As its indispensable component, dialogue state
tracking (DST) has been attracting growing attentions in both industry and
academy communities recently. DST takes as input the dialogue history and
outputs of auxiliary components such as Automatic Speech Recognition (ASR)
and Natural Language Understanding (NLU) [2, 3], then predicts the user’s
goals or requests of the current turn in the form of slot-value pairs. Each
turn may contain more than one state referring to several domains, which
complicates the task considerably. For instance, when a user asks “I need
to book a cheap restaurant and a taxi from Cambridge to Stevenage”, it
involves two domains (i.e., restaurant and taxi) and three states. The system
should extract (restaurant-pricerange, cheap), (taxi-departure, Cambridge) and
(taxi-destination, Stevenage) from the utterance.

The rapid progress has motivated an impressive amount of research in
DST, which can be mainly categorized into three types: hand-crafted rules,
predefined ontology and open vocabulary. The limitation of hand-crafted rules
for computing dialogue states is emphasized by the incapability of deriving
directly from real dialogue data [2]. Predefined ontology approaches [4–8] are
designed as a classification task, selecting the most possible one from a fixed
predefined set of values for each slot. Due to their over-dependency on domain
ontology, these methods fail to predict the values of free-form slots such as
“restaurant-name” and continuous changing value such as “restaurant-book
time”, which might not be observed in the training data. Both of the laborious
collection of slot values and the number of parameters being proportional to
the number of slots [9], restrict the generality of predefined ontology methods
in real applications.

Open vocabulary methods turn to generate slot values sequentially from the
dialogue history without predefined slot values, which can overcome the above
challenges. For example, [10, 11] propose a transferable dialogue state tracker
which generates values from dialogue history augmented by copy mechanism
[12]. [13] selectively overwrites memory with generated values to get more
efficient DST.

Nonetheless, the capability of modeling interactions of slots with utter-
ance sentences and other slots is rarely emphasized in previous studies. An
illustrated example is shown in Table 1, when a user asks for a taxi to travel
between the aforementioned two places at turn 8, the slot taxi-departure is
related to the system utterance at turn 1 and taxi-destination binds to the slot
attraction-name at turn 4. It is convincible that a model being able to deal with
such connections can better track dialogue states in multi-turn dialogues. Hu
et al. [14] attempts to address the issue by modeling slot interactions using a
similarity matrix to control the information flow among similar slots. However,
such slot interactions are invariable and independent of the dialogue context.
Ouyang et al. [15] comes up with an idea that considers the slot correlations
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Table 1 An example of multi-domain dialogue state tracking

usr1: Find me a modern European restaurant in the south.
states: (restaurant-food: modern European)

(restaurant-area: south)
sys1: I found restaurant Alimentum that fits your needs,

would you like me to book that for you?

usr4: Do you know where Castle Galleries is?
states: (attraction-name: Castle Galleries)
sys4: Yes, the address is unit su43, grand arcade, Saint

Andrews street.

usr8: I also need a taxi, to go between the two places.
states: (taxi-departure: restaurant Alimentum)

(taxi-destination: Castle Galleries)
sys8: Sure! when would you like to leave and arrive by?

and predicts the target slot value by directly copying from the source slot at
the last turn. Nevertheless, simply concatenating the dialogue history limits
its ability to further explore the slot interactions across turns. Moreover, tem-
poral information reflecting the sequence of conversations is neglected, which
is crucial when modeling slot interactions. For example, as illustrated in Table
1, the slot taxi-departure at turn 8 should consider attraction-name at turn 4
when predicting values, otherwise the opposite.

Considering the aforementioned problems, we propose a Dialogue State
Tracker with Hierarchical Temporal Slot Interactions, namely DST-HTSI, to
capture slot interactions both within a turn and cross turns, and establish slot
dependencies along the time. Concretely, it firstly calculates context aggre-
gated representations with a transformer encoder, and slot representations
from domain names and slot types. Then we devise hierarchical slot interac-
tions consisting of the local slot interaction and global slot interaction. The
local slot interaction obtains slot-specific features by employing a multi-head
attention that uses slot representations to guide attention towards context at
each turn. And it utilizes another multi-head attention to calculate attention
distributions among these slot-specific features to capture inner-turn slot inter-
actions. The global slot interaction calculates multi-head attentions among
slot information at current turn and those at previous turns to establish slot
correlations across turns. To track the semantic dependencies of the slot repre-
sentations along the time, we construct a temporal slot interaction module by
taking as input the slot representations and cross-turn slot-correlated features.
Finally, we apply a GRU as the decoder with slot gate augmented by copy
mechanism to generate values for each slot independently in the open vocab-
ulary setting. Furthermore, we also exploit the pre-trained language model
BERT as the backbone of DST-HTSI to enhance its language understanding
capabilities.
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Our work illustrates that progressively capturing slot interactions both
within a turn and cross turns hold the promise of advancing the dialogue state
tracking performance. We conduct comprehensive experiments on MultiWOZ
and WOZ datasets, and DST-HTSI achieves impressive results on them. The
ablation study also demonstrates the validity of each module of our model. To
conclude, our key contributions are as follows:

• To the best of our knowledge, DST-HTSI is the first to consider slot cor-
relations both within a turn and across turns by modeling slot interactions
hierarchically at local and global level.

• DST-HTSI is able to aggregate dependencies of slots along the time by
employing temporal slot interaction.

• Our model achieves comparable results with previous state-of-the-art on
MultiWOZ 2.1, and outperforms existing predefined ontology and open
vocabulary methods by 0.71% and 0.33% on MultiWOZ 2.2 and WOZ 2.0
respectively in terms of joint accuracy.

2 Related work

2.1 Dialogue state tracking

Dialogue state tracking, keeping track of user goals or intents throughout a
dialogue, has spurred great interest in the past few years. Traditional dialogue
systems use hand-crafted rules to estimate dialogue states by leveraging ASR
or NLU outputs [16–18]. Although this method does not require any data to
implement, the incapability of benefiting from dialogue data and transferring
to new domains severely limit its usage.

To tackle these problems, data-driven approaches have been proposed,
which requires little feature engineering and provides strong representation
ability. For example, [7] employs BERT [19] to model slots and candidate value
representations and scores each slot-value pair in a non-parametric way. [20]
leverages various copy mechanisms [21] to extract values from the context on-
the-fly for each slot. [22] utilizes graph attention networks to extract schema
information and control dialogue state updating. [23] applies large scale pre-
training on open domain dialogues and transfers to downstream tasks like DST
by performing task-adaptive training. These approaches, however, assuming
that all slots and values are predefined, are greatly hindered when the ontology
size expands.

Recent studies focus on open vocabulary models in generative fashion.
[10] proposes a transferable dialogue state generator to generate values from
utterances. [11] further introduces an utterance tagging technique and a bidi-
rectional language model as an auxiliary task to address the problem that
the performance drops when the dialogue context sequence is long. To handle
unknown slot values, [24] proposes a hierarchical DST framework to iden-
tify, update and integrate known and unknown slot values respectively. [13]
proposes an efficient dialogue state tracking that selectively generate values
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depending on the predicted state operation to avoid generating repetitive
values. [25] incorporates the prompting technique into DST that provides
task-aware context encoding to facilitate slot value generation. To learn more
robust DST, [26] proposes a two-pass generation process, where a second pass
generation is employed to amend the primitive dialogue state in the first pass.

2.2 Attention mechanism

Attention mechanism, which qualifies the interdependence between two ele-
ments or within one element, is firstly introduced to machine translation by
[27] and widely applied to other NLP tasks such as dialogue generation [28, 29],
natural language understanding [3, 30] and conversational emotion detection
[31]. In dialogue state tracking, attention mechanism is usually used to cap-
ture the relation between slots and utterance sentence [14, 32] or directly copy
words from dialogue history [15]. Recent proposed dialogue state tracker uti-
lizes attention mechanism to model relevance among slots [22, 33]. However,
they use only slot names to measure the correlation, making it unchangeable
in different contexts, which may result in the correlation being overlooked or
overrated. Take the dialogue presented in Table 1 as an example, the slot taxi-
departure and taxi-destination are strongly related in Turn 8. While in other
conversations, where one or both of the two slots may not be involved, such
relation does not exit. We propose to address such issues by introducing hier-
archical slot interactions to model slot correlations according to the context
and generate slot values correspondingly.

2.3 Pre-trained language models

Recent advances in pre-trained language models (PLMs) have gained notable
performance promotion in DST [7, 20, 23, 26, 34]. PLMs learn general language
representations through pre-training on large-scare unstructured corpora with
unsupervised learning objectives. They can be generally categorized into three
types, i.e., bidirectional, unidirectional and encoder-decoder transformers.
Bidirectional transformers like BERT [19], trained to reconstruct the original
sequences from the corrupted version, are effective at modeling long texts. It is
normally used to extract deep bidirectional semantic features of the dialogue
context for obtaining better language understanding capabilities [20, 35, 36].
While unidirectional transformers like GPT-2 [37] learn a distribution for next
word prediction based on autoregressive language modeling, which are suit-
able for sequence generation tasks. For example, [26] exploits GPT-2 [37] and
PLATO-2 [38] to amend value generation for DST in two passes. The recent
paradigm has evolved to the adoption of encoder-decoder framework [39],
which can be viewed as the generalizing of the aforementioned two types of
PLMs with both the bidirectional encoder and left-to-right decoder. Specifi-
cally, [25] explores the use of sequence-to-sequence pre-trained transformer T5
[39] for prompt-based DST. In this paper, we adopt BERT [19] as the utterance
encoder to enhance the understanding capability of our model.
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3 Background

In this section, we will briefly introduce the problem statement and two
building blocks of this work, namely multi-head attention and transformer.

3.1 Problem statement

DST is responsible for extracting exact slot values pairs from system and user
utterances. Formally, a dialogue X of T turns is composed of system utterances
Si and user utterances Ui alternately, i.e., X = {D1, D2, · · · , DT }, where each
turn utterance Dt is concatenated by one system utterance St and one user
utterance Ut at the current turn t. Suppose that there are J slots in total
S = {S1,S2, · · · ,SJ} and each slot Sj is the combination of a domain name
(e.g., attraction) and a slot type (e.g., name). For a context till turn t, the
DST model should assign a value for each slot and predict the dialogue state
B = {B1,B2 · · · ,BJ}, where Bj is a slot-value pair and only part of them have
valid values. Those slots who are not involved in the context will be assigned
a meaningless placeholder value like none. In the open vocabulary setting, the
slot is predefined and the task is to generate the slot value correspondingly
given the dialogue history.

3.2 Multi-head attention

The intuition behind multi-head attention (MHA) is that different vectors
in a sentence could semantically related to each other in various ways. For
instance, given a sentence “I want a Chinese restaurant to have lunch”, when
computing the representation of the verb “have”, it has a great possibility to
focus on the noun “lunch”. Similarly, it is quite important to attend to the
pronoun “I” as it is the one who performs the action. Thus [40] proposes a
powerful mechanism, allowing us to use different representation sub-spaces of
queries Q, keys K and values V who are fed into different attention pooling
in parallel. Mathematically, MHA(Q,K,V) is defined as follows,

Qn = QWn
Q,K

n = KWn
K ,Vn = VWn

V

headn =
Qn(Kn)T√

dm
Vn

H = [head1,head2, · · · ,headnhead ]

(1)

where Wn
Q,W

n
K ,Wn

V ∈ Rdk×dk/nhead are linear projection matrices, dm is the
model dimensions and nhead is the number of heads. [·, ·, · · · , ·] denotes the
concatenation operation. To make the information flow unidirectionally, i.e.,
information at current position can only attend to previous positions. The
common way is to mask out subsequent vectors and let the vector at current
position attend to those at previous positions. Formally, for a matrix H =
[hi, · · · ,hk] containing k vectors, to calculate the unidirectional multi-head
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self-attention (UMHA) at position i:

UMHA(hi) = MHA(hi,h≤i,h≤i) (2)

3.3 Transformer

Transformer [40] abandons traditional RNN architectures and only uses atten-
tion mechanism to process sequential data such as texts and audios. The
superiority of transformer over RNN mainly lies in two aspects: 1) Being able
to train parallelly in a non-sequential way instead of modeling the sequence
word by word, which makes it train faster than RNN with comparable size. 2)
Transformer suffers little from long range semantic dependencies as it processes
a sentence as a whole and uses positional embeddings to maintain temporal
information rather than depending on the historical information. Transformer
is composed of an encoder and a decoder. The encoder has two sub-layers.
The first sub-layer is a multi-head self-attention mechanism, and the second
sub-layer is a feedforward neural network, where a residual connection [41]
is employed around each sub-layer followed by a layer normalization (Layer-
Norm) [42]. In addition to the two sub-layers, transformer decoder added a
third sub-layer to perform cross-attention over outputs of the encoder.

4 Methodology

Fig. 1 presents our model consisting of four parts: a) sentence encoder gen-
erating utterance and slot representations, b) hierarchical slot interactions
modeling slot correlations within a turn and across turns, c) a temporal slot
interaction module following each slot’s changes along the time and d) a value
generator with slot gate generating output tokens for all slots independently.

4.1 Sentence encoder

The sentence encoder includes the utterance encoder and slot encoder. The
utterance encoder is mainly to establish semantic dependencies of a turn utter-
ance. In this paper, we use transformer encoder [40] to map all the words
Xt =< sos > ⊕St⊕ < sep > ⊕Ut⊕ < eos > at turn t to hidden vectors for its
superiority of modeling sequences. ⊕ means concatenation operation.

Hx
t = Transformer(Φemb(Xt)) (3)

where Hx
t = [h1, · · · ,h|Xt|] is a sequence of vectors. |Xt| is the number of

words in the tth turn utterance Xt. Φemb is the embedding function that maps
a token into a fixed-size vector.

For the slot encoder, it takes as input the embedding of the jth domain
name Dj and slot type Rj , then produces the slot encoding by simply adding
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Slot Encoder ... 

… 
Usr: I also need a taxi to go  

between the two places 

Utterance Encoder

... 

Utterance Encoder

Galleries Castle 

Castle Galleries 

Global Slot Interaction 

Local Slot Interaction Local Slot Interaction ... 

Temporal Slot
Interactions 

Temporal Slot
Interactions 

Temporal Slot
Interactions 

(a) 

(b) 

(c) 

UniTransformer 

Muilti-head Attention 

... 

Inner-turn Slot
Attention 

FeedForward 

... 

Slot-word Attention 

Add & LayerNorm 

Add & LayerNorm 

Add & LayerNorm 

none 

dontcare 

ptr 

Domains 
Hotel, Train, Attraction 

Restaurant, Taxi 

Slots 
Food, Name,

Destination, etc. 

Fig. 1 The architecture of our proposed model, which consists of four components, i.e.,
(a) sentence encoder, (b) hierarchical slot interactions, (c) temporal slot interaction and
(d) slot value generator with slot gate. < sep > is a special token that separates the user
utterance and system utterance. < sos > and < eos > represents the start and end of the
sequence respectively. Each colored arrow denotes a slot-specific vector flow (e.g., yellow
arrow denotes the flow of slot taxi-destination). It illustrates an example of the generated
value corresponding to the slot taxi-destination based on the given utterance at turn t.

them up following [10].

hs
j = Φemb(Dj) + Φemb(Rj) (4)

4.2 Hierarchical slot interactions

In this section, we will introduce the hierarchical slot interactions in two levels,
i.e., local and global slot interactions.

4.2.1 Local slot interaction

The local slot interaction module is designed for two purposes: 1) capturing the
word-level slot-specific contextual information and 2) modeling slot interac-
tions within a turn. To achieve that, we implement a slot-word attention layer,
an inner-turn slot attention layer and a feedforward network layer. Residual
connection and layer normalization are used in each layer.

The semantic relevance between slots and turn utterance is obtained by
applying a multi-head cross-attention [40] referred as slot-word attention,
which takes as input the tth turn word vectors Hx

t and all slot encoding
vectors Hs = [hs

1,h
s
2, · · · ,hs

J ], and produces word-level slot-specific vectors
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H2
t = [h2

1,t,h
2
2,t, · · · ,h2

J,t] for each slot, i.e.,

H1
t = MHA(Hs,Hx

t ,H
x
t )

H2
t = LayerNorm(Hs + H1

t )
(5)

Slot interactions within a turn are modeled by another multi-head attention
referred as inner-turn slot attention. Formally,

H3
t = MHA(H2

t ,H
2
t ,H

2
t )

H4
t = LayerNorm(H2

t + H3
t )

(6)

The inner-turn slot attention layer is followed by a feedforward net-
work with Gaussian Error Linear Units (GELU) activation function [43] that
produces inner-turn slot-correlated vectors.

Hffn
t = GELU(H4

tW1 + b1)W2 + b2

Hlocal
t = LayerNorm(H4

t + Hffn
t )

(7)

4.2.2 Global slot interaction

For the purpose of capturing slot correlations across turns, we devise a
global slot interaction module, which enables inner-turn slot-correlated vec-
tors to query those appearing at the current turn or previous turns and
produces cross-turn slot-correlated vectors, as shown in Figure. 2. It is worth
noting that each vector corresponds to J column vectors, i.e., Hlocal

t =
[hlocal

1,t ,hlocal
2,t , · · · ,hlocal

J,t ], t = {1, 2, · · · , T}, which means there are J × T
vectors in total.

Fig. 2 Illustration of global slot interaction. Circles denote inner-turn slot-correlated vec-
tors. The columns 1 ∼ J are slot indices, rows 1 ∼ T are turn indices. Vectors at turn 1 (one
example is marked in blue) can only attend to those at turn 1, while vectors at turn t (one
example is marked in orange) can attend to those at turn 1 ∼ t.
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The global slot interaction module is implemented by a unidirectional
transformer encoder with N identical layers. Each layer has two sub-layers.
The first sub-layer is a multi-head attention, which is devised to retrieve the
relevant slot information. The second sub-layer is a feedforward network (FFN)
with GELU activation function. Similar to the local slot interaction, both
sub-layers are followed by a residual connection and a layer normalization.

hmha
j,t = MHA(hn−1

j,t ,hn−1
1∼J,1∼t,h

n−1
1∼J,1∼t)

hln
j,t = LayerNorm(hmha

j,t + hn−1
j,t )

hffn
j,t = GELU(hln

j,tW
n
3 + bn

3 )Wn
4 + bn

4

hn
j,t = LayerNorm(hffn

j,t + hln
j,t)

(8)

where hn
j,t is the output of the nth layer corresponding to slot j at turn t.

h0
j,t = hlocal

j,t , hglobal
j,t = hN

j,t.

4.3 Temporal slot interaction

Albeit hierarchical slot interactions are expected to capture possible correla-
tions among slots, the temporal dependencies of the cross-turn slot-correlated
vectors corresponding to a specific slot, i.e., hglobal

j,1 ,hglobal
j,2 , · · · ,hglobal

j,t , remain
to be established. This may result in the model unable to take full advantages of
contextual information. Besides, these vectors are supposed to be summarized
as one slot-specific context vector to facilitate value generation.

Thus, we propose a temporal slot interaction module with two sub-layers,
to address the two issues mentioned above respectively. The first sub-layer is
a unidirectional transformer encoder with M identical layers, which is similar
to the standard transformer encoder except that the multi-head self-attention
is substituted by the unidirectional multi-head self-attention as stated in
Equation 2, so that the temporal information can be established. Formally,
for the representation of the jth slot at turn t, the temporal information is
obtained by1:

hctx
j,t = MHA(hglobal

j,t ,hglobal
j,≤t ,hglobal

j,≤t )

htmp
j,t = GELU(hctx

j,t W
tmp
1 + btmp

1 )Wtmp
2 + btmp

2

(9)

The second sub-layer is a multi-head attention between the slot encoding
and vectors produced by the first sub-layer to obtain the slot-specific context
vector.

cj,t = MHA(hs
j ,h

tmp
j,1∼t,h

tmp
j,1∼t) (10)

1Residual connection and layer normalization is omitted for simplicity.
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4.4 Slot value generator

After slot interactions, we build the slot value generator using Gated Recurrent
Unit (GRU) [44] and generate the dialogue state value sequentially.

hvalue
i,j,t = GRU(xi,t,h

value
i−1,j,t)

pgen
i,j,t = softmax(hvalue

i,j,t Wvocab)
(11)

where xi,t is the embedding of the ith word in the target slot value sequence at
turn t during training and the last generated word while testing, hvalue

0,j,t = cj,t.
Wvocab is a trainable matrix whose weights are tied with the embedding Φemb

[45] and maps hidden state hvalue
i,j,t to the vocabulary list.

Aside from computing the distribution probability over the vocabulary, the
generator calculates the score for “copying” words from the dialogue history
till the current turn.

pcopy
i,j,t′ = softmax(hvalue

i,j,t Ht′)

pcopy
i,j,t =

∑
t′≤t

pcopy
i,j,t′

(12)

The final distribution is the weighted sum of two distributions and the
training objective is defined as the cross entropy between the probability
distribution of the generated sequence and true labels yi,j,t.

β = sigmoid(hvalue
i,j,t W) ∈ R1

pfinal
i,j,t = β · pgen

i,j,t + (1 − β) · pcopy
i,j,t

Lp =

T∑
t=1

J∑
j=1

∑
i

−yi,j,t log(pfinal
i,j,t )

(13)

To reduce the challenge of predicting the slot at current turn, we apply
a slot gate following [10]. The slot gate is a three-way classifier to decide
the general status in one of {none, dontcare, ptr} of the current state, gj =
softmax(cjWg) ∈ R3. Only when the ptr is predicted will the state value
generation be used, otherwise the state value stays the same as the slot gate
prediction, i.e., none or dontcare. The loss of slot gate is defined as the cross
entropy between gj and the true slot gate label ygate

j .

Lsg =
∑
j

−ygate
j log(gj)

L = Lp + λLsg

(14)

where λ is a hyper-parameter that weights two losses.
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5 Experiments and analysis

5.1 Datasets

Table 2 Datasets statistics of MultiWOZ 2.1, 2.2 and WOZ 2.0.

Datasets MultiWOZ 2.1/2.2 WOZ 2.0

Domain name (D) Hotel Restaurant Train Taxi Attraction Restaurant

Slot type (S)

area
book day

book people
book stay
internet
name

parking
pricerange

stars
type

area
book day

book people
book time

food
name

pricerange

arriveby
book people

day
departure
destination
leaveat

arriveby
departure
destination
leaveat

area
name
type

area
food

pricerange

Train/Valid/Test 8438/1000/1000 600/200/400

Three datasets MultiWOZ 2.1 [46], MultiWOZ 2.2 [47] and WOZ 2.0 [48]
are used to evaluate the validity of our model. MultiWOZ 2.1 is a task-oriented
dialogue dataset with 10438 multi-turn dialogues that involves 7 domains in
which only five of them (restaurant, hotel, attraction, taxi, train) are used
following [10]. MultiWOZ 2.2 further fixed the dialogue state annotation errors
across 17.3% of the utterances on top of the MultiWOZ 2.1 [47]. WOZ 2.0 is a
single domain DST dataset, with 3 slots (area, food and price range) involved
in the restaurant domain. The dataset statistics are presented in Table 2.

5.2 Training details

The hidden nodes of the utterance encoder, slot interactions and slot value
generator are set to 400 following [5, 10, 14, 15]. The number of heads in
all transformer encoders (including unidirectional transformer encoder) and
multi-head attentions are set to 8. The number of layers of utterance encoder,
global slot interaction and unidirectional transformer in temporal slot interac-
tion is 1. Besides, we also employ the base uncased version of BERT [19] with
12 layers of 768 hidden nodes and 12 attention heads as the utterance encoder
to enhance the semantic understanding capability of our model. Accordingly,
the hidden nodes of subsequent modules, i.e., slot interactions and slot value
generator, are set to 768, and the number of heads in slot interactions are set
to 12. It is trained using the Adam [49] optimizer with learning rate annealing
in the range of [1e-3, 1e-4] for the based model, and with constant learning
rate of 1e-5 for the enhanced model. We set the dropout probability to 0.1,
batch size to 16. The training procedure stops when the epoch reaches 200 or
the validation loss has not fallen for 6 epochs. The teacher forcing rate is set
to 0.5 and label smoothing [50] is applied with value 0.1 during training. The
loss weight λ in Equation 14 is set to 1.
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5.3 Baselines

We carry out comprehensive experiments on the above three datasets by
comparing our method with 4 predefined ontology methods and 12 open vocab-
ulary methods.. Among them, SimpleTOD, ConvBERT, TripPy, Seq2Seq-DU,
SDP-DST, TripPy+SaCLog, AG-DST and DSGFNet employed pre-trained
language models (PLMs)2 to initialize model parameters. Particularly, Con-
vBERT and TripPy+SaCLog used extra dialogue datasets to pre-train their
modules.

• GLAD [5] uses a global bidirectional LSTM to share parameters between
slots, and a local bidirectional LSTM for each slot to learn slot-specific
features.

• TRADE [10] generates values for each slot augmented by copy mechanism
[21] and slot gate from the concatenated dialogue history.

• DST-SC [15] applies a slot attention to learn slot-specific features from the
original context and integrate them using a slot information sharing.

• HDSTM [24] designs a hierarchical framework that derives, updates and
integrates the distribution of unknown and known slot values sequentially.

• SAF [51] efficiently utilizes data in a self-supervised manner by introducing
an auxiliary pre-training task and an attention flow mechanism to better
understand user intents and file out the redundant information.

• DST-picklist [52] proposes a dual-strategy model to jointly handle the
categorical and non-categorical slots.

• SOM-DST [13] considers dialogue state as an explicit fixed-sized memory
and proposes to selectively overwrite it for more efficient DST.

• SimpleTOD [53] is a generative model for DST that uses a single causal
language model trained on three subtasks recast as a sequence prediction
problem.

• ConvBERT [23] is a BERT-like model trained on large-scale open domain
dialogues to encourage dialogue research in representation-based transfer,
domain adaptation, and sample-efficient task learning.

• SDP-DST [25] incorporates the language modeling approach that uses
schema-driven prompting into dialogue state tracking.

• SST [22] proposes a schema-guided dialogue state tracker with graph
attention networks to predict dialogue states from utterances and schema
graphs.

• TripPy [20] fills slots with values copied from the context, predictions from
previous turns or system informs.

• Seq2Seq-DU [36] formulates DST as a sequence-to-sequence problem, which
leverages two BERTs to model the rich representations of utterances and
schemas.

• TripPy+SaCLog [34] combines TripPy with curriculum learning for DST,
which requires 337346 dialogue data to pre-train its modules.

2In this paper, PLMs particularly refers to pre-trained transformers such as BERT [19] and
GPT-2 [37].
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• AG-DST [26] devises a two-pass generation process consisting of a basic
generation that uses the current turn and previous dialogue state to generate
primitive dialogue state, and an amending generation to revise the primitive
dialogue state.

• DSGFNet [35] generates a dynamic schema graph to explicitly fuse the
prior slot-domain membership relations and dialogue-aware dynamic slot
relations.

5.4 Experimental results

Table 3 Experimental results. The column PLMs indicates whether the model utilized
pre-trained language models. †, ‡ and ∗ indicate results are borrowed from [25], [26] and
[34] respectively.

Models PLMs
MultiWOZ

WOZ 2.0

2.1 2.2

Predefined
Ontology

GLAD % - - 88.10∗

DST-picklist % 53.50 - -

ConvBERT ! 58.70 - 93.10∗

SST % 55.23 - -

Open
Vocabulary

TRADE % 45.60† 48.60† -

DST-SC % 49.58 - -

HDSTM % - - 84.51

TriPpy ! 55.29 - 92.70∗

SAF % 51.60 - -

SOM-DST % 53.68 53.81‡ -

SimpleTOD ! 56.45 54.02‡ -

SDP-DST ! 56.66 57.60 -

Seq2Seq-DU ! 56.10 54.40 91.20

TriPpy+SaCLog ! 60.61 - 94.20

AG-DST ! - 57.26 91.37

DSGFNet ! 56.70 55.80 -

DST-HTSI % 55.81 56.19 92.37

DST-HTSIbert ! 59.62 58.31 94.53

We use the joint accuracy as the main evaluation metric to evaluate the
performance of the dialogue state tracker, which is defined as the proportion
of accurately predicted states at each dialogue turn. It is considered correct if
and only if all slot values are correctly predicted.

Table 3 shows the main results of our model and other baselines. The base-
lines without PLMs include GLAD, DST-picklist, SST, TRADE, DST-SC,
HDSTM, SAF and SOM-DST. Compared with these baselines, our proposed
DST-HTSI method achieves the best result on all datasets. Among them, the
predefined ontology methods include GLAD, DST-picklist and SST, which do
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not suffer from intrinsic generative defects like generating ill-formatted strings.
Compared with methods achieving the best results on MultiWOZ 2.1 and
WOZ 2.0 respectively, i.e., SST and GLAD, our DST-HTSI promotes the joint
accuracy by 0.58% and 4.27%. The open vocabulary methods without PLMs
include TRADE, DST-SC, HDSTM, SAF and SOM-DST. Comparatively,
DST-HTSI shows obvious performance promotions, with 1.13% and 2.38%
improvement over SOM-DST on MultiWOZ datasets and 7.86% improvement
over HDSTM on WOZ 2.0.

Dialogue state trackers that are equipped with PLMs benefit from the
rich linguistic knowledge embedded in PLMs [23, 26, 53], and generally gain
remarkable performance improvements. To make fair comparisons with these
methods, we also employ the base uncased version of BERT [19], the pre-
trained deep bidirectional transformer, to initialize the parameters of utterance
encoders. The result is presented as DST-HTSIbert in the last row of Table
3. As we can see, DST-HTSIbert indicates more competitive performance,
with 3.81%, 2.12% and 2.16% joint accuracy promotion over DST-HTSI on
three datasets respectively. Compared with other baselines that are equipped
with PLMs, DST-HTSIbert achieves best results among all the baselines on
MultiWOZ 2.2 and WOZ 2.0, outperforming the previous state-of-the-art by
0.71% (SDP-DST) and 0.33% (TripPy+SaCLog) respectively. Furthermore,
ConvBERT and TripPy+SaCLog utilize a large number extra dialogue data
to pre-train their DST models, which generally exhibit more splendid perfor-
mance than those trained on a single dataset. Nevertheless, our DST-HTSIbert
is still comparable with these methods. In fact, it achieves the state-of-the-art
on MultiWOZ 2.2 and WOZ 2.0, and is merely exceeded by TripPy+SaCLog
with a narrow margin on MultiWOZ 2.1.

5.5 Ablation study

Table 4 Ablation study conducted on MultiWOZ 2.1 and 2.2 datasets measuring the
joint accuracy (%).

Model
MultiWOZ

2.1 2.2

DST-HTSI 55.81 55.19

-local slot interactions
-slot word attention 53.13(-2.68) 52.56(-2.63)
-inner-turn slot attention 54.95(-0.86) 54.38(-0.81)

-global slot interactions 52.13(-3.68) 51.45(-3.74)
-temporal slot interactions 54.16(-1.65) 53.94(-1.25)
-above three 48.87(-6.94) 49.73(-5.46)

To evaluate the impacts of each module influencing the joint accuracy,
we conduct several ablation experiments on MultiWOZ datasets. As shown
in Table 4, performance degradation can be observed after removing part of
the modules, among which casting off the global slot interaction results in
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the most severe performance drop on MultiWOZ 2.1 and 2.2 by 3.68% and
3.74% respectively. While relatively mild performance decline happens after
removing the inner-turn slot attention on these datasets. We argue that this is
resulted from the less common slot interactions within a turn comparing with
those across turns. As a matter of fact, only 7.90% of slot pairs share the same
value within a turn3 on test dataset of MultiWOZ 2.1. Besides, the global slot
interaction consists of attending to slots within a turn, which greatly makes
up the absence of inner-turn slot interactions.

To test the effectiveness of temporal slot interaction, we take the mean
of cross-turn slot-correlated vectors for the slot-specific context vector after
removing it, i.e., Equation 9 is replaced with cj = 1/t

∑t
t′=1 h

context
j,t′ . The

result emerges the joint accuracy declines of 1.65% and 1.25% on two datasets
respectively, suggesting its capability of modeling the contextual semantic
information of cross-turn slot-correlated vectors produced by the global slot
interaction.

Furthermore, we implement another model (DST-HTSIΦ) that discards the
above three modules as follows. At turn t, instead of encoding each turn utter-
ance separately, we concatenate utterances till the current turn as a whole
sequence and encode them using transformer encoder to obtain context hidden
representations Hx

t = Transformer(Φemb(X≤t)), where X≤t = X1 ⊕ · · · ⊕Xt.
Then the slot-specific context vector is calculated by applying a multi-head
attention from the slot encoding hs

j to Hx
t , i.e., cj,t = MHA(hs

j ,H
x
t ,H

x
t ). The

slot value generation process remains the same as described in Section 4.4.
The experimental result is presented in the last row of Table 4. It is obvi-
ous that the joint accuracy is much lower than merely removing one module,
which demonstrate the crucial impact of hierarchical slot interactions on DST-
HTSI. Surprisingly, we notice that it still outperforms TRADE, which shares
similar architecture with DST-HTSIΦ. We argue that this is attributable to
the superiority of transformer and multi-head attention over recurrent neural
networks and vanilla attention, which are employed by TRADE, in capturing
long-range semantic dependencies.

5.6 Slot interactions tests

As stated before, each slot at current dialogue turn may show correlations
with those at previous turns. In order to demonstrate the effectiveness of the
proposed model dealing with potential slot interactions, we conduct contrast
experiments by counting up connected slot pairs and record the joint accuracy
achieved by the proposed model with (Model I) and without (Model II) the
global slot interaction in Table 5. There are 79 types of connected slot pairs
and we listed the top 5 numbers in the table. We find that Model I outperforms
Model II on almost every pair and achieves 60.07% overall slot accuracy with
8.91% improvement over Model II. Besides, Table 6 lists the overall accuracy
of slots that are not explicitly connected, i.e., slots with different values, and
Model I still increases the slot accuracy by 0.85%. It is worth mentioning that

3We call such slot pairs as connected pairs for simplicity
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Table 5 Slot interactions evaluation on test dataset of MultiWOZ 2.1. † denotes Model I
and ‡ denotes Model II, similarly hereinafter

Source Slot Target Slot Total w† w/o‡

restaurant-book time taxi-arriveby 57 36 27
hotel-internet hotel-parking 53 47 39

restaurant-name taxi-destination 39 27 18
restaurant-area attraction-area 31 22 19
attraction-name taxi-departure 26 16 17

Others 703 398 345

Total number 909 546 465
Overall accuracy(%) - 60.07 51.16

we only count up slots with substantial values and leave out slots with none
values, resulting in low slot accuracy.

Table 6 Overall slot accuracy of slots that are not connected.

w w/o

Overall accuracy(%) 51.18 50.33

5.7 Attention visualization

R: How about Christ College? It s free and located in the centre. would you like more information about it? 
U: Ok, what is the post code 
S: attraction-name: Christ College 

Turn 6 

R: Sure, I need to know destination and where you need picked up. I also need the time and number of people. 
U: I also need a taxi from the church so I can get to the restaurant on time. 
S: taxi-departure: Christ College 
taxi-destination: Frankie and Bennys 
taxi-arriveby: 14:30 

Turn 10 

R: Frankie and Bennys is an expensive Italian restaurant in the south, would you like a reservation? 
U: Yes. Friday. 4 people. 14:30. 
S: restaurant-book day: Friday 
restaurant-book people: 4 
restaurant-book time: 14:30 
restaurant-name: Frankie and Bennys 

Turn 4 

U: Hello, I am traveling to Cambridge and really excited to eat at some local restaurants when I am there.
Can you help me find a place to dine? 

Turn 1 

Fig. 3 Dialogue Example

A dialogue example from test dataset of MultiWOZ 2.1 is presented in Fig. 3
and the corresponding attention visualization of slot word attention and global
slot interaction are presented in Fig. 4. We can see from 4(a) that the slot
can accurately attend to related words or phrases at turn 4. For instance, the
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slot restaurant-book day attends to friday with the highest weights, restaurant-
name attends to frankie and bennys with the highest weights and so on.

In the global slot interaction, we call the slots at turn 10 as target slots and
those whose values are where the target slots originate in previous turns as
original slots. As can be seen from Fig. 4(b), several intriguing phenomena can
be observed: 1) Relations between two identical slots across turns are normally
highlighted. For example, the target slot taxi-destination put much attention
on that at turn 6, so is slot taxi-departure and taxi-arrive by. 2) Our model is
able to capture dependencies between two slots that are semantically related.
This can be demonstrated by the attention weight visualization that the target
slot taxi-destination attends much to the source slot restaurant-name, where
both of them refer to the same place Christ College in the dialogue example.
Similar conclusions can be drawn from the attention weight between taxi-
departure and taxi-arrive by. 3) Slots that tend to share the same value are
more likely to establish strong interactions. For example, in spite of implicit
semantic relations between target slot taxi-arrive by and source slot taxi-leave
at, both of them are normally indicative of time, which makes the interaction
stronger than expected. This can also be proved by slot pairs taxi-destination
at turn 10 and attraction-name at turn 6, taxi-departure at turn 10 and hotel-
name at turn 4, all of which are indicative of places.

Furthermore, we also conclude that slot interactions are dependent on the
dialogue context, which can be inferred from last two subfigures in Fig. 4(b).
Since the contextual information contained in utterances at turn 4 and turn 6
is divergent, attention distributions between the target slot taxi-arrive by and
other slots at turn 4 and turn 6 exhibit obvious discrepancy. It is attributable
to the slot-word attention in the local slot interaction, which incorporates con-
textual information into slot-specific features and enables to model subsequent
slot interactions according to the context.

5.8 Discussion and analysis

Per slot accuracy

Since we have proved the validity of slot interaction across turns, we then
find out where the improvement come from. To achieve that, we present the
accuracy for each slot in Figure 5 on MultiWOZ 2.1 dataset. From the figure
we observe that Model I achieves better or comparable results than Model
II at most slots. Slight performance declines can be observed at slots with
rather small ontology size like hotel-type and hotel-stars. The results suggest
that slot interactions tend to bring accuracy promotion at slots with a large
number of possible values, e.g., restaurant-name, hotel-name, taxi-departure
and taxi-destination.

Influence of the distance between connected pairs

To study the impact of the distance between connected pairs on the perfor-
mance of Model I and II, we present Fig. 6, which shows the accuracy variation
with the difference of turn indices between connected pairs on the test dataset
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(a) Slot word attention

0 1 2 3 4 5 6 7
taxi-destination

attraction-area
attraction-name
attraction-type

hotel-area
hotel-book day

hotel-book people
hotel-book stay

hotel-internet
hotel-name

hotel-parking
hotel-price range

hotel-stars
hotel-type

restaurant-area
restaurant-book day

restaurant-book people
restaurant-book time

restaurant-food
restaurant-name

restaurant-price range
taxi-arrive by
taxi-departure

taxi-destination
taxi-leave at

train-arrive by
train-book people

train-day
train-departure

train-destination
train-leave at

Turn 6

0 1 2 3 4 5 6 7
taxi-departure

Turn 4

0 1 2 3 4 5 6 7
taxi-arrive by

Turn 4

0 1 2 3 4 5 6 7
taxi-arrive by

Turn 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) Global slot interaction

Fig. 4 Visualizations of slot word attention and global slot interaction on an example from
MultiWOZ 2.1 dataset. The columns 0 ∼ 7 denotes the indices of the heads. The padding
tokens in Fig. 4(a) are omitted for simplicity.

of MultiWOZ 2.1. In this experiment, we only focus on whether the value of the
target slot is correctly predicted. As expected, the performance of Model I out-
performs Model II with any difference of turn indices. More specifically, Model
II generally exhibits obvious degeneration as the distance between connected
pairs becomes longer. On the contrary, for Model I, the slot accuracy does not
decline as connected pairs get further. In fact, it achieves the best performance
when the difference is 5 with 68.13% accuracy. This can be explained by the
fact that slot interactions across turns suffer little from long-range semantic
dependencies as multi-head attention obtains the historical information paral-
lelly instead of depending on the sequential information accumulation, which
may cause the historical information to be forgotten. However, longer distance
between connected pairs normally means longer conversation, resulting in more
complex semantic modeling, which can lead to performance degradation, as
can be seen from the table when the distance goes to 7 and 8. Moreover, we
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Fig. 5 Slot accuracy on test dataset of MultiWOZ 2.1. The gray dash line denotes the
accuracy difference between model I and II. The yellow bar denotes relative ontology size of
each slot, which is obtained through dividing the actual value number by 100.
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Fig. 6 Accuracy variation with the difference of turn indices on test dataset of MultiWOZ
2.1.

observe that the slot accuracy of Model II is almost the same with Model I
when connected pairs are within a turn, i.e., the difference of turn indices is
0. This is because that slot correlations of such connected pairs can be also
established by the local slot interaction, which is equivalent to the global slot
interaction when modeling slot correlations within a turn.
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Error analysis

Typical error examples of generated dialogue states are illustrated in Figure
7. The example on the left presents the type of error that the value of its
corresponding slot is implicit, which may lead to the model confusing the
correct slot with incorrect ones appearing in the context, i.e., hotel-stars. In the
second case, the predicted value of slot restaurant-name is Cambridge while
the golden one is Mahal of Cambridge. We infer that it is resulted from the
more common phrase Cambridge appearing in the corpus, which motivates us
to do further analysis to diminish this deviation.

R: Sure thing, it s a 4 star guesthouse on the west side... 
U: Can I book a room there for 3 for 3 nights starting
Friday? 
G: hotel-book day: Friday 
hotel-book people: 3 
hotel-book stay: 3 
P: hotel-book day: Friday 
hotel-book stay: 3 
hotel-stars: 3 

Turn 6 U: Hi, can you find me a restaurant? Turn 1 

R: Yes, there are a lot of available restaurants, may I
narrow down your choices? 
U: I am looking in particular for the Mahal of Cambridge. 
G: restaurant-name: Mahal of Cambridge 
P: restaurant-name: Cambridge 

Turn 2 

Fig. 7 Two dialogue examples generated by our proposed model. G means golden dialogue
states and P means predicted ones. Wrong dialogue states are marked in red.

6 Conclusion and future work

In this paper, we introduce a novel approach DST-HTSI that models slot
interactions hierarchically at both local and global level, and establishes tem-
poral slot interactions. In hierarchical slot interactions, DST-HTSI first obtains
slot-specific information and inner-turn slot correlations by using local slot
interaction. Then a global slot interaction module is leveraged to generate
slot-specific vectors for each turn that are semantically related across turns.
Moreover, we apply a temporal slot interaction module to capture dependence
information of those vectors along the time and summarize them as context
vectors to generate values correspondingly. To the end, we employ a pre-trained
language model BERT to enhance our model by initializing parameters of the
utterance encoder. We conduct experiments on MultiWOZ 2.1, 2.2 and WOZ
2.0, and results demonstrate the validity of our proposed method.

In the future, we will dedicate to solve the problem that out model is apt
to generate values that commonly appear in training corpus. While our model
is based on the open vocabulary setting, it is applicable to the predefined
ontology models. We will explore that and see if this can further improve the
performance of our model.
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8 Data availability

The datasets analyzed during the current study are available in the mul-
tiwoz repository (https://github.com/budzianowski/multiwoz for MultiWOZ
2.1 and 2.2 datasets) and N2N-Dialogue-System repository (https://github.
com/Yusser95/N2N-Dialogue-System for WOZ 2.0 dataset).
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