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   Dear Editor,

In order to accommodate the effects of false data injection attacks
(FDIAs),  the moving target defense (MTD) strategy is recently pro-
posed to enhance the security of the smart grid by perturbing branch
susceptances. However, most pioneer work only focus on the defend-
ing performance of MTD in terms of detecting FDIAs and the impact
of MTD on the static factors such as the power and economic losses.
Considering the system dynamics,  in this letter,  the impact of MTD
on  the  frequency  stability  is  analytically  studied.  The  condition
required  to  maintain  the  stability  of  the  grid  frequency  is  provided
and how the susceptance perturbation of each branch affects the fre-
quency  stability  is  given.  The  defending  cost  of  MTD  is  also  opti-
mized  considering  both  the  defending  performance  and  frequency
stability constraints.

Low-carbon goals, energy crisis, and demand increasing lead to the
integration  of  advanced  electronic  and  communication  devices  into
the  smart  grid  to  enable  the  environmental-friendly,  real-time,  and
economic  control  and  operation.  However,  the  vulnerabilities
exposed in the Internet protocol (IP)-based devices and communica-
tion network make smart grid prone to cyberattacks. The FDIA [1] is
one of the cyberattacks that threatens the system operations.

To alleviate the impact of FDIAs, there are many studies devoting
to  detect  and  identify  the  attacks.  In  our  opinion,  the  countermea-
sures can be classified according to the DC model z = Hx. From the
angle  of  measurements z,  the  smart  grid  is  protected  from  being
attacked  by  FDIAs  by  protecting  the  sensory  data  or  analyzing  the
statistic  characteristics  of  the  historical  data.  The  typical  examples
are  the  measurement  protection  strategy  (MPS)  [2]  that  aims  to
reduce  the  impact  of  FDIAs  and  the  data-driven  methods  to  extract
the abnormal properties of FDIAs [3]. From the angle of states x, the
secure phasor measurement units  (PMUs) are strategically deployed
to  verify  the  consistency  of  the  state  estimates  and  state  measure-
ments  [4].  From the  angle  of  the  measurement  matrix H,  the  smart
grid is prevented from FDIAs by comparing the real branch parame-
ters  or  dynamically  changing  the  network  parameters.  For  example,
the  true  branch  parameters  are  validated  using  the  voltage  and  cur-
rent sensor measurements [5] and the MTD is proposed to obfuscate
the  information  of  the  communication  and/or  power  networks  [6],
[7].  Since  the  MPS and  secure  PMUs protect  the  system in  a  static
manner, they can be cracked by the attacker by continuously exploit-
ing the device and protocol vulnerabilities. The data-driven methods
highly depend on the quality of the dataset and thus lack of scalabil-
ity  and  performance-guarantee.  The  MTD  is  a  newly  emerged
approach  that  introduces  uncertainties  into  the  power  system  to
increase  the  efforts  and  difficulties  for  the  attacker  to  launch  the
attack. It is a promising method to defend against FDIAs since it has

a dynamic manner and does not depend on the data properties.
Based on our knowledge, the related work leverage the MTD idea

from the aspects of defending against direct-current (DC) FDIAs and
alternating  current  (AC0  FDIAs.  To  thwart  DC  FDIAs,  Rahman
et  al. [8]  first  proposed  the  idea  of  MTD  and  presented  a  formal
design  of  it  to  guarantee  its  effectiveness  in  terms  of  detecting
FDIAs.  The  AC  FDIAs  are  more  complicated  but  can  also  be
detected  with  MTD.  Cui  and  Wang  [9]  proposed  a  deeply  hidden
MTD  to  confuse  the  attacker  and  promote  the  defending  perfor-
mance  simultaneously.  However,  most  pioneering  work  only  focus
on improving the defending performance. The impact of MTD on the
system  operation  is  ignored.  Although  the  impact  of  MTD  on  the
static  factors  (e.g.,  the  power  and  economic  losses)  have  been  ana-
lyzed in [10] and [11],  the impact of MTD on the system dynamics
(e.g., frequency stability) has not been investigated.

In this letter, we devote our efforts to analyzing the impact of MTD
on  the  frequency  stability.  The  considered  MTD  is  constructed  by
perturbing the branch susceptances, which is also the mostly studied
approach  by  the  related  work.  Since  the  susceptance  change  affects
the  parameters  such  as  the  power  transfer  capacity,  voltages,  and
generation outputs, the grid frequency might not be maintained after
the  MTD.  This  issue  has  not  yet  been  deeply  analyzed.  To  fill  this
gap, we propose a stability-guaranteed MTD in this letter. Our contri-
butions  are  summarized  as  follows:  1)  The  Grassmann  distance  is
adopted to quantify the defending performance of MTD; 2) An ana-
lytical  relationship  between  the  frequency  stability  and  perturbation
parameters  is  derived  based  on  the  theory  of  eigenvalue  sensitivity;
3) The defending cost is minimized, and simultaneously, the defend-
ing  performance  is  guaranteed  and  the  frequency  stability  is  not
affected.

G
L |G| = N1 |L| = N2 N = N1 +N2

T |T | = T

System model: Consider a power system with a set  of  genera-
tion buses and a set  of load buses ( , , )
and the power system has a set  ( ) of branches.

The power flow equations are as follows:
 

pI = BGGµ+BGLθ, pL = −BLLθ−BLGµ (1)
pI ∈ RN1 pL

µ ∈ RN1

θ ∈ RN2

B ∈ RN×N

B =
[

BGG BGL

BLL BLG

]
BGG ∈ RN1×N1 BLL ∈ RN2×N2 BGL ∈

RN1×N2 BLG ∈ RN2×N1

where  is a vector of power injections of generators,  is a
vector  of  power  consumptions  of  loads,  is  a  vector  of  volt-
age  phase  angles  of  generators,  and  is  a  vector  of  voltage
phase  angles  of  load  buses.  The  susceptance  matrix  is
formed according to the system topology and susceptance values and

, where , , 

, and .
Considering the generatordynamics, the swing equation is

 

µ̇i = ωi, miω̇i = −diωi + pM
i − pI

i (2)
ẏ ωi

mi > 0 di > 0
pM

i

ωi

pM
i = −(kP

i ωi + kI
i µi) kP

i > 0 kI
i > 0

pL
i = riϕi + pL0

i ri > 0

ϕi = −θ̇i
pL0

i

where  is  the  derivative  of y,  is  the  frequency  deviation  at  the
generation bus i,  is the inertial of the rotor,  is the damp-
ing  ratio,  and  is  the  mechanical  power  input.  To  maintain  the
grid’s  frequency,  the  rotor  frequency  is  controlled  by  the  turbine-
governor  controller  by  adjusting  the  mechanical  power  to  keep  the
primary  system  at  a  steady  state  and  the  load-frequency  controller
pushes  the  frequency deviation  back to  0.  The proportional-inte-
gral  (PI)  controller  is  usually  used  to  model  these  two  controllers
together, given by , where  and  are
the proportional and integral coefficients, respectively. In power sys-
tems,  the  power  loads  are  usually  divided  into  frequency-sensitive
and frequency-insensitive types. That is, for each load bus i, the load
is  compromised of ,  where  is  the  coefficient  of
the frequency-sensitive load (every load bus is assumed to have fre-
quency-sensitive  load),  is  the  frequency  deviation  of  load
bus i, and  is the frequency-insensitive load. Using the state-space
descriptor, the system dynamics is 
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
 µ̇θ̇
ω̇


=


0 0 I

R−1BLG R−1BLL 0
KI +BGG BGL KP +D


 µθ
ω

+
 0

R−1

0

pL0 (3)

ω ∈ RN1

M ∈ RN1×N1 D ∈ RN1×N1 KP ∈ RN1×N1 KI ∈ RN1×N1

R ∈ RN2×N2

pL0 ∈ RN2

where  is  a  vector  of  frequency  deviations  of  generation
buses, , , ,  and  are
diagonal  matrices  with  diagonal  entries  equal  to  the  inertial,  damp-
ing  ratio,  proportional  and  integral  factors  of  the  PI  controller,
respectively,  is a diagonal matrix with elements equal to
the coefficients of frequency-sensitive loads, and  is a vec-
tor of frequency-insensitive loads.

a =Hc H ∈ RM

c ∈ RN

a

Main  results: Recently,  the  cybersecurity  researchers  of  power
systems  proposed  the  MTD  to  defend  against  FDIAs  by  perturbing
branch  susceptances.  The  physical  perturbations  can  disable  the
attacker’s capability to infer the valid network information to launch
the attacks. Normally, the attacker constructs the attack vector for the
FDIA as , where  is the measurement matrix related to
the  branch  susceptance  and  system  topology.  The  FDIA  targets  the
state estimation and inserts the bias  into the state estimate by
stealthily  modifying  the  sensor  measurement  with  an  error  [1].
Since the branch susceptances contained in H are necessary informa-
tion to design the attack, the MTD defends against FDIAs by dynam-
ically perturbing them with an equipment named the distributed flexi-
ble AC transmission system (D-FACTS), which is smaller and can be
suspended from power  lines.  Comparing  with  the  cyber  side  MTDs
that  change  the  system  configurations  and  network  attributes  [12],
the  proposed  MTD  perturbs  the  parameters  of  physical  systems.
Although  the  authors  in  [13]  proposed  the  ZDIA based  on  the  spe-
cific  network structure called the cut  line,  the ZDIA can only insert
random errors into the state estimates.  The MTD is still  effective to
protect the state estimates from being injected with targeted biases.

a ∈ col(H) col(·)

H̃

H̃

a ∈ col(H) a ∈ col(H̃)
a ∈ col(H)

a < col(H̃)
col(H)

col(H̃) G
(
b(H),b(H̃)

)
=

√∑n
i=1ψ

2
i b(H)

b(H̃) col(H) col(H̃)
ψi = cos−1

(
σi
(
b(H)Tb(H̃)

))
σi(·) ith

G(·)

Suppose  the  attacker  knows  a  measurement  matrix H before  the
MTD.  The  possible  stealthy  attack  vectors  constructed  by  the
attacker falls into the column space of H, i.e., , where 
represents  the  column  space  of  a  matrix.  After  the  MTD,  the  mea-
surement  matrix  changes to ,  which is  not  known by the attacker.
To  meet  the  stealthy  requirement,  the  attack  vector  for  the  FDIA
should  fall  into  the  column  space  of  after  the  MTD.  Therefore,
with  the  knowledge  of H,  the  attacker  has  the  chance  to  keep  the
FDIA stealthy only if  and . The defending per-
formance of  MTD depends  on the  dissimilarity  [to  make 
but ] between these two subspaces. In this letter, the Grass-
mann distance is  adopted to  quantify the separation between 
and ,  given  by ,  where  and

 are orthonormal bases of the column spaces  and ,
,  computes the  singular value of

the  matrix,  and  represents  the  Grassmann  distance.  The
defender’s goal is to maximize the defending performance given the
limited defending resource.

Apart from the defending performance, the impact of MTD on the
system  operation  should  also  be  analyzed  to  support  its  implemen-
tation.  According  to  the  system  model  (3),  the  system  dynamics  is
closely  related  to  the  perturbation  parameters  (i.e.,  the  perturbed
branches  and  susceptance  perturbations)  of  MTD.  The  susceptance
perturbation might inflict the frequency stability. Therefore, although
the  defending  performance  is  important  to  design  MTD,  the  impact
of it on the system dynamics cannot be ignored, which is the premise
to deploy this approach.
Analytical  results  based  on  the  eigenvalue  sensitivity: Here,  the
frequency stability is analyzed by deriving the eigenvalue sensitivity
against  the  susceptance  perturbations.  First  of  all,  the  state-space
model (3) is transformed into the second-order dynamic system
 

Pÿ+Cẏ+Zy = 0 (4)

y=
[
ϕ
ω

]
∈ RN P=

[
0 0
0 M

]
∈ RN×N C=

[
−R 0
0 KP +D

]
∈

RN×N Z =
[

BLL −BLG

−BGL KI +BGG

]
∈ RN×N ϕ ∈ RN2

where , , 

, , and  is a  vector

of frequency deviations of load buses.  The left  and right eigenvalue

problems are represented by
 

s2
i Pri + siCri +Zri = 0, s2

i lTi P+ silTi C+ lTi Z = 0 (5)
si ith ri ∈ CN li ∈ CN

i

b = {b1,b2, . . .} bi
si P ≜ P(b)

C ≜ C(b) Z ≜ Z(b) si ≜ si(b)

where  is the  latent root (eigenvalue),  and  are the
th  right  and  left  latent  vector  (eigenvector).  These  variables  are  all

complex values. Suppose the perturbed susceptances are denoted by
,  where  is  the  susceptance  of  branch i.  Therefore,

the  matrices P, C, Z,  and  are  functions  of b,  that  is, ,
, , and . Therefore, we have:

ith
Proposition  1:  The  first-order  derivative  of  the  eigenvalue  for  the
 eigenvalue is

 

∂si(b)
∂b

= −
lTi
(
s2

i
∂P(b)
∂b + si

∂C(b)
∂b +

∂Z(b)
∂b

)
ri

lTi (2siP+C)ri
= −

lTi Firi

lTi (2siP+C)ri

Fi =
∂Z(b)
∂b =

 ∂BLL

∂b − ∂BLG

∂b

− ∂BGL

∂b
∂BGG

∂b

 ∈ RN×Nwhere .

i
s̃i = si +

∑
j
∂si(b j)
∂b j
∆b j ∆b j

Re(s̃i) < 0,1 ≤ i ≤
N +N1 Re(·)

i si ei j = Re( ∂si(b j)
∂b j

),1 ≤ j ≤ T
|ei j| si

j∗ = argmax j{|ei j|,1 ≤ j ≤ T } Re(s̃i) <
0 ∆b j > 0 ei j < 0 ∆b j < 0 ei j > 0

The above result is derived because only the matrix Z is related to
the  susceptance  perturbation.  Therefore,  the th  eigenvalue  after  the
MTD  is  given  by ,  where  is  the  suscep-
tance  perturbation  of  branch j.  If  all  eigenvalues  fall  into  the  left
complex plane, then the grid frequency remains at the nominal value
after  the  MTD.  That  is,  the  system  is  stable  if 

,  where  extracts  the  real  part  of  the  complex  number.
Besides, based on the derived result, we can screen out the impact of
the susceptance perturbation for each branch on the change of eigen-
values. The impact of the susceptance perturbation of branch j on the
th  eigenvalue  is  quantified  by .  There-

fore, if  is larger, the eigenvalue  is more sensitive to the change
of  the  susceptance  perturbation  on  branch j.  The  most  sensitive
branch  is .  Besides,  to  make 

, it is better to make  if  and  if .

C0

Stability-constrained defending cost optimization: Next, the defen-
ding cost  is  minimized to implement the MTD. Here the generation
cost  output  from  the  optimal  power  flow  (OPF)  is  regarded  as  the
defending  cost.  Suppose  the  generation  cost  calculated  by  the  OPF
before the MTD is . Then the stability-constrained defending cost
optimization problem is formulated as
 

∆C ≜ max
pG ,∆b j,π j,1≤ j≤T

C0 −gT pG

s.t. Re(s̃i) < 0, 1 ≤ i ≤ N +N1

∆bmin
j ≤ π j∆b j ≤ ∆bmax

j , π j ∈ {0,1}, 1 ≤ j ≤ T

pG
min ≤ pG ≤ pG

max, pF
min ≤ pF ≤ pF

max∑
pG =

∑
pL

pF =

[
S̃GG 0

0 S̃LL

]
W
(
B̃LL
)−1

(pG −pL)

G
(
b(H),b(H̃)

)
≥ ς

(6)

∆bmin
j ∆bmax

j
π j

g ∈ RN1

pG ∈ RN1 pG
min ∈ R

N1

pG
max ∈ RN1 pF

min ∈ R
T

pF
max ∈ RT

S̃GG S̃LL B̃LL

H =
[

SGG 0
0 SLL

]
W SGG SLL

where  and  are perturbation limits for the susceptance of
branch j,  determines  whether  the  susceptance  of  branch j is  per-
turbed or not,  is  a  vector  of  coefficients  for  the  generation
costs,  is  a  vector  of  generation  outputs,  and

 are  the  limits of  generation outputs,  and
 are the overloaded thresholds for the power transmissions,

, ,  are parametric matrices after the MTD, ς is the thresh-
old  to  guarantee  the  defending  performance  of  MTD,  and W is  the
incident  matrix.  The  measurement  matrix  is  constructed  as

. The  and  are diagonal matrices with

elements equal to the susceptances of branches connected the genera-
tion buses and load buses and two load buses, respectively. To solve
the nonlinear and non-convex problem (6), we adopt the monte-carlo
method to approximate the optimal result.

Experimental results: Next, we evaluate the the defending perfor-
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∆b/b
∆b

mance of MTD, the MTD’s impact on the frequency stability, and the
defending  cost  introduced  by  MTD.  The  9-bus  power  system  from
[14] and 14-bus power systems from MATPOWER [15] are used as
examples. The real-world load profiles from New York State on 20-
01-2021 [16]  are  injected  into  the  14-bus  power  system for  simula-
tions.  The  perturbation  ratio  for  each  branch  is  calculated  by ,
where b is the original branch susceptance and  is the susceptance
perturbation.

{1,5} {3,6}

First, we analyze the FDIA detection rate and Grassmann distance
with  respect  to  the  perturbation  ratio.  An  attacking  pool  of  FDIA
attack  vectors  are  constructed  with  the  measurement  matrix  before
the MTD. After the MTD, the attack vectors in the attacking pool are
injected  into  the  9-bus  system to  test  the  defending  performance  of
MTD  in  terms  of  detecting  FDIAs.  The  susceptances  of  branches

 and  are perturbed with the same perturbation ratio. From
Fig. 1, we find that the FDIA detection rate increases with the pertur-
bation  ratio  and  is  proportional  to  the  Grassmann  distance,  which
means that the Grassmann distance can represent the defending per-
formance of MTD in terms of detecting FDIAs. We also find that the
frequency stability is violated if  the perturbation ratio increases to a
certain value.
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Fig. 1. Defending performance.
 

{1,5}
{3,6}

Second,  we analyze the change of eigenvalues with respect  to the
perturbation  ratio.  Again,  the  susceptances  of  branches  and

 are perturbed with the same perturbation ratio. The 8th and 9th
eigenvalues  of  the  second-order  system  (4)  are  used  as  examples.
From Fig. 2, the  real  part  of  the  8th  eigenvalue  decreases  while  the
9th  eigenvalue  increases  when  the  perturbation  ratio  increases,  and
the 9th eigenvalue becomes an unstable eigenvalue when the pertur-
bation ratio is larger than 0.18 since it  has positive real part.  There-
fore,  the impact of MTD on the frequency stability can be analyzed
based on the eigenvalue sensitivity against the susceptance perturba-
tion.
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Fig. 2. Eigenvalue change w.r.t. perturbation ratio.
 

ς = 0.1 {5,6} {10,11}
{12,13} [−0.2,0.2]

∆C
∆C > 0

∆C < 0

Third,  we analyze the impact of MTD on the defending cost  con-
sidering the stability and defending performance constraints. The 14-
bus power system is adopted and the threshold for the defending per-
formance  is .  The  perturbed  branches  are , ,  and

. They are perturbed within the limits . The sum of
power loads is also presented in the figure. From Fig. 3, the value of

 fluctuates with the power loads.  From the optimization problem
(6),  if ,  it  means  that  the  system  operator  can  gain  benefits
from the  generation  cost  by  deploying  the  MTD.  If ,  system
operator needs to pay additional generation cost to deploy the MTD.
The  figure  shows  that  the  system operator  can  obtain  benefits  from
the generation cost most of the time in the day. Therefore, it is possi-
ble  for  the  system  operator  to  alleviate  the  defending  cost  of  MTD

considering  the  defending  performance  and  stability  constraints
simultaneously.
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Fig. 3. Optimized defending cost.
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