
 

Letter

Norm-Based Adaptive Coefficient ZNN for Solving the
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   Dear Editor,

The time-dependent algebraic Riccati  equation (TDARE) problem
is  applied  to  many  optimal  control  industrial  applications.  It  is  sus-
ceptible to interference from measurement noises in the virtual envi-
ronment, which current methods cannot effectively address. A norm-
based adaptive coefficient zeroing neural network (NACZNN) model
to  solve  the  TDARE  problem  is  proposed,  with  an  adaptive  scale
coefficient  based  on  the  residual  error  norm  to  accelerate  conver-
gence  speed  to  the  theoretical  solution.  Momentum  enhancement
terms enable NACZNN to effectively solve the TDARE problem in
real  time when perturbed by measurement noise.  Simulation experi-
ments  were  designed  and  executed,  and  results  confirm  the
NACZNN  model’s  superior  robustness  and  accuracy  when  solving
the TDARE problem disturbed by noises in real time.

Introduction: The  algebraic  Riccati  equation  (ARE)  is  an  essen-
tial branch of optimal control theory. It must be accurately solved in
many applications [1], [2], which often requires the implicit positive
or  negative  definite  solution.  For  instance,  the  Lyapunov  function
approach to solve the matrix form differential Riccati equation in lin-
ear-quadratic  optimal  control  requires  the  negative  definite  solution
[3].  Consequently,  the  solution  of  the  ARE  problem  has  received
much  attention,  and  many  models  are  proposed  [4].  For  example
Korayem et al. present a controller with enhanced dynamic load per-
formance based on state-dependent ARE, and apply it to the coopera-
tive manipulators task. Nonetheless, traditional methods usually dis-
cretize  the  TDARE  problem  and  transform  it  to  a  static  problem.
While current methods are effective for conventional ARE problems,
computational  shortcomings  make  them  challenging  in  some  cases.
Considering  that  traditional  methods  are  prone  with  low  solution
accuracy or system collapse due to lagging error when addressing the
time-dependent  problem  [5]–[7].  To  overcome  these  shortcomings,
the derivative information in the TDARE problem is fully utilized in
the  ZNN  model  to  effectively  overcome  the  lagging  error  and
improve the solution accuracy [8]–[10]. The ZNN model can achieve
high accuracy in the aim problem, but noise interference can lead to
collapse. Therefore, Jin et al. [11] present a gradient-based differen-
tial neural-solution to address the above issues, which possess higher
accuracy  for  eliminating  the  solution  residual  with  superior  conver-
gence.  Then,  Li et  al.  [12] design a strictly predefined-time conver-
gent neural network (PTCZNN) model to accelerate convergence. It
is  worth noting that  the learning rate of  the above methods must  be
carefully adjusted [13].  Current  models may not  fully use the resid-
ual  error  information  in  the  solution  system,  leading  to  truncation
errors  or  collapse  [14].  Consequently,  this  paper  proposes  a
NACZNN model that can make full use of residual information. The
model can maintains superior robustness and solution accuracy under
the  interference  of  measurement  noises  while  accelerating  the  con-

vergence of the solution. The contributions of this paper are summa-
rized as follows:

1)  A  norm-based  adaptive  coefficient  design  framework  is  pro-
posed.  Compared  with  state-of-the-art  methods,  this  method  can
accelerate convergence and enhance the model robustness.

2)  NACZNN is  proposed to solve the TDARE problem perturbed
by  noises,  presenting  a  new  technique  to  combine  adaptive  control
with ZNN models.

.

3) The theoretical analyses and conclusions are presented from the
perspective  of  stability  theory,  investigating  the  global  convergence
and robustness of the NACZNN model

Preliminaries  and  scheme  formulation: The  TDARE  problem
[8] can be described as
 

AT (t)X(t)+X(t)A(t)−X(t)M(t)X(t)+H(t) = 0 (1)

A(t) X(t) M(t) H(t) Rn×n

M(t) = MT (t), H(t) = HT (t)
X(t) E(t) =

AT (t)X(t)+X(t)A(t)−X(t)M(t)X(t)+H(t)

E(t) Ė(t) = −γΨ(E(t))
γ > 0 E(t)

where  the  superscriptT denotes  the  transpose  of  a  matrix  or  vector;
and  time-dependent  matrices , , ,  and  are  in 
with .  Monitoring  and  solving  for  the
time-dependent  matrix  involves  the  error  function 

.  Then,  according  to  the
definition of the original ZNN (OZNN) solution framework [13], the
evolution  direction  of  should  follow ,  where
the  scale  coefficient .  Therefore,  error  function  can  be
expanded and rearranged as
 

AT (t)Ẋ(t)+ Ẋ(t)A(t)− Ẋ(t)M(t)X(t)−X(t)M(t)Ẋ(t)

= X(t)Ṁ(t)X(t)− ȦT (t)X(t)−X(t)Ȧ(t)− Ḣ(t)

−γΨ(AT (t)X(t)+X(t)A(t)−X(t)M(t)X(t)+H(t))
Ψ(·) : Rn×n→ Rn×n

B(t) = I⊗ (
AT (t)−

X(t)M(t)
) ∈ Rn2×n2

C(t) =
(
A(t)−M(t)X(t)

)T ⊗ I ∈ Rn2×n2
D(t) =

I⊗ (
X(t)Ṁ(t)−ȦT (t)

)∈ Rn2×n2
G(t)= ȦT (t)⊗ I ∈ Rn2×n2

J(t)= AT (t)⊗
I ∈ Rn2×n2 ⊗

x(t) = vec
(
X(t)

) ∈ Rn2
k(t) = vec

(
H(t)

) ∈ Rn2

vec(·)

where the mapping function  represents the activ-
ation  function,  which  is  generally  constructed  as  a  monotonically
increasing  odd  function.  On  top  of  that,  these  matrices  are  con-
structed  to  further  formulate  the  model: 

, , 
, , 

,  where  the  symbol  denotes  the  Kronecker  product.  We
define  vectors  and ,
where  represents the vectorization of a matrix.  Therefore,  the
OZNN model to solve the TDARE problem (1) can be written as
 (

B(t)+C(t)
)
ẋ(t) =

(
D(t)−G(t)

)
x(t)− k(t)

−γΨ
((

B(t)+ J(t)
)
x(t)+ k(t)

)
. (2)

Ė(t) = −ω(E(t)
)
E(t)−µ

r t
0 E(τ)dτ ω(E(t)) > 0

µ > 0
ω
(
E(t)

)
= ||E(t)||ηF + ζ η > 0

ζ > 1 || · ||F

NACZNN  model  construction: The  NACZNN  model  adds  a
momentum term to  overcome  the  lack  of  OZNN to  eliminate  noise
influence.  Then,  we  propose  an  adaptive  coefficient  based  on  the
residual  error  to  accelerate  convergence  speed.  The  evolution  func-
tion  for  implementing  the  NACZNN  model  is  defined  as

,  where  denotes  the
adaptive  scale  coefficient,  and .  We  design  following  method
for  realizing  mapping  function ,  where ,

,  and  denotes  the  Frobenius  norm.  Therefore,  the
NACZNN model (3) to solve the TDARE problem (1) is defined as
 (

B(t)+C(t)
)
ẋ(t) =

(
D(t)−G(t)

)
x(t)− k(t)

−ω(E(t)
)((

B(t)+ J(t)
)
x(t)+ k(t)

)
−µ

w t

0

((
B(τ)+ J(τ)

)
x(τ)+ k(τ)

)
dτ. (3)

The  properties  of  the  different  methods  are  shown  in Table 1.  It
can be concluded that NACZNN (3) uses a novel adaptive scale coe-
fficient to accelerate convergence, and maintains superior robustness
under noise interference due to the full  use of the momentum infor-
mation  of  the  solution  system.  In  addition,  because  NACZNN  (3)
takes  into  account  the  derivative  term  of  the  solution  system,  the
TDARE  problem  (1)  can  be  solved  without  being  affected  by  lag-
ging error.
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Convergence of NACZNN model: The following theorem is for-
mulated to verify the global convergence of the NACZNN model (3).

Theorem  1:  The  solution  generated  by  the  NACZNN  model  (3)
globally converges to the theoretical solution of TDARE problem (1)
from any random initialization state.

i j
Ėi j(t) = −ω

(
E(t)

)
Ei j(t)−µ

r t
0 Ei j(τ)dτ i ∈ 1,2, ...,n j ∈ 1,2, . . . ,

n Ei j(t) i j E(t)

Proof: The th subsystem of NACZNN model (3) is described as
 where , 

, and  represents the th element of . The following Lyap-
nuov candidate function is formulated to further investigate the con-
vergence:
 

l(t) =
(
E2

i j(t)+µ
(w t

0
Ei j(τ)dτ

)2)/2 ≥ 0 (4)

l(t) > 0
Ei j(t) , 0

r t
0 Ei j(τ)dτ , 0 Ei j(t) =

r t
0 Ei j(τ)dτ = 0

l(t) = 0 l(t)

which  indicates  the  Lyapunov  function  candidate  when
 or . If and only if  for

.  Thus,  the Lyapunov function candidate  is  positive defi-
nite. Taking the time derivative of function (4)
 

dl(t)
dt
= Ei j(t)Ėi j(t)+µEi j(t)

w t

0
Ei j(τ)dτ

= Ei j(t)
(
Ėi j(t)+µ

w t

0
Ei j(τ)dτ

)
= −ω(E(t)

)
E2

i j(t) ≤ 0.

l̇(t)
Ei j(t)

Ei j(t)
E(t)

That  is,  the  Lyapunov  function  candidate  is  negative  definite.
Thus, according to Lyapunov theory,  will ultimately converge
to zero. It can be concluded that  globally converges to zero. In
summary,  the  error  function  globally  converges  to  zero  over
time. In other words, NACZNN (3) globally converges to the theoret-
ical solution of the TDARE problem (1). ■

Robustness of NACZNN model under different noises: We ana-
lyze  the  robustness  of  NACZNN  (3)  under  different  kinds  of  noise
perturbation.  The  following  two  theorems  are  used  to  analyze  the
robustness  of  NACZNN  (3)  with  conditions  perturbed  by  constant
and time-varying noise.

Θ(t) = Θ ∈ Rn×n
Theorem 2: The NACZNN model (3) perturbed by constant noise

 will  converge  to  the  solution  of  TDARE  problem
(1).  That  is  to  say,  the  solution  generated  by  NACZNN  model  (3)
globally converges to the theoretical solution of problem (1).

Θ(t) = Θ ∈ Rn×n Θi j ∈ R
Proof:  With  constant  noise,  the  noise-perturbed  term can  be  writ-

ten as  and it ijth subelement is . According to
the definition of the Laplace transformation [15], the ijth subelement
of NACZNN model (3) can be written as
 

sEi j(s)−Ei j(0) = −ω(E(s)
)
Ei j(s)− µ

s
Ei j(s)+Θi j. (5)

We rearrange (5) to obtain
 

Ei j(s) =
s
(
Ei j(0)+Θi j

)
s2 + sω

(
E(s)

)
+µ
. (6)

limt→∞ω
(
E(t)

)
= lims→0ω

(
E(s)

)
= ϱ > 0

t→∞ s1 = (−ϱ+
√
ϱ2 −4µ)/2 s2 = (−ϱ−√

ϱ2 −4µ)/2 ϱ > 0 µ > 0

Considering  that ,  when
,  the  poles  of  (6)  are  and 

.  Because  and ,  it  can  be  concluded  that  the
two poles of function (6) locate on the left half-plane. Therefore, this
system is stable, and the final value theorem applies to it, gives
 

lim
t→∞

Ei j(t) = lim
s→0

sEi j(s) = lim
s→0

s
(
Ei j(0)+Θi j/s

)
s2 + sϱ+µ

= 0.

limt→∞ ||E(t)||F = 0We can conclude that . ■

Θ(t) = Θt ∈ Rn×n

||Θ||F/µ limt→∞ ||E(t)||F = 0 µ→ +∞

Theorem  3:  The  residual  error  of  the  NACZNN  model  (3)  per-
turbed  by  time-varying  noise  will  eventually  con-
verge to a certain range. More precisely, the upper bound of residual
error is . It is noteworthy that  as .

Proof:  According  to  the  definition  of  the  Laplace  transformation,
the ith subelement of the NACZNN model (3) can be written as
 

sEi j(s)−Ei j(0) = −ω(E(s)
)
Ei j(s)− µ

s
Ei j(s)+

Θi j

s2 (7)

Θi j/s2

Θi jt limt→∞ω
(
E(t)

)
= lims→0ω

(
E(s)

)
=

ϱ > 0 Ei j(s) = s
(
Ei j(0)+Θi j

)
/(s2 + sϱ+µ)

limt→∞ Ei j(t) = |Θi j|/µ
µ→ +∞ limt→∞ ||E(t)||F = 0

where  denotes the Laplace transformation of the time-varying
noise  term. Considering that 

,  (7)  is  written  as .  Consid-
ering the definition of the Laplace final value theorem and Theorem 2,
we  have .  Furthermore,  it  is  concluded  when

 for . ■
Simulations: We performed simulations to evaluate the effective-

ness of NACZNN (3) to solve the TDARE problem (1), using MAT-
LAB  R2018a  with  an  Intel  Core  i5-8300H  CPU  at  2.30  GHz,  and
Windows 10 operating system. We test our method on the following
TDARE problem (1) example which is constructed as follows:
 

A(t) =
[
5+ sin(t) cos(t)
−cos(t) 5+ sin(t)

]
 

M(t) =
[
δ1(t) 0

0 δ2(t)

]
, H(t) =

[
θ1(t) 0

0 θ2(t)

]
where time-dependent parameters are provided as
 

δ1(t) =
(
4+ e−t − cos(t))2, δ2(t) =

(
2+

1
t+1
+ sin(t)

)2

θ1(t) = 3+
(

1
t+1

)2
+ sin(t), θ2(t) = 6+ (2+ e−t)2 − cos(t).

ω
(
E(t)

)
= ||E(t)||5F +5

The  NACZNN  model  (3)  is  compared  with  other  competitive
methods  including  OZNN  [8],  NCZNN  [16],  and  PTCZNN  [12]
models.  For  comparison,  the  adaptive  scale  coefficient  for  realizing
the  NACZNN  model  (3)  is  designed  as .
Besides,  the  MATLAB  routine  ode45  is  adopted  for  implementing
these models.

10−6

10−4

ω(·)

||E(t)||F

In  this  experiment,  the  NACZNN model  (3)  and  compared  meth-
ods are adopted to solve the TDARE problem (1) in an ideal environ-
ment.  Specifically,  the  corresponding  visual  comparative  results  are
reported  in Fig. 1.  It  can  be  found  that  the  NACZNN  model  (3)
achieves the highest solution accuracy, which reaches order  and
has  no  significant  increase  in  convergence  time.  Unfortunately,
OZNN  [8],  NCZNN  [16],  and  PTCZNN  [12]  models  are  shown  to
converge to only order . Because NACZNN model (3) employed
the norm-based adaptive coefficient ,  there is  no need to repeat-
edly adjust the convergence coefficients to achieve the desired exper-
imental results, as with other models. It is noted that t (s) in the fig-
ures  denotes  time  in  seconds.  In  addition, Fig. 2 shows  the  residual
error  and its logarithm generated by the NACZNN model (3)
under different values of η and ζ, which is adopted for further investi-
gating the influence of parameter selection. It  can be observed from
the Fig. 2 that  the  ratio  of  parameter η to  parameter ζ is  1:2,  the
NACZNN model (3) converges to zero faster. From the Fig. 2, when
the parameter η remains constant at  the value of 5,  the convergence
speed of the NACZNN model (3) increases with the increase of ζ.

Θ(t) = Θ = [2]4×1

||E(t)||F
10−4

||E(t)||F
γ = 5 100

Θ(t) = Θt =
t× [2]4×1

10−2 10−1 ||E(t)||F

Fig. 3(a)  shows the comparative experimental  results  of  the simu-
lated global convergence and robustness among the different models
when  solving  the  TDARE  problem  under  the  interference  environ-
ment of constant noise . As shown in the Fig. 3(b),
the  residual  error  of  the  NACZNN  model  (3)  converges
sharply to the order of  in 5 seconds. In contrast, the the residual
errors  of  PTCZNN,  NCZNN  and  OZNN  with  parameter

 remain relatively high,  on the order  of .  Then,  the simula-
tion  experiments  of  the  robustness  of  the  NACZNN  model  (3)  are
carried out  under  the  interference of  time-varying noise 

. As shown in Fig. 3(b), the NACZNN model (3) still main-
tains high accuracy disturbed by time-varying noise, on the order of

 and .  However,  the  residual  error  of  compared

 

Table 1.  Comparisons Among Different Neural Network Models For Solving
the TDARE Problem (1)

Model
Derivative

information
involved

Integral
information

involved

Applied
adaptive

parameter
Anti noises

OZNN [8] √ × × ×

RNINN [15] × √ × √

NCZNN [16] √ × × ×

PTCZNN [12] √ × × ×

NACZNN (3) √ √ √ √
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10−1models are on the order of  and increase over time. Therefore, it
is obvious that the NACZNN model (3) shown superior robustness in
the presence of various noises.

Conclusion: We  have  proposed  NACZNN  (3)  to  solve  the
TDARE  problem  (1).  NACZNN  adds  a  integral  term  and  a  norm-
based adaptive coefficient based on the original ZNN. It not only has
significantly higher accuracy than other commonly used models, but
maintains  global  convergence  and  robustness  under  constant  and
time-varying noise conditions. Simulations have showed the feasibil-
ity  and  superiority  of  the  NACZNN  model.  It  is  worth  mentioning
that  this  is  the  first  proposal  of  a  model  to  solve  the  TDARE prob-
lem  with  stronger  robustness  to  various  kinds  of  noises.  These  are
major  breakthroughs  in  both  the  ZNN  field  and  the  research  of
dynamic  problem  solutions.  Our  future  work  will  applied  the
NACZNN to the complex-valued problem and further investigate the
potential  of  the  proposed  adaptive  coefficients  for  achieving  better
convergence and robustness. Besides, we will also look for practical

applications  with  time-varying  or  complex-valued  characteristics
such  as  localization  system,  filter  design,  algorithmic  platforms  for
UAVs, etc.
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Fig. 1. Experimental  results  of  simulations.  (a)  Comparsion  of  residual  error
 between different  models  with  noise-free  case;  (b)  The logarithm of

residual error .
 

 

t (s)

 

η = 5, ζ = 10
η = 10, ζ = 10
η = 20, ζ = 10
η = 2, ζ = 10

η = 5, ζ = 10
η = 5, ζ = 10
η = 5, ζ = 10
η = 5, ζ = 5

t (s)

  

||E
(t)

|| F

||E
(t)

|| F

0 10 15 20 25 305 0 10 15 20 25 305

10−6

10−8

10−4

10−2

100

102

10−8

10−6

10−4

10−2

100

102

 
Fig. 2. Comparison  among  different  paramter  adopted  for  the  NACZNN
model (3).
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