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   Abstract—In  this  paper,  we  present  a  novel  adaptive  perfor-
mance  control  approach  for  strict-feedback  nonparametric  sys-
tems  with  unknown  time-varying  control  coefficients,  which
mainly  includes  the  following  steps.  Firstly,  by  introducing  sev-
eral key transformation functions and selecting the initial value of
the time-varying scaling function, the symmetric prescribed perfor-
mance  with  global  and  semi-global  properties  can  be  handled
uniformly,  without  the  need  for  control  re-design.  Secondly,  to
handle  the  problem of  unknown time-varying  control  coefficient
with an unknown sign, we propose an enhanced Nussbaum func-
tion  (ENF)  bearing  some  unique  properties  and  characteristics,
with which the complex stability analysis based on specific Nuss-
baum functions as commonly used is no longer required. Thirdly,
by  utilizing  the  core-function  information  technique,  the  non-
parametric  uncertainties  in  the system are gracefully  handled so
that  no  approximator  is  required.  Furthermore,  simulation
results verify the effectiveness and benefits of the approach.
    Index Terms—Adaptive  control,  enhanced  Nussbaum  function
(ENF), strict-feedback systems, unified prescribed performance.
  

I.  Introduction

IN  practice,  it  is  not  difficult  to  design  a  proper  control
scheme such that all signals in the closed-loop systems are

bounded  in  the  presence  of  parametric/nonparametric  uncer-
tainties [1]−[4]. However, the control problem becomes rather

challenging if the sign of control coefficient is unknown. The
first result was proposed in [5], where an adaptive control law
using the  so-called  Nussbaum-type gain  was  designed.  Moti-
vated  by  such  a  technique,  remarkable  progresses  were
achieved  by  designing  various  adaptive  control  schemes  so
that  the  problem  of  unknown  control  direction  with  constant
coefficient is solved ([6]−[8], to just name a few).

To  deal  with  the  case  of  unknown  sign  of  control  coeffi-
cient with time-varying yet unknown magnitude, a developed
Nussbaum-based  lemma  was  presented  in  [9].  Its  fundamen-
tal  idea  is  to  establish  a  Nussbaum function-based  inequality
such  that  the  Lyapunov-like  function  is  upper  bounded  by  a
Nussbaum function based manner. Due to the great success of
such an approach, many results have been developed for han-
dling  unknown  control  directions  with  time-varying  control
coefficients [10]−[12].  However,  the stability proofs given in
the  above  papers  critically  rely  on  some  specific  form  of
Nussbaum  functions,  which  dramatically  increases  the  com-
plexity  of  stability  analysis.  To  address  such  kind  of  issues,
the  work  in  [13]  presented  a  general  Nussbaum-gain-based
lemma  by  developing  some  additional  properties  of  Nuss-
baum functions  and revealing its  fundamental  characteristics.
This  allows  more  types  of  Nussbaum  functions  to  be
employed  to  handle  the  problem  of  unknown  control  direc-
tions  [14]−[17]  and  thus  reduce  the  complexity  of  involved.
Even so, it is still difficult to use such a lemma for strict-feed-
back  nonlinear  systems  in  the  presence  of  unknown  control
directions. To our best knowledge, the main challenge is that
there is no constructive guidance for us to design an adaptive
law  for  Nussbaum functions  so  that  it  satisfies  the  precondi-
tion of the lemma in [13]. Therefore, motivated by the above
discussion, how to design an adaptive law for Nussbaum func-
tions  and  then  use  this  lemma  to  solve  the  control  direction
problem of strict-feedback nonlinear systems denotes an inter-
esting issue.

Furthermore, tracking a known reference with pre-specified
performance  is  of  great  importance  in  the  practical  applic-
ations  [18].  Up  to  now,  some  effective  control  methods  on
improving tracking performance have been proposed,  see  for
example,  prescribed  performance  bound  (PPB)-based  control
[19]  and  funnel  control  (FC)  [20].  By  introducing  an  error
transformation,  the PPB controls  ensure that  the error/system
state converges to a pre-given set  within a pre-specified con-
vergence  rate.  However,  the  corresponding  results  are  essen-
tially  semi-global  since  they  require  that  the  bound  informa-
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tion  on  the  initial  condition  of  the  system  must  be  available
for  control  design,  otherwise  it  is  impossible  to  ensure  the
desired performance specifications [11], [12], [21], [22]. For-
tunately,  by  constructing  a  class  of  performance  funnels,  the
funnel control proposed in [20] was able to relax the limit on
initial  conditions  of  PPB  control.  Inspired  by  such  an  idea,
there are some results  developed for various kinds of nonlin-
ear systems [23], [24]. Recently, by constructing a global per-
formance  function,  an  adaptive  backstepping  control  devel-
oped in [25] was able to ensure the asymptotic  tracking with
transient  performance.  However,  it  is  difficult  to  extend  the
method  in  [25]  to  non-parametric  systems  with  time-varying
control  coefficients.  The  main  difficulties/challenges  come
from the following three aspects.  The first  is  that  the tuning-
function-based  adaptive  backstepping  control  cannot  handle
the  problem of  non-parametric  uncertainty;  The  second chal-
lenge  is  the  original  lemma  in  [25]  is  invalid  if  the  control
gain is time-varying and unknown; The last but not the least is
that the proposed method in [25] cannot unify the global and
semi-global  results  without  changing  the  control  framework
(see  the  detailed  discussion  in  Remark  4).  Thus,  it  is  mean-
ingful  to  develop  new  techniques  to  tackle  the  issue  of  uni-
form  prescribed  performance  for  non-parametric  nonlinear
systems with time-varying control coefficients.

In this paper,  based on the parameter estimation technique,
we aim to solve the uniform prescribed performance tracking
problem  for  strict-feedback  nonlinear  systems  with  nonpara-
metric uncertainties and unknown sign of control gain having
time-varying  magnitude.  The  main  contributions  of  this  arti-
cle can be summarized as:

1)  Different  from  the  PPB-based  controls  [11],  [12],  [19],
[21],  [22],  by  constructing  a  unified  function  and  a  unique
scaling function, the proposed control is flexible to handle the
global  or  symmetric  semi-global  performance  cases  unifor-
mly just by selecting the initial value of the time-varying scal-
ing function properly, making the controller re-design and sta-
bility re-analysis not required;

2)  Different  from the specific  form of Nussbaum functions
in the existing literature [9]−[12], in this paper, by defining an
enhanced  Nussbaum  function  (ENF)  and  imposing  a  condi-
tion on the update law of Nussbaum argument, the developed
control  relaxes  the  complicated  calculation  and  proof  in  the
existing results; and

3) By extracting the core function information from the non-
parametric  uncertainty,  no  approximator  (such  as  neural  net-
works and fuzzy logic systems) is required, despite unknown
control directions.

The  remainder  of  the  paper  is  organized  as  follows.  Sec
tion II  is  the  problem formulation.  Some important  functions
for  converting  the  required  performance  and  the  correspond-
ing  system  transformations  are  introduced  in  Sections  III-A
and  III-B,  respectively.  Section  III-D  presents  the  control
design as well as the stability analysis. Simulation studies are
shown in Section IV to verify the theoretical result. The paper
is concluded in Section V.  

II.  Problem Formulation

In  this  paper,  we  consider  the  following  nonparametric

strict-feedback  nonlinear  system  with  arbitrarily  given  rela-
tive degree n:
 

ẋ j = f j
(
x j, p j

)
+g j (t) x j+1, j = 1, . . . ,n−1

ẋn = fn (xn, pn)+gn (t)u(t)
y = x1

(1)

xi ∈ R i = 1, . . . ,n xi = [x1, . . . ,

xi]T ∈ Ri y ∈ R u ∈ R
pi ∈ Rqi

fi : Ri×Rqi → R
gi(t) = biωi(t)

bi = 1 −1
ωi(t) > 0 : [0,∞)→ R

where , , is the system state with 
,  is  the  system  output,  and  is  a  control

signal,  represents  an  unknown  parameter  vector,
 denotes  a  smooth  function,  which  contains

the  nonparametric  uncertainty,  is  a  time-vary-
ing control gain/coefficient, where  or  represents the
control  direction  and  denotes  the  mag-
nitude, both of which are unavailable for control design1.

e(t) = y(t)− yd(t) yd(t)Let  be  the  tracking error  with  denot-
ing the desired signal. The control objective of this paper is to
develop an adaptive control algorithm for (1) so that:
O1. All the closed-loop signals are bounded; and
O2.

t ≥ 0
 The  uniform  prescribed  performance  of  tracking  error

can be ensured for .
Assumption 1: The desired signal and its derivatives up to n-

th are bounded, known, and piecewise continuous.

ωi ωi 0 < ωi ≤ ωi (·) < ωi <∞
bi

Assumption  2: There  exist  some  unknown  positive  con-
stants  and  so  that .  In  addition,
the sign of  is fixed, but unknown.

ai
i = 1, . . . ,n κi (xi)
| fi (xi, pi)| ≤ aiκi (xi) ∀t ≥ 0

Assumption 3: There exist an unknown positive constant ,
,  and  an  available  core  function  so  that

, .  

III.  Main Results
  

A.  Performance Transformation
With respect to the second goal on prescribed tracking per-

formance, we introduce the concept of unified function.
• Unified Function (UF).

F (ϕ) ∈ R
ϕ ∈ [−1,1]

Definition  1: A  real  composite  function  with
 is called a unified function if it satisfies:

1) F (1) =∞ F (0) = 0 F (−1) = −∞ , , and ;
2) F (ϕ)+F (−ϕ) = 0 ;
3) F (ϕ) : (−1,1)→ (−∞,∞)  is  continuously  differentiable

with respect to (w.r.t.) ϕ; and
4) µ = ∂F∂ϕ (ϕ) : (−1,1)→

[
µ,∞

)
µ > 0

µ→∞ ϕ→±1
  with  being  a  constant

and  if and only if .

∀t ≥ 0
F

To  ensure  that  the  tracking  error  is  within  the  pre-given
region  for ,  we  impose  a  unique  time-varying  scaling
function φ to replace ϕ in UF , which has the following fea-
tures:
φ(k) k = 0,1, . . . ,n● , , is bounded, known, and piecewise con-

tinuous; and
φ(t) φ(0) = φ0

limt→∞φ(t) = φ f 0 < φ f < φ0 ≤ 1
φ(t) : [0,∞)→ (φ f ,φ0] ⫋ [−1,1]

●  with  is  strictly  monotonically  decreasing
w.r.t.  time  and  with  being
some constants, namely, .
  
R R+
Rn n− | • |

•

1  denotes the set of real numbers,  is the set of positive real numbers, and
 represents  the  set  of dimensional  real  vectors.  Let  be  the  absolute

value of a real number .
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FAccording to the definition of  and the properties of φ, it
is easy to get the conclusion that:

1) F (φ(t))
F (φ(0)) = F (φ0) = b0 > 0 lim

t→∞
F (φ(t)) = F (φ f ) = b f > 0

0 < b f < b0

  is  strictly  decreasing  w.r.t.  time,  namely,
 and 

with  denoting some constants; and
2) F (φ) : (φ f ,φ0)→ (b f ,b0)  is  continuously  differentiable

w.r.t. φ.

F (φ) = φ√
1−φ2

F (φ) = tan( π2φ) φ = (φ0−φ f )exp(−t)+φ f

Obviously, there are many forms of functions satisfying the
properties of unified function, for example,  and

 with .

F
By  utilizing  the  time-varying  scaling  function φ and  the

properties of UF  in Definition 1, the problem of prescribed
tracking performance is stated mathematically equivalent to
 

F (−φ) < e < F (φ) (2)
e(0) = e0 F (−φ0) = −b0 < e0 <

F (φ0) = b0 O2

with the initial value  satisfying 
.  In  other  words,  the  objective  on  the  pre-

scribed performance is converted into guaranteeing (2).

φ0

Remark 1: It is worth mentioning that selecting different ini-
tial values of time-varying scaling function φ, , may lead to
different results:

φ0 = 1 F
F (1) = b0 =∞

Case 1: If , with the property of  in Definition 1, it
follows that ,  which implies that  the constraint
on the initial error is vacuous, then the result is global;

φ0 < 1 F (φ0) = b0 <∞ b0

|e(0)| < F (φ0)

Case 2: If ,  it  is  seen  that  with 
being  a  positive  yet  bounded  constant,  then  the  initial  value
has  to  satisfy  and  so  the  result  is  of  a  semi-
global  nature,  which  is  similar  to  those  in  [11],  [12],  [19],
[22].

φ0

Therefore,  the  developed  control  without  changing  contro-
ller structure gives a unified framework to achieve the global
and  semi-global  prescribed  tracking  performance  uniformly
by only choosing different value of .
• Normalized Function (NF).
Actually, by noting that the form of (2) belongs to the error

constraint  problem,  it  is  difficult  and  challenging  to  handle
such  an  issue  directly  by  utilizing  the  adaptive  algorithm.  In
the  following,  we  give  a  normalized  function η w.r.t.  the
tracking  error e to  simplify  the  design  difficulty  of  maintai-
ning error constraint, i.e.,
 

η = F −1(e) (3)
which is equivalent to
 

e = F (η). (4)
It  must  be  emphasized  that,  according  to  the  properties  of

UF, it shows that:
η ∈ (−1,1) ∀e ∈ (−∞,∞)●  for ;
η→±1 e→±∞●  as ;
β(e) = ∂η∂e ∈ (0,β] ∀e ∈ (−∞,∞)

β > 0
●  is well defined for , where

 is a constant;
β(e)→ 0 e→±∞●  as ; and
limη→0F (η) = e = 0● .

Therefore, it follows from (4) that the performance given in
(2) can be rewritten as:
 

F (−φ) < F (η) < F (φ). (5)
F (·)Since  is monotonic, the problem of unified prescribed

performance in (2) (or (5)) can be further converted into
 

−φ < η < φ. (6)
• Auxiliary Function (AF).
Let

 

ζ = η/φ (7)

φ > 0be the so-called auxiliary function. As , (6) becomes
 

−1 < ζ = η/φ < 1, or |ζ | < 1 (8)

and  the  problem  of  prescribed  performance  in  (2)  (or  (5)  or
(6)) is further converted into guaranteeing (8).

ζ0 η0 t = 0

−b0 < e0 < b0
−φ0 < η0 < φ0 −1 < ζ0 < 1

∀t ≥ 0
|ζ | < 1

∀t > 0

Let  and  be the initial values of ζ and η at , respec-
tively.  To  achieve  the  prescribed  tracking  performance,  the
initial  values  of e and η must  satisfy  and

,  which  implies  from  (8)  that .
Therefore,  the  problem  of  maintaining  (8)  for  is  con-
verted into designing an adaptive control law such that 
for . Furthermore, it is seen from (8) that this inequality
actually  belongs  to  the  problem  of  constant  yet  symmetric
constraint.  Motivated  by  output/state/error-constrained  con-
trol  schemes [27],  [28],  if  we are able to find a new variable
such that the stabilization of the new variable is the sufficient
condition  of  ensuring  (8),  then  the  constant  and  symmetric
constraint  is  naturally  achieved.  Therefore,  to  this  end,  we
give a definition of barrier function (BF) in what follows.
• Barrier Function (BF).

s(ς)Definition  2: A  real  composite  function  is  a  barrier
function if it satisfies:

1) (−1,1) The initial value of ς is within the interval ;
2) s(ς) : (−1,1)→ (−∞,∞)  is  continuously  differentiable

w.r.t. ς;
3) s = ±∞⇔ ς→±1 ;
4) s = 0⇔ ς = 0   ;
5) s ∈ L∞⇒ |ς| < 1   ; and
6) ρ > 0 |ρ = ∂s∂ς | ∈

[
ρ,∞

)
Ω = {ς ∈ R ||ς| < 1 } ρ→±∞

ς→±1

 There  exists  a  constant  such  that 
over the interval  and  if and only if

.

(−1,1)
s(ζ)
s(ζ) ∈ L∞

∀t ≥ 0

From the above discussion it is seen that the initial value of
ζ is within . According to Definition 2, if we are able to
utilize  the  composite  function s w.r.t. ζ (i.e., )  and  to
develop  an  advanced  control  method  such  that  for

,  together  with  the  analysis  in  (2)–(8),  the  unified  pre-
scribed tracking performance can be guaranteed. Thus we will
focus  on  handling  the  stabilization  problem  of  BF s in  the
remaining part of this paper.

0 < ρ ≤ ρ <∞ −∞ < ρ ≤ −ρ < 0

(−1,1) s ∈ L∞
β ρ

|ζ | ≤ λ < 1 β ∈
[
β,β

]
|ρ| ∈

[
ρ,ρ

]

Remark 2: According to the definition of s, it is not difficult
to  see  that  or ,  which  implies
that s is  strictly  monotonic  w.r.t. ζ.  As s is  smooth  w.r.t. ζ
over the interval , then if , it is easy to check that
there  exist  some  positive  constants λ, ,  and  such  that

, , and .
  

B.  System Transformation
Upon  using  the  expression  of ζ as  shown  in  (7),  with  the

definitions of η and φ, it is seen that 
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dζ
dt
=
∂ζ

∂η

∂η

∂e
ė+
∂ζ

∂φ
φ̇. (9)

∂ζ
∂η =

1
φ > 0 ∂η

∂e = β > 0 ∂ζ
∂φ = −

η

φ2Noting  that , ,  and ,  then  (9)
becomes
 

dζ
dt
=

1
φ
β(ẋ1− ẏd)− η

φ2 φ̇. (10)

∂s
∂ζ = ρAs , the derivative of s w.r.t. time is

 

ṡ =
∂s
∂ζ
ζ̇ = ρ

(
1
φ
β(ẋ1− ẏd)− η

φ2 φ̇

)
= r1(ẋ1− ẏd)+ r2 (11)

r1 =
ρβ
φ r2 = − ρηφ̇φ2

r1 > 0
where  and .  According  to  the  properties  of
UF and BF, it can be checked that  is well defined.

ẋ1 ṡBy  replacing  the  equation  of  with ,  (1)  can  be  trans-
formed to the following form:
 

ṡ = r1(g1x2+ f1− ẏd)+ r2

ẋk = gk xk+1+ fk, k = 2, . . . ,n−1
ẋn = gnu+ fn
y = x1.

(12)

[0,∞) O2

Therefore,  it  is  obviously  seen  that  if  an  adaptive  control
law  is  designed  such  that  the  barrier  function s is  bounded
over ,  then the objective  on tracking performance is
achieved.  

C.  Enhanced Nussbaum Function
N(χ) : R→ R

N+(χ) N−(χ)
For a smooth function , denote its positive and

negative  truncated  functions  by  and ,  respec-
tively, i.e.,
 

N+(χ) =max{0,N(χ)}, N−(χ) =max{0,−N(χ)}.

N+(χ) ≥ 0 N−(χ) ≥ 0 N(χ) = N+(χ)−N−(χ)
N(χ)

Obviously,  the  truncated  functions  satisfy  the  following
properties: ,  and .
If a continuously differentiable function  satisfies
 

lim
v→∞

sup
1
v

[w v

0
N+(χ)dχ−

w v

0
N−(χ)dχ

]
=∞ (13)

 

lim
v→∞

sup
1
v

[w v

0
N−(χ)dχ−

w v

0
N+(χ)dχ

]
=∞ (14)

then it is called a Nussbaum function, which has been widely
employed  for  coping  with  the  problem  of  unknown  control
directions. In this paper, to handle the unknown time-varying
control coefficient with unknown sign and to reduce the diffi-
culty of stability analysis, the concept of enhanced Nussbaum
function (ENF), inspired by [13], is presented.

N(χ)
L > 1

Definition 3: A continuously differentiable function  is
called an ENF, if, for a constant , it satisfies
 

lim
v→∞

1
v

w v

0
N+(χ)dχ =∞; lim

v→∞
sup

r v
0 N+(χ)dχr v
0 N−(χ)dχ

≥ L (15)

 

lim
v→∞

1
v

w v

0
N−(χ)dχ =∞; lim

v→∞
sup

r v
0 N−(χ)dχr v
0 N+(χ)dχ

≥ L. (16)

According to the properties of Nussbaum function shown in

(13) and (14), it is easy to check that the ENF also belongs to
the Nussbaum function. To state the Nussbaum-based lemma
later and to simplify the stability proof, we present the follow-
ing lemma.

N(χ) N(χ) = N+(χ)−
N−(χ) λ1 λ2

λ1λ2 > 0 L̂ =min
{
λ1
λ2
, λ2
λ1

}
L >

N̂(χ) = λ1N+(χ)−λ2N−(χ)

Lemma  1: Suppose  a  function  with 
 is an ENF, and let  and  be two real constants satis-

fying .  If 1,  then  the  function
 is also an ENF.

λ1 > 0 λ2 > 0
λ1,λ2 < 0

N̂(χ) = N̂+(χ)− N̂−(χ) N̂+(χ) = λ1N+(χ) N̂−(χ) =
λ2N−(χ) N(χ)

lim
v→∞

1
v

r v
0 N̂+(χ)dχ =∞

lim
v→∞

1
v

r v
0 N̂−(χ)dχ =∞

lim
v→∞

sup
r v

0 N̂+(χ)dχr v
0 N̂−(χ)dχ

= lim
v→∞

sup λ1
λ2

r v
0 N+(χ)dχr v
0 N−(χ)dχ ≥

λ1
λ2

L ≥ L̂ > 1

lim
v→∞

sup
r v

0 N̂−(χ)dχr v
0 N̂+(χ)dχ

≥ L̂ > 1 N̂(χ)
λ1 λ2 > 0

Proof: We  only  prove  the  case  with  and ,  as
the  result  for  can  be  similarly  derived.  We  denote

,  where  and 
. Since  is an ENF, then it satisfies (15) and (16).

It  can  be  verified  that  and
.  Furthermore,  from  the  second  prop-

erty  in  (15),  one  is  also  able  to  prove that
. Simi-

larly,  we  have .  Therefore,  is
an ENF for , . ■

V(t) ∈ R+ χ(t) ∈ R g(t) : [0,∞)→
[
g,g

]
g g gg > 0

Lemma  2  [13]: Consider  the  continuously  differentiable
functions  and .  Let  for
two constants  and  satisfying . If
 

V(t) ≤
w t

0
[g(τ)N(χ(τ))+w]χ̇(τ)dτ+Λ (17)

 

χ̇(t) ≥ 0, ∀t ≥ 0 (18)
N(χ) L >

max
{

g
g ,

g
g

}
V(t) χ(t) [0,∞)

for  some  constants w,  Λ,  and  an  ENF  with 
, then  and  are bounded over .

g(·)
g(·) > 0 g(τ)N(χ(τ))

Proof: As  has unknown but certain sign, without losing
generality,  we  consider  the  case .  Then, 
can be rewritten as
 

g(τ)N(χ(τ)) = g(τ)N+(χ(τ))−g(τ)N−(χ(τ))

≤ gN+(χ(τ))−gN−(χ(τ))

= N̂+(χ(τ))− N̂−(χ(τ)) = N̂(χ(τ)) (19)

N̂+(χ(τ)) = gN+(χ(τ)) N̂−(χ(τ)) = gN−(χ(τ))
N̂(χ(τ))

where  and .  With
the aid of Lemma 1, it is not difficult to check that  is
an ENF. Inequality (17) can also be expressed as
 

V(t) ≤
w t

0
g(τ)N(χ(τ))χ̇(τ)dτ+

w t

0
wχ̇(τ)dτ+Λ

≤
w χ(t)
χ(0)

N̂(s)ds+wχ(t)−wχ(0)+Λ

=
w χ(t)

0
N̂(s)ds−

w χ(0)

0
N̂(s)ds+w(χ(t)−χ(0))+Λ.

c0 =
r χ(0)

0 N̂(s)ds+wχ(0)−ΛDenote  a  constant ,  then  one
has
 w χ(t)

0
N̂(s)ds+wχ(t) ≥ c0. (20)

N̂(s)
χ̇ ≥ 0 χ∗ > 1

1
χ∗

r χ∗
0 N̂(s)ds < −|c0| −a χ(t) [0,∞)

t∗ > 0 χ(t∗) = χ∗

As  is a Nussbaum function, together with the property
of Nussbaum function and , there exists  such that

.  If  is  not  bounded  over ,
there exists  such that  and hence 
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1
χ∗

w χ∗
0

N̂(s)ds < −|c0| −a <
c0

χ(t∗)
−a. (21)

r χ∗
0 N̂(s)ds+aχ(t∗) < c0

χ(t) [0,∞) V(t)
g < 0

As  a  result, ,  this  contradicts  (20),
which implies that  is bounded over , so is . The
same result can also be derived for . ■

Remark  3: The  problem  of  constant  control  gain  with
unknown control directions is solved in the existing works [6],
[7], [8], [25], whereas the corresponding Nussbaum lemma is
no  longer  applicable  to  the  case  in  this  work  as  the  control
coefficient  is  time-varying,  which  may  affect  the  stability
analysis. Moreover, although some efforts have been made to
handle  the  problem of  time-varying case  [10],  [11],  [12],  the
stability proofs must critically rely on the explicit  calculation
for the particularly chosen Nussbaum functions. If other forms
of Nussbaum functions are employed, the corresponding com-
plicated  stability  must  be  re-proved  and  re-analyzed.  In  this
paper,  as  long  as  the  employed  Nussbaum  function  and  its
argument  satisfy  Definition  3  and  (18),  for  the  case  of  time-
varying control coefficient, the onerous calculation process is
not required, which reduces the difficulty of stability analysis.  

D.  Control Design
Here  we  present  an  ENF-based  control  for  strict-feedback

system (1) with unknown sign and magnitude of control coef-
ficients.  To this end, we utilize the coordinate transformation
in what follows:
 

z1 = s (22)
 

z j = z j−α j−1, j = 2, . . . ,n (23)

α j−1where  is the virtual control law.
Before the control design, let

 

θ1 =max {1,a1} (24)
 

θ j=max{1,a1, . . . ,a j,g1, . . . ,g j−1}, j=2, . . . ,n−1 (25)
 

θn =max
{
1,a1, . . . ,an,g1, . . . ,gn−1

}
. (26)

1
2 z

2
1Step 1: Differentiating  w.r.t. time and invoking the first

equation of (12), one has
 

z1ż1 = z1r1( f1+g1x2− ẏd)+ z1r2. (27)

x2 = z2+α1Note that , then (27) can be arranged as
 

z1ż1 = z1r1g1α1+Ξ1 (28)

Ξ1(·) = z1r1( f1− ẏd)+ z1r2+ z1r1g1z2where  is  an  uncertain
function.

fiSince the nonlinear function  does not satisfy the paramet-
ric  composition  condition,  then  the  tuning-function  based
adaptive  backstepping  control  [1]  is  no  longer  available.  To
solve this issue, we impose Assumption 3 in this paper for the
nonparametric  uncertainty  so  that  we  can  obtain  the  deep-
rooted  information,  making  the  approximator  not  required.
Therefore, we have
 

z1r1 f1 ≤ |z1||r1|a1κ1 (29)
 −r1z1ẏd ≤ |z1||r1||ẏd | (30)
 

z1r2 ≤ |z1||r2| (31)
 

g1r1z1z2 ≤ r2
1z

2
1+

1
4

g2
1z

2
2. (32)

Ξ1Hence,  can  also  be  upper  bounded  by  the  following
form:
 

Ξ1 ≤ θ1|z1|Φ1+ r2
1z

2
1+

1
4

g2
1z

2
2 (33)

θ1where  is  an  unknown  virtual  constant  as  defined  in  (24),
and
 

Φ1 = r2
1κ

2
1 + r2

1 ẏ2
d + r2

2 +
3
4

(34)

is an available function.
ε(t) : [0,∞)→ R+

Z ∈ R |Z| ≤ ε(t)+ |Z|2√
|Z|2+ε2(t)

For  any  positive  function  and  variable

, it holds that:  [14], [26], then we
have
 

θ1|z1|Φ1 ≤ θ1ε(t)+
θ1z2

1Φ
2
1√

z2
1Φ

2
1+ε

2(t)
(35)

ε(t) ∈ R+
ε(k)(t) k = 0,1, . . . ,n−1r t

0 ε(τ)dτ ≤ δ <∞ δ > 0

where  is chosen to have the following properties: 1)
, ,  is  bounded,  known,  and  piece-wise

continuous;  and 2)  with  being a con-
stant. Thus, (33) becomes
 

Ξ1 ≤ θ1ε(t)+
θ1z2

1Φ
2
1√

z2
1Φ

2
1+ε

2(t)
+ r2

1z
2
1+

1
4

g2
1z

2
2 (36)

which leads to
 

z1ż1 ≤ g1r1z1α1+θ1ε(t)+
θ1z2

1Φ
2
1√

z2
1Φ

2
1+ε

2(t)
+ r2

1z
2
1+

1
4

g2
1z

2
2. (37)

V1 =
1
2 z

2
1+

1
2γ1
θ̃21

θ̂1 θ1 θ̃1 = θ1− θ̂1
γ1 > 0 V1

Considering  the  quadratic  function  as ,
where  is the estimate of ,  is the estimate error,
and , then the derivative of  along (37) is
 

V̇1 ≤ g1r1z1α1+ θ1ε(t)+
θ1z2

1Φ
2
1√

z2
1Φ

2
1+ε

2(t)
+ r2

1z
2
1+

1
4

g2
1z

2
2

− 1
γ1
θ̃1

˙̂θ1. (38)

α1

To handle the unknown sign of control gain with time-vary-
ing yet unknown magnitude, we employ the ENF to design the
virtual control law ,
 

α1 =
1
r1

N1(χ1)

c1z1+ r2
1z1+

θ̂1z1Φ
2
1√

z2
1Φ

2
1+ε

2(t)

 (39)

 

χ̇1 = c1z2
1+

θ̂1z2
1Φ

2
1√

z2
1Φ

2
1+ε

2(t)
+ r2

1z
2
1 (40)

 

˙̂θ1 = γ1
z2

1Φ
2
1√

z2
1Φ

2
1+ε

2(t)
, θ̂1(0) ≥ 0 (41)
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c1 > 0 θ̂1(0) ≥ 0 χ1(0)
θ̂1(t) χ1(t)

where  is a design parameter,  and  are the
arbitrarily chosen initial values of  and , respectively.

χ̇1

Substituting  the  first  virtual  control  and  adaptive  law  as
shown in (39) and (40) into (38) and adding and subtracting 
in the right-hand side of (38), it is deduced that
 

V̇1 ≤ [g1(t)N1(χ1)+1]χ̇1− c1z2
1+ θ1ε(t)+

1
4

g2
1z

2
2. (42)

[0, t]Integrating (42) over , we have
 

V1(t)+ c1

w t

0
z2

1(τ)dτ ≤
w t

0
[g1(τ)N1(χ1(τ))+1]χ̇1(τ)dτ

+Π1+
1
4

g2
1

w t

0
z2

2(τ)dτ (43)

Π1 = V1(0)+ θ1δr t
0 z

2
2(τ)dτ 1

4 g2
1
r t

0 z
2
2(τ)dτ ≤Ω1 Ω1

where .  If  the  developed  control  guarantees
that  is  bounded,  i.e.,  with 
being a positive constant, then (43) can be checked as
 

V1+ c1

w t

0
z2

1(τ)dτ ≤ Π′1+
w t

0
[g1(τ)N1(χ1(τ))+1]χ̇1(τ)dτ

Π′1 = Π1+Ω1

r t
0 z

2
2(τ)dτ

where . In this case, Lemma 2 can be applied to
the  above  inequality.  The  problem  on  the  boundedness  of

 will  be coped with in the final step (see the analy-
sis in (67) and (68)).

i (i = 2, . . . ,n−1) zi
xi+1 = zi+1+αi

Step : The  derivative  of ,  by  considering
, is computed as

 

żi = fi+gizi+1+giαi−
i−1∑
k=1

∂αi−1

∂xk
( fk +gk xk+1)+∆i (44)

with
 

α̇i−1 =

i−1∑
k=1

∂αi−1

∂xk
( fk +gk xk+1)−∆i (45)

 

∆i = −
i−1∑
k=0

∂αi−1

∂y(k)
d

y(k+1)
d −

i−1∑
k=0

∂αi−1

∂φ(k) φ
(k+1)−

i−1∑
k=1

∂αi−1

∂χk
χ̇k

−
i−1∑
k=1

∂αi−1

∂θ̂k

˙̂θk −
i−2∑
k=0

∂αi−1

∂ε(k)(t)
ε(k+1)(t). (46)

1
2 z

2
iThen the derivative of  along (44) is

 

ziżi = giziαi+Ξi (47)

Ξi = gizizi+1+ zi fi− zi
∑i−1

k=1
∂αi−1
∂xk

( fk +gk xk+1)+ zi∆iwhere .
ΞiSimilar to (29)–(36),  can be upper bounded by

 

Ξi ≤ θiε(t)+ θiψi(·)+ z2
i +

1
4

g2
i z

2
i+1 (48)

 

ψi(·) =
z2

iΦ
2
i√

z2
iΦ

2
i +ε

2(t)
(49)

θi i = 2, . . . ,n−1where , , is defined in (25), and
 

Φi = κ
2
i +

i−1∑
k=1

(∂αi−1

∂xk

)2

+
1
4

κk +∆2
i +

1
4

+

i−1∑
k=1

(∂αi−1

∂xk
xk+1

)2

+
1
4

 (50)

is an available function.
Substituting (48) into (47), we have

 

ziżi ≤ giziαi+ z2
i + θiε(t)+ θiψi+

1
4

g2
i z

2
i+1. (51)

By utilizing the characteristics of ENF, the following Nuss-
baum-gain technique based virtual control law is given as:
 

αi = Ni(χi)

cizi+ zi+
θ̂iziΦ

2
i√

z2
iΦ

2
i +ε

2(t)

 (52)

 

χ̇i = ciz2
i + z

2
i + θ̂iψi (53)

 

˙̂θi = γiψi, θ̂i(0) ≥ 0 (54)

ci γi θ̂i
θi θ̂i(0) ≥ 0 χi(0)

θ̂i(t) χi(t)

where  and  are  positive  parameters,  is  the  estimated
value  of ,  and  and  are  the  initial  values  of

 and , respectively.
Vi =

1
2 z

2
i +

1
2γi
θ̃2i

θ̃i = θi− θ̂i Vi

Choosing  the  quadratic  function  as ,  where
, the derivative of  w.r.t. time is

 

V̇i ≤ giziαi+ z2
i + θiε(t)+ θiψi+

1
4

g2
i z

2
i+1−

1
γi
θ̃i

˙̂θi. (55)

Substituting the virtual control and adaptive law as defined
in (52)–(54) into (55), we have
 

V̇i ≤ [giNi(χi)+1]χ̇i− ciz2
i + θiε(t)+

1
4

g2
i z

2
i+1. (56)

Solving the above inequality yields
 

Vi(t)+ ci

w t

0
z2

i (τ)dτ ≤ Πi+
w t

0
[gi(τ)Ni(χi(τ))+1]χ̇i(τ)dτ

+
1
4

g2
i

w t

0
z2

i+1(τ)dτ (57)

Πi = Vi(0)+ θiδwhere .
znStep n: The derivative of  is

 

żn = fn+gnu−
n−1∑
k=1

∂αn−1

∂xk
( fk +gk xk+1)+∆n (58)

∆n=−
∑n−1

k=0
∂αn−1

∂y(k)
d

y(k+1)
d −∑n−1

k=0
∂αn−1
∂φ(k) φ

(k+1)−∑n−1
k=1

∂αn−1
∂χk
χ̇k−∑n−1

k=1
∂αn−1
∂θ̂k

˙̂θk −
∑n−2

k=0
∂αn−1
∂ε(k)(t)

ε(k+1)(t)

where 

. Then we further have
 

znżn = gnznu+Ξn ≤ gnznu+ θnψn+ θnε(t) (59)

Ξn = zn fn− zn
∑n−1

k=1
∂αn−1
∂xk

( fk +gk xk+1)+ zn∆n θn

ψn(·)= z2nΦ2
n√

z2nΦ2
n+ε

2(t)
Φn=κ

2
n+

n−1∑
k=1

((
∂αn−1
∂xk

)2
+ 1

4

)
κk+

n−1∑
k=1

((
∂αn−1
∂xk

xk+1
)2
+ 1

4

)
+∆2

n+
5
4

where ,  is defin-

ed in (26), , and 

.

The actual control law and adaptive law are given by
 

u = Nn(χn)

cnzn+
θ̂nznΦ

2
n√

z2
nΦ

2
n+ε2(t)

 (60)

 

χ̇n = cnz2
n+ θ̂nψn (61)
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˙̂θn = γnψn, θ̂n(0) ≥ 0 (62)

cn > 0 γn > 0 θ̂n
θn θ̂n(0) ≥ 0 χn(0)

θ̂n(t) χn(t)

where ,  are design parameters,  is the estimate
value  of ,  and  and  are  the  initial  values  of

 and , respectively.
According to the developed control  algorithm, we state the

following theorem.

O1−O2

Theorem  1: For  the  strict-feedback  nonlinear  system  (1)
with the time-varying control coefficients of an unknown sign.
Under Assumptions 1−3,  if  the control  law (60)−(62) is  app-
lied, the control objectives  are ensured.

Proof: Define the Lyapunov function candidate as
 

Vn =
1
2
z2

n+
1

2γn
θ̃2n (63)

θ̃n = θn− θ̂n Vnwhere .  Taking  the  derivative  of  w.r.t.  time
along (58) yields
 

V̇n ≤ gnznu+ θnε(t)+ θnψn−
1
γn
θ̃n

˙̂θn. (64)

Substituting the true control law (60) and adaptive laws (61)
and (62) into (64), it is deduced that
 

V̇n ≤ [gnNn(χn)+1]χ̇n− cnz2
n+ θnε(t) (65)

then it follows that:
 

Vn+ cn

w t

0
z2

n(τ)dτ ≤ Πn+
w t

0
[gn(τ)Nn(χn(τ))+1]χ̇n(τ)dτ (66)

Πn = Vn(0)+ θnδwhere .

Vn(t) χn ∀t ≥ 0
Vn zn ∈ L∞ θ̃n ∈ L∞

θ̂n χn(t) ∈ L∞
χ̇n = cnz2

n+ θ̂nψn

Thus,  together  with  (61),  (66),  and Lemma 2,  it  is  ensured
that  and  are bounded for , then from the defini-
tion  of ,  it  follows that  and ,  then  it  is  fur-
ther  shown  that  is  bounded.  As  and

, it can be rewritten in the integral form as
 

cn

w t

0
z2

n(τ)dτ ≤ χn(t)−χn(0), (67)

θ̂nψn ≥ 0r t
0 z

2
n(τ)dτ
1 (n−1)

in which  is utilized, then it is seen from (67) that the
boundedness of  is ensured. Therefore, according to
the analysis in Step  and applying (17)  times, we can
conclude that
 

Vi,zi, θ̂i,χi,
w t

0
z2

i (τ)dτ (68)

i = 1, . . . ,n−1 z1 = s
ρ ρ β

β |ζ | ≤ λ < 1 ρ ≤ |ρ| ≤ ρ β ≤ β ≤ β
F

r1 r2 yd φ ∈ (φ f ,φ0] φ̇

r1 r1 0 < r1 ≤ r1 ≤ r1 <∞
z1 = x1− yd yd ∈ L∞ x1 ∈ L∞ κ1 ∈ L∞

Φ1 ∈ L∞
˙̂θ1 χ̇1

χ̇1 ∈ L∞ ˙̂θ1 ∈ L∞ χ1 ∈ L∞
N1(χ1)
α1 ż1

for ,  are  bounded.  As ,  then  it  is  shown
from Remark 2 that, there exist positive constants λ, , , ,
and  such  that , ,  and .  Thus,
according  to  the  properties  of  and η,  it  is  not  difficult  to
prove that e, ,  and  are bounded as , , and 
are  bounded,  which  further  implies  that  there  exist  positive
constants  and  so  that .  Since

 and ,  then  and ,  then  it
implies  from  (34)  that ,  which  further  follows  from
the  definitions  of  and  as  given  in  (41)  and  (40)  that

 and . For the ENF, as , it is easily ver-
ified  that  is  bounded,  then  it  follows  that  the  virtual
control law  and  are bounded. Similarly, using an induc-

xi κi Φi χ̇i
˙̂θi

żi (i = 2, . . . ,n) α j ( j = 2, . . . ,n−1)
tion argument, we can get the conclusion that , , , , ,

, , the virtual control law , and
the  true  control  law u are  bounded.  Hence,  all  signals  in  the
closed-loop systems are bounded.

s(t) ∈ L∞ ∀t ≥ 0

z1 ∈ L2
∩

L∞
ż1 ∈ L∞ i = 1, . . . ,n

limt→∞ z1(t)→ 0 limt→∞ s(t)→ 0
limt→∞ ζ(t)→ 0

ζ =
η(t)
φ(t) 0 < b f ≤ φ(t) ≤ 1

limt→∞ η(t)→ 0 η(t)
e(t)→ 0 t→∞

In  addition,  note  that  holds  for ,  then  upon
utilizing  the  discussion in  Section  III-A the  prescribed track-
ing performance is guaranteed. Finally, note that 
and , ,  then by using the Barbalat’s Lemma
it  is  ensured  that ,  namely, ,
then  it  follows  from  the  definition  of s that .
As  and ,  then  it  is  shown  that

;  then  by  utilizing  the  property  of ,  it  is
ensured that  as . ■

To  facilitate  the  understanding  of  our  design  procedure,  a
detailed block diagram of the proposed control is presented in
Fig. 1.
 

Reference signal

Global case 
with φ0 = 1 

Performance transformation φ, η, ζ

Step 1

Step n

Strict-feedback nonlinear system

Step i (i = 2, 3, ... , n − 1)

ENF

ENF

ENF

Semi-global case 
with φ0 < 1

Which kind of 
performance ?

Yes

x1

x1

x1, ..., xi

x1, ... , xn

yd
e

e

s

u

END

No

|e (0)| < F�(φ0)

α1, z1, θ1 ^

αi, zi, θi ^

 
Fig. 1.     The designed procedure diagram.
 

Remark 4: The differences between our previous result [25]
and  this  work  are  mainly  exhibited  in  the  system model  and
the control goal: 1) the non-parametric uncertainty (rather than
the parametric uncertainty) in the system model;  2)  the time-
varying  (rather  than  constant)  control  coefficient  with
unknown control direction; and 3) the uniform prescribed per-
formance (rather than global performance). It is quite difficult
and challenging for  solving the  above issues  as  the  approach
in [25]  is  invalid,  for  example,  for  the non-parametric  uncer-
tainty, the parameter decomposition condition in [25] does not
hold  so  that  the  tuning-function-based  control  cannot  be

ZHAO et al.: ADAPTIVE UNIFORM PERFORMANCE CONTROL OF STRICT-FEEDBACK NONLINEAR SYSTEMS WITH TIME-VARYING 457 



F (φ)

adopted;  For  the  time-varying  control  coefficient,  the  Nuss-
baum  lemma  in  [25]  is  still  ineffective.  To  solve  the  above
problems, different yet more advanced technical development
must  be  adopted  in  this  paper,  we  utilize  the “core  informa-
tion” technique in Assumption 3 to handle the non-parametric
uncertainty,  reveal  some  additional  properties  of  Nussbaum
functions in Definition 3 and Lemma 2 to cope with the time-
varying control gain, and construct a unified function  in
Definition  1  to  solve  the  problem of  uniform prescribed  per-
formance.  Therefore,  it  is  seen  that,  compared  with  [25],  the
proposed scheme has great contributions in control design.

Remark  5: To  achieve  the  given  objectives  in  this  paper,
two major difficulties are encountered, as discussed below.

F φ(t)
φ(t)

1)  The  first  is  how  to  ensure  the  uniform  performance  for
strict-feedback  non-parametric  systems,  which  cannot  be
solved  with  existing  approaches.  For  example,  the  PPB  con-
trol  schemes  [19],  [22]  for  guaranteeing  prescribed  perfor-
mance cannot be applied, because they always require a con-
straint on the initial error. In this paper, we construct a unified
function  and  a  unique  time-varying  scaling  function ,
by  selecting  different  initial  values  of ,  the  uniform  pre-
scribed  performances  can  be  handled.  Furthermore,  by
employing  the  deep-rooted  information,  the  nonparametric
uncertainty  in  the  system  can  be  greatly  handled  without
involving any approximator; and

2) The second is how to reduce the complex stability analy-
sis caused by the problem of time-varying control  gains with
unknown control  directions.  For  most  of  existing Nussbaum-
gain  results  [11],  [12],  [14],  only  a  special  Nussbaum  func-
tion can be proved to be effective based on the explicit calcu-
lation  on  the  particular  function  used.  However,  the  associ-
ated  stability  proof  of  closed-loop  systems  is  quite  complex.
In  this  paper,  an  ENF  is  proposed.  By  establishing  some
important  properties  (i.e.,  (15)  and  (16))  and  imposing  some
extra  condition  on  the  argument  of  Nussbaum  function  (i.e.,
(18)), the developed Nussbaum-gain-based Lemma 2 does not
rely  on  the  explicit  calculation  for  the  particularly  chosen
Nussbaum functions. This facilitates the stability analysis with
great convenience and flexibility.  

IV.  Simulation Studies
  

A.  Validity Verification of the Proposed Control
To illustrate the effectiveness of the developed control algo-

rithm,  the  following  strict-feedback  nonlinear  system  is  con-
sidered:
 

ẋ1 = f1 (x1, p1)+g1 (t) x2

ẋ2 = f2 (x2, p2)+g2 (t)u

y = x1

(69)

f1 (x1) = 0.2exp
(
−p1x2

1

)
sin(p12x1)+ p13x1 f2 (x2) =

p21x1x2+ p22 sin(p23x2)
p1 =

[
p11, p12, p13

]T
= [0.5,1,1]T p2 =

[
p21, p22, p23

]T
=

[0.2,0.1,0.5]T

g1(t) = 3+0.1sin(t) g2(t) = −2+0.2cos(t)

where , 
,  the  system parameters  are  given as:

 and 
.  The  control  coefficients  are  chosen  as:

, ,  whereas  the  signs

g1 g2
fi

gi

and  the  values  of  and  are  unavailable  for  controller
design.  As  the  nonlinear  function  does  not  satisfy  the
parameter  decomposition  condition  and  the  control  coeffi-
cient  is  not  only  unknown  but  also  time-varying,  then  the
approach in [25] is no longer effective.

φ0 1

x(0) = [x1(0), x2(0)]T = [0.9,−1]T [0.5,−0.5]T

[−1,0]T

θ̂1(0) = θ̂2(0) = 0 χ1(0) = 1 χ2(0) = 0
yd(t) = 0.3sin(t)

N1(χ1) = cos(πχ1/2)exp(χ2
1) N2(χ2) =

cos(πχ2/2)exp(χ2
2)

φ(t) =(φ0−φ f )
exp(−0.5t)+φ f c1 = 5
c2 = 10 γ1 = 0.1 γ2 = 0.01 φ0 = 1 φ f = 0.08

ε(t) ε(t) =exp(−0.4t)

χ1 χ2

θ̂1 θ̂2

Noting that if  is selected as ,  the corresponding control
(60)−(62) is actually a global result, as it is independent of ini-
tial  conditions  of  system  states.  To  verify  and  illustrate  this,
the  following  three  sets  of  initial  conditions  of  system states
are considered: , ,
and .  The  other  initial  conditions  are  chosen  as:

, ,  and ;  the  desired  signal
is  chosen  as .  According  to  the  analysis  in
[13], it is shown that  and 

 are  ENFs  and  thus  they  are  applicable  to
the case of unknown control directions with time-varying con-
trol  coefficients.  To  implement  the  control  algorithm  in  the
simulation,  the  scaling  function  is  given  as 

, the design parameters are selected as: ,
, , , ,  and .  The  inte-

gral function  is given by . The simulation
results  are  presented  in Figs. 2−5. It  is  seen from Fig. 2 that,
under  the  developed  control  scheme  (60)−(62)  for  nonlinear
systems  with  unknown  control  directions,  the  global  pre-
scribed performance of tracking error e is achieved. The evo-
lutions of control input, the trajectories of parameters of Nuss-
baum  functions  (  and ),  and  the  responses  of  parameter
estimates  (  and )  are  plotted  in Figs. 3−5,  respectively,
which  show  that  the  closed-loop  signals  are  bounded  for  all
time.  
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Fig. 2.     The  trajectories  of  tracking  error  with  prescribed  boundary  under
different initial values.
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Fig. 3.     The trajectories of control input under different initial values.
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B.  Comparison With the Existing Works
To  verify  the  merits  of  the  developed  algorithm  in  Sec

tion  III-D,  we  mainly  give  a  comparison  between  the  pro-
posed  control  and  the  funnel  control  in  [29].  To  make  a  fair
comparison,  we use  the  following one-link  robotic  system in
[30] for simulation:
 

ẋ1 = x2

ẋ2 =
1
J

u− 1
J

(Dx2+MGĽsin(x1))
(70)

x1 x2 = ẋ1

Ľ

MGĽ = 5 D = 2 J = 1
x(0) = [x1(0), x2(0)]T = [1,−1]T

yd(t) = 0.5sin(t)

where  and  denote the angular positive and velocity,
respectively. The detailed definitions of J, D, M, and  can be
found  in  [30]  and  the  system  parameters  are  given  as

, ,  and .  The  initial  states  are  chosen  as
 and  the  reference  signal  is

.
Now  we  give  the  detailed  formulations  of  the  funnel  con-

trol in [29] and the proposed control in this paper.
Funnel control:

 

u = − µ̌
[
(cos(χ2)−χ2 sin(χ2))2e2+N2

2

]
χ4

2(1+ ω̌2)ϑ

− µ̌N2e

N2 = χ2 cos(χ2), χ2 =
1

1−F 2e2

ϑ = ω̌−N2e, ˙̌ω = −µ̌ω̌+u, e = x1− yd

(71)

µ̌ = 10 F

F =
√
ℓφ√

1−φ2
φ(t) = (1−0.08)exp(−0.8t)+0.08 ℓ = 1−

0.082

where  is  a  positive  parameter,  denotes  the  pre-
scribed  performance  boundary  which  is  formulated  as

 with  and 
.

Proposed control:

 

α1 = −
1
r1

(c1z1+ r2)− r1z1+ ẏd, z1 = s

u = N2

c2z2+
θ̂2z2Φ

2
2√

z2
2Φ

2
2+ε

2(t)

 , N2 = χ2 cos(χ2)

χ̇2 = c2z2
2+

θ̂2z2
2Φ

2
2√

z2
2Φ

2
2+ε

2(t)

˙̂θ2 = γ2
z2

2Φ
2
2√

z2
2Φ

2
2+ε

2(t)
, θ̂2(0) ≥ 0

z2 = x2−α1, Φ2 = κ2+ |∆2|, κ2 = |x2|+1

∆2 = −
1∑

k=0

 ∂α1

∂y(k)
d

y(k+1)
d +

∂α1

∂φ(k)φ
(k+1)

− ∂α1

∂x1
x2

(72)

c1 = 3 c2 = 6 γ2 = 0.01 ε(t) = exp(−0.4t)
θ̂2(0) = 0

χ2(0) = −0.9

where  the  design  parameters  and  positive  function  are  given
as , , ,  and .  The  initial
values  of  parameter  estimates  are  chosen  as  and

. Under the funnel control (71) and the proposed
control (72), the simulation results are shown in Figs. 6 and 7.
It  is  easily seen that  the proposed control  has better  transient
performances than these in the funnel control.
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Fig. 6.     The trajectories of tracking error under the proposed control and the
funnel control.
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Fig. 7.     The trajectories of control signal under the proposed control and the
funnel control.  

V.  Conclusions

An  adaptive  uniform  prescribed  performance  control  stra-
tegy has been developed for strict-feedback nonlinear systems
with  nonparametric  uncertainties  and unknown control  direc-
tions. By utilizing some function transformations and develo-
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ping some additional features of Nussbaum functions, together
with  the  adaptive  backstepping  technique,  the  proposed  con-
trol exhibits the following features: 1) the boundedness of all
signals  in  the  closed-loop systems is  ensured;  2)  the  uniform
prescribed  tracking  performance  can  be  ensured  without
changing the control  structure;  and 3) the complicated stabil-
ity proof in the existing Nussbaum-based results is avoided. It
is  worth  emphasizing  that  although  the  uniform performance
can  be  ensured  by  utilizing  the  developed  control,  we  only
achieve  the  symmetric  result,  which  sacrifices  the  overshoot
of the tracking error in some degree. Moreover, only the sin-
gle  system  is  considered  in  this  paper.  Noting  that  network
systems nowadays have received more and more attention due
to  its  widely  applications  [31]–[33]  (such  as  microgrids,  dis-
tributed systems, and mobile robots), therefore, we will study
the  uniform  prescribed  performance  problem  of  networked
systems in the future work.
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