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   Dear Editor,

Dummy  attack  (DA),  a  deep  stealthy  but  impactful  data  integrity
attack  on  power  industrial  control  processes,  is  recently  recognized
as  hiding  the  corrupted  measurements  in  normal  measurements.  In
this letter, targeting a more practical case, we aim to detect the one-
shot  DA, with the purpose of  revealing the DA once it  is  launched.
Specifically,  we first  formulate an optimization problem to generate
one-shot DAs. Then, an unsupervised data-driven approach based on
a  modified  local  outlier  factor  (MLOF)  is  proposed  to  detect  them.
To improve the detection performance, the measurements are prepro-
cessed  with  the  gamma  transformation  and  the  power  patterns  are
extracted  from  historical  data  and  integrated  into  the  MLOF  algo-
rithm.  Finally,  extensive  experiments  are  conducted  to  evaluate  the
performance of the proposed approach with real-world load data.

The  industrial  control  processes  of  power  systems are  enabled  by
integrating  advanced  information  and  communication  technology
(ICT)  into  the  physical  infrastructures.  However,  the  vulnerabilities
exposed  in  ICT  devices  make  power  systems  attractive  to  cyberat-
tacks  [1].  The  false  data  injection  attack  (FDIA)  [2]  is  one  of  the
cyberattacks that aims to stealthily inflict the power system’s control
processes (e.g.,  state estimation,  load frequency control,  etc.).  How-
ever,  the  bad  data  detection-bypassed  FDIA is  no  longer  stealthy  if
the  detector  evaluates  the  distances  between the  corrupted measure-
ments  and  the  near  historical  measurements.  Thus,  a  deep  stealthy
attack,  the  DA  is  recently  proposed  to  hide  the  corrupted  measure-
ments in historical measurements [3]. The DA is a variant of FDIA by
enhancing the stealthiness against detectors using clustering methods.

As  an  emerging  research  topic,  it  is  still  an  open  issue  to  detect
DAs  effectively.  The  revisit  of  existing  defense  against  traditional
FDIAs [4] is beneficial to understanding DA. Among them, the mea-
surement/state  protection  [5]  is  the  most  studied  approach,  which
prevents  the  power  system  from  being  attacked  by  securing  some
critical measurements. But, the shortage of this approach is that only
a few measurements can be trusted and the real-time operation might
be  affected  if  the  data  is  protected  with  encryption.  To  provide  a
dynamic  protection  capability,  the  moving  target  defense  approach
[6]  is  recently  put  forward  to  thwart  FDIAs  by  dynamically  chang-

ing the  network and physical  parameters  of  power  systems.  But  the
active perturbation of system parameters might affect the safety and
stability of the voltage, grid frequency, etc. To alleviate the impact of
defensive approaches, the data-driven methods are promising alterna-
tives  to  detect  and  identify  FDIAs  [7]  and  [8].  However,  there  are
three  challenges  for  the  data-driven  approaches  to  detect  FDIAs.
First,  it  is  impossible  to  completely  label  the  adversarial  data  for
supervised approaches since the state space is uncountable. The same
measurement  might  be  contradictorily  labeled  since  the  modified
measurements  by  FDIA  sometimes  are  legal  (i.e.,  satisfying  the
physics  laws).  Second,  the  assumption  regarding  specific  distribu-
tion for a tested dataset, requested by some approaches, may not hold
in  practice,  as  different  power  systems  are  likely  to  yield  different
data  distributions.  Third,  some  complicated  machine/deep  learning
methods have plenty of parameters that should be adjusted according
to different power systems.

In this letter, our goal is to detect DAs with a data-driven approach
to fill  the gap. We pay a special emphasis on the one-shot DA. The
one-shot setting is more reasonable because: from the attacker's per-
spective,  he/she  aims  to  destroy  the  system’s  control  processes  by
using  only  one  hit;  while  from  the  defender’s  perspective,  it  is  the
best  to  detect  the  attack  at  once  after  its  execution.  However,  there
are  challenges  to  detecting  the  one-shot  DA.  First,  prior  knowledge
about the one-shot attack is lacking, as it is rare during the system’s
operation. Second, since the DA is executed in a one-shot manner, it
is  almost  impossible  to  monitor  the  long-term  change  of  measure-
ments since the system might have already crashed down. To address
these  issues,  in  this  letter,  we  propose  an  unsupervised  data-driven
approach  based  on  the  local  outlier  factor  (LOF)  to  detect  one-shot
DAs. According to our knowledge, it is the first work to propose an
efficient  algorithm  to  detect  one-shot  DAs.  The  main  contributions
are summarized as follows: 1) We present a formulation of the con-
strained one-shot DA; 2) The interval information and γ transforma-
tion  method  are  adopted  to  enlarge  the  deviation  of  abnormal  mea-
surements;  3)  A  modified  LOF algorithm is  proposed  to  enable  the
efficient detection of one-shot DAs; 4) The performance of the pro-
posed approach in terms of detecting one-shot DAs is evaluated with
the real-world load data.
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Problem  formulation: Here,  we  consider  a  power  transmission
network that has a set  of buses and a set  of transmission lines.
The DA is constructed to bypass the bad data detector and minimize
the  distance  between  the  malicious  and  normal  measurements.  To
compute a malicious measurement  for DA, the following problem
should be solved, which is:
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where  are r historical  measurements,  denotes  the
norm  operation  (  norm  is  used  here),  is  the  measurement  col-
lected  at  time  instant i,  is  an N-dimension  vector  with  all  ele-
ments  equal  to  1,  is  a  vector  of  maliciously  injected  loads  of
original loads ,  is the ith element of vector σ,  is the injected
error into the power flow measurement of branch l,  is the maxi-
mum tolerable power flow of branch l,  is  the overloading thresh-
old  of  branch l,  is  a  vector  of  maliciously  injected  errors  into
power  flows,  represents  the  nonlinear  relationship  between
power  loads  and  power  flows  with  the  alternating  current  (AC)
model,  is a set of loads that are corrupted by DA,  is the num-
ber  of  loads  that  can  be  corrupted,  and  is  the  total  number  of
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loads. The first constraint (1a) guarantees the stealthiness of DA. The
second constraint  (1b) limits the magnitudes of modified loads.  The
third constraint (1c) reflects the impact of DA on the power system.
The fourth constraint (1d) is the stealthy constraint caused by physics
laws. The fifth constraint (1e) gives the malicious measurement after
DA.  The  last  constraint  (1f)  limits  the  capability  of  the  attacker  to
modify power loads. Due to the nonlinear and nonconvex properties
caused  by  constraint  (1d),  we  linearize  it  by  using  the  Jacobian
matrix: ,  where  denotes  the  Jacobian  matrix
by deriving  with respect to . Thus, if the targeted loads are
determined, the above problem becomes a convex optimization prob-
lem that is easy to solve.

The  DA  is  proposed  because  traditional  FDIAs  can  be  easily
detected  using  the  clustering-based  and  principal  component  analy-
sis  (PCA)-based  approaches  [9],  [10].  The  malicious  measurements
of  the  DA  are  deeply  hidden  in  normal  measurements  because  the
distances between them and normal ones are minimized. Besides, the
DA can  be  executed  in  a  one-shot  manner  and  the  power  system is
knocked down in a short time. Thus, the defender needs to detect the
attack  at  the  beginning  when  it  starts.  Therefore,  in  this  letter,  our
goal is to detect one-shot DAs in an accurate and efficient way.

Main results: In the following, we propose an unsupervised data-
driven approach to detect one-shot DAs based on the LOF, which has
been  widely  used  to  detect  outliers  [11].  In  this  letter,  the  LOF  is
modified to make it  compatible with the detection of one-shot DAs.
Since a restricted neighborhood of each measurement point  is  taken
into account, the proposed approach does not require any explicit or
implicit notion of clusters.

∆
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Data preprocessing: First of all, the input measurements are prepro-
cessed. The interval information is obtained by computing the differ-
ence  between  the  current  and  previous  measurements,  which  is

, where  is the jth sensor’s measurement at time i and
 calculates  the  absolute  value.  We  adopt  the γ transformation  to

reshape  the  collected  measurements  to  make  them  suitable  for  our
context.  For  each ,  the  transformation  is  calculated  as 

,  where  is the sign of  and  is the power factor.
We introduce the sign factor  to capture the increasing and decreas-
ing  trends  of  power  data.  The  transformation  can  map  the  small-
range  variation  to  a  larger  range,  which  can  highlight  the  abnormal
measurement (i.e., outlier) caused by the attack.

Rk(di) di = [d1
i ,d

2
i , . . .]

T

dist(·)

di
Rk(di)

LRDk(di) = 1/
(∑

d̃∈Rk (di ) RDk(di,d̃)
|Rk(di)|

)
RDk(di, d̃) =max(kdist(di),

dist(di, d̃)) |Rk(di)| Rk(di)
kdist(di) di

LOFk(di) =
∑

d̃∈Rk(di)
LRDk(d̃)
LRDk(di)

/

|Rk(di)| di

Local outlier detection: The pipelines of LOF are introduced as fol-
lows. First, the k-nearest-neighbors  for each 
(formed by the preprocessed measurements) are searched based on a
specified distance (e.g., the euclidean and cosine distance). Consider-
ing the high-dimension measurements, the cosine distance is adopted
here, denoted by . The cosine distance has been widely used as
a way to  counteract  Euclidean distance’s  problem with high dimen-
sionality. Second, for each , the local reachability density (LRD) is
computed  according  to  the  set  of k neighbors ,  which  is

,  where 
 and  is  the  cardinality  of .  The k distance

 is defined in [11]. Third, the LOF value for each  is calcu-
lated based on the LRD value, which is 

. A relatively large LOF value is obtained with  if the den-
sity  of  all  its  neighbors  is  higher  than itself,  representing a  possible
outlier (i.e., malicious measurement) is found.

However,  there  are  challenges  to  directly  applying the  LOF algo-
rithm  to  detect  one-shot  DAs.  First,  the  collected  measurements  of
power systems are in a form of the high-velocity data stream. Unlike
the static  dataset,  the  stream data  might  have different  patterns  dur-
ing different periods. It is possible to mistake the adversarial data as
normal  although it  is  illegal  in  the  current  period.  Second,  the  LOF
algorithm is  usually  computational  intensive  since  it  works  by  ana-
lyzing  the  data  in  a  global  view.  Its  computational  complexity
increases  with  the  size  of  the  tested  dataset.  However,  it  is  not
acceptable to detect the one-shot DA for a long time since the power
system  changes  very  fast.  Therefore,  in  this  letter,  we  propose  a
MLOF  algorithm  to  improve  the  efficiency  of  detecting  one-shot

DAs by utilizing the common power patterns extracted from histori-
cal measurements.

For example, the power patterns can be estimated according to load
profiles and updated in an adaptive way. Here the power patterns are
extracted from the real-world load data of New York State1. The load
profiles on the date 20-01-2021 are plotted in Fig. 1. We can see that
there  are  three  patterns  (dropping,  climbing,  steady)  for  the  load
change in a day. Although the amount of loads is changed with time,
the load-change patterns remain the same for a certain period. Thus,
the load-change patterns can be utilized to reduce the computational
complexity of the LOF algorithm.
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Fig. 1. Load-change patterns of the real-world load profiles.
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By  integrating  the  power  patterns,  the  proposed  MLOF  works  as
follows.  First,  the  normal  measurements  are  divided  into q data
chunks ( , , , ) according to q power patterns ( , , , )
(e.g., dropping, climbing, and steady). Then, for each incoming mea-
surement,  the  time  period t ( )  that  its  belonging  is  first
determined,  then  the k-nearest-neighbor  search  is  performed  only
within the data chunk . Based on the estimated k-nearest-neighbor,
the  LOF value  is  computed  for  all  measurements  in  the  data  chunk

. If the incoming measurement has the largest LOF value, then it is
recognized  as  a  malicious  measurement  of  the  one-shot  DA.  The
pseudo-code of MLOF can be found in Algorithm 1. Note that the q
data chunks should be updated after a period of time since the power
patterns might change due to the construction of new power facilities,
the penetration of new energy resources, and etc.

CLOF = O ( f (n)) f (n)
O(·)

CMLOF = O(N)

The  computational  complexity  of  LOF  can  be  formulated  as
,  where n is  the  size  of  the  tested  dataset,  is  a

monotonically increasing function,  and  calculates the computa-
tional  complexity.  As  for  MLOF,  the  computational  complexity  is

,  where N is  a  constant  number,  i.e.,  the  size  of  the
data  chunk,  which  is  independent  of  the  increasing  number  of  col-
lected measurements.

Algorithm 1 The Modified Local Outlier Factor (MLOF) Algorithm

{z1, z2, . . . , zn}Input: : the dataset with n measurements;
zo　　　 : the incoming measurement;

　　　k: number of nearest neighbors;
Output: 0/1: being attacked by the one-shot DA (1) or not (0)

{z1, z2, . . . , zn} zo
{d1, d2, . . . , dn−1} do

1  Preprocess  the  measurements  and  to
 and  based on the γ-transformation;

{d1, d2, . . . , dn−1} C1 · · · Cq
p1 · · · pq

2  Group  in q data chunks , ,  based on the
power patterns , , ;

do ∈ pi3  if  then
C̃i = Ci∪ do4 　　 ;

di ∈ C̃i5 　　foreach  do
Rk(di) = findkNN(di, C̃i))6 　　　　 ;

　　　　//*find the k nearest neighbors
LOFk(di)7 　　　　Compute ;

8 　　end
LOFk(do) = C̃i9 　　 if  the maximum LOF value in  then

10 　　 　　 return 1;
11 　　 else
12 　　　　return 0;
13 　　end
14  end

  
1 NYISO load data. 2021, Available: https://www.nyiso.com/load-data
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Experimental results: The performance of the proposed approach
in terms of detecting one-shot DAs is evaluated with the IEEE 14-bus
power system. To make the tested scenario more practical,  the real-
world  load  profiles  of  the  New York  State  from 01-01-2021  to  31-
03-2021  are  incorporated  to  generate  the  attack  data.  The  11  loads
from  11  main  regions  are  used  to  act  as  loads  of  the  IEEE  14-bus
power system, while the measurements are created based on the load
data.  The one-shot DA is constructed by using the latest r measure-
ments to solve the problem (1).  To detect  the one-shot DA, the his-
torical measurements from the beginning to time i are used for LOF,
COF [12],  LDOF [13],  NOF,  DBSCAN,  and  iForest.  The  measure-
ments  on  20-01-2021  are  used  to  extract  the  power  patterns  for
MLOF.  The  evaluation  metric “TP” means  true  positive  and “FP”
stands for false positive. As for LOF, COF, LDOF, NOF, DBSCAN,
and  iForest,  the  historical  measurements  are  normal,
but the measurement  is attacked by the one-shot DA. The goal of
LOF,  COF,  LDOF,  NOF,  DBSCAN,  and  iForest  is  to  capture  the
abnormal measurement  with . As for MLOF, three data
chunks , , and , according to three power patterns (i.e., drop-
ping,  climbing,  and  steady),  are  extracted  based  on  the  measure-
ments on 20-01-2021. The malicious measurement  is  fed into ,

,  or  to  test  whether  it  is  a  malicious measurement  or  not.  The
parameter γ is set the same for all sensor measurements.

By  default,  the  historical  measurements  for  LOF,  COF,  LDOF,
NOF,  DBSCAN,  and  iForest  are  collected  based  on  the  loads  from
01-01-2021  to  21-02-2021,  while  the  historical  measurements  for
MLOF are collected based on the loads on the date 20-01-2021. The
malicious  measurements  are  generated  based  on  the  measurements
on  21-01-2021.  The  attack  parameter r is  30.  The  transformation
parameter γ is  1.1.  All  malicious  measurements  are  constructed  by
solving the problem (1).

First, we compare the performance of MLOF and LOF in terms of
detecting  one-shot  DAs  with  different k values.  The  experimental
results are shown in Table 1. We find that the detection rate (i.e., TP
rate) of one-shot DAs decreases when the k value increases with both
MLOF  and  LOF.  But  the  performance  with  MLOF  is  much  better
than that with LOF, which indicates that the LOF will treat the abnor-
mal  measurements  as  normal  since  it  uses  the  historical  measure-
ments  collected  in  a  long  term.  On the  other  hand,  the  FP rates  are
below 5% with  MLOF and  below 1% with  LOF,  which  shows  that
the LOF sacrifices the TP rate to reduce the FP rate.
 

γ = 1.1
Table 1.  The TP and FP Rates of Detecting One-Shot DAs With MLOF, LOF,

COF, and LDOF ( )

MLOF LOF COF LDOF

k TP FP TP FP TP FP TP FP

10 89.30% 1.37% 56.85% 0.9% 73.50% 0.90% 74.70% 0.70%

20 82.75% 3.20% 42.71% 0.60% 48.60% 0.80% 64.60% 0.50%

30 74.46% 3.66% 31.53% 0.32% 29.30% 0.70% 55.80% 0.50%

40 71.36% 4.97% 23.44% 0.30% 17.20% 0.70% 48.40% 0.60%
 
 

We also evaluate the detection performance of one-shot DAs with
the variants of LOF. COF is a variant of LOF to address the issue that
the outlier has a similar neighborhood density as the normal data [12],
while LDOF is extended from LOF to address the low-sensitive issue
caused by the scattered real-world data [13]. The results are also pre-
sented in Table 1. It seems that the variants (i.e., COF and LDOF) of
LOF  have  better  performance  in  terms  of  detecting  one-shot  DAs
than that of LOF but worse than that of MLOF. The results indicate
that the power patterns are critical for detecting one-shot DAs.

Further,  we  also  evaluate  the  performance  of  other  algorithms
beyond LOF to detect one-shot DAs. NOF is a variant of the K-near-
est  neighbor method by alleviating the difficulty to  select  an appro-
priate K value.  DBSCAN is  a  common data  clustering  algorithm to
detect  outliers  with data noise.  Isolation forest  (iForest)  is  a  famous

anomaly  detection  method  to  identify  outliers  from  normal  data
points by measuring the distance between the data point and the rest
data points. The TP rates of detecting one-shot DAs with the evalu-
ated  algorithms  are  presented  in Table 2.  We  find  that  the  TP  rates
with the NOF, DBSCAN, and iForest algorithms are lower than that
with  the  variants  of  the  LOF  algorithm.  In  our  opinion,  this  is
because  the  evaluated  algorithms  are  developed  based  on  the  dis-
tances  between  the  outliers  and  normal  data  points,  while  the  LOF
algorithm is derived based on density estimation.
 

γ = 1.1
Table 2.  The TP and FP Rates of Detecting One-Shot DAs With NOF,

DBSCAN, and iForest ( )

NOF DBSCAN iForest

TP FP TP FP TP FP

72.90% 0.00% 62.80% 1.30% 18.80% 0.20%
 
 

rt = 2.061×10−7n2 −4.346n+1.2247 rt

Second, we compare the running time of LOF and MLOF with the
same  platform.  The  algorithms  are  computed  in  a  core  i7  laptop,
which has a 1.10 GHz CPU and 16.0 GB memory. As shown in Fig. 2,
the  running  time  of  LOF  increases  with  the  number  of  tested  mea-
surements, but that of the MLOF remains almost the same, which is
always  below  100  ms.  The  running  time  of  the  LOF  algorithm
reaches  nearly  30  s  when the  tested  measurements  are  collected  for
more than a month. The fitting curve for the running time of LOF is

,  where  is  the  running  time
of  LOF  and n is  the  number  of  tested  measurements.  The  results
show that it is hard to burden the intensive computations when there
are  too  many  tested  measurements  with  LOF.  Therefore,  it  is  more
efficient to use MLOF to detect one-shot DAs.
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Fig. 2. The running time of LOF and MLOF algorithms.
 

Third, we evaluate the performance of MLOF when the input mea-
surements are preprocessed with the γ transformation. The results are
shown in Fig. 3. We find that the TP rate with the preprocessed mea-
surements is much larger than those that are not preprocessed, while
the FP rate is reversed. Therefore, the input measurements should be
preprocessed  with  the γ transformation  to  improve  the  performance
of  MLOF  in  terms  of  detecting  one-shot  DAs.  The  experimental
results also show that the MLOF algorithm has a good transferability
to detect one-shot DAs since the performance does not degrade when
the  malicious  measurements  are  constructed  on  the  other  dates  (not
on the date 20-01-2021).

Finally,  we  evaluate  the  performance  of  MLOF  with  different
transformation parameters and the numbers of nearest neighbors. The
results  are  shown  in Fig. 4.  We  find  that  the  TP  rate  is  relatively
larger  when  the γ value  is  between  0.5  and  1.1  and  the k value  is
between  20  and  30,  while  the  FP  rate  is  relatively  larger  when γ is
beyond 1.2 and the k value is beyond 35. From the results, the trans-
formation parameter and the number of nearest neighbors of MLOF
should be properly set  to improve its  performance of detecting one-
shot DAs.
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Fig. 3. The  attack  detection  performance  of  MLOF  with  and  without  the γ
transformation.  The  malicious  measurements  are  constructed  based  on  the
load  profiles  on  the  dates  21-01-2021,  22-01-2021, ,  08-02-2021. “Trans-
formed-TP” and “Transformed-FP” mean the TP and FP rates when the mea-
surements are preprocessed with the γ-transformation.
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Fig. 4. The attack detection performance of MLOF with different γ and k val-
ues.
 

ZHANG et al.: DETECTING THE ONE-SHOT DA ON THE POWER INDUSTRIAL CONTROL PROCESSES WITH AN UNSUPERVISED DATA-DRIVEN 553 

http://dx.doi.org/10.1109/JAS.2022.105548
http://dx.doi.org/10.1109/JAS.2022.105548
http://dx.doi.org/10.1109/TSG.2019.2929702
http://dx.doi.org/10.1109/TSG.2019.2949998
http://dx.doi.org/10.1109/TSG.2019.2949998
http://dx.doi.org/10.1109/TSG.2015.2508449
http://dx.doi.org/10.1109/JAS.2021.1004261
http://dx.doi.org/10.1109/TSG.2015.2388545
http://dx.doi.org/10.1145/335191.335388
http://dx.doi.org/10.1109/JAS.2022.105548
http://dx.doi.org/10.1109/JAS.2022.105548
http://dx.doi.org/10.1109/TSG.2019.2929702
http://dx.doi.org/10.1109/TSG.2019.2949998
http://dx.doi.org/10.1109/TSG.2019.2949998
http://dx.doi.org/10.1109/TSG.2015.2508449
http://dx.doi.org/10.1109/JAS.2021.1004261
http://dx.doi.org/10.1109/TSG.2015.2388545
http://dx.doi.org/10.1145/335191.335388
http://dx.doi.org/10.1109/JAS.2022.105548
http://dx.doi.org/10.1109/JAS.2022.105548
http://dx.doi.org/10.1109/TSG.2019.2929702
http://dx.doi.org/10.1109/TSG.2019.2949998
http://dx.doi.org/10.1109/TSG.2019.2949998
http://dx.doi.org/10.1109/TSG.2015.2508449
http://dx.doi.org/10.1109/JAS.2021.1004261
http://dx.doi.org/10.1109/TSG.2015.2388545
http://dx.doi.org/10.1145/335191.335388
http://dx.doi.org/10.1109/JAS.2022.105548
http://dx.doi.org/10.1109/JAS.2022.105548
http://dx.doi.org/10.1109/TSG.2019.2929702
http://dx.doi.org/10.1109/TSG.2019.2949998
http://dx.doi.org/10.1109/TSG.2019.2949998
http://dx.doi.org/10.1109/TSG.2015.2508449
http://dx.doi.org/10.1109/JAS.2021.1004261
http://dx.doi.org/10.1109/TSG.2015.2388545
http://dx.doi.org/10.1145/335191.335388

	References

