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   Dear Editor,
Machine learning (ML) approaches have been widely employed to

enable  real-time  ML-based  stability  assessment  (MLSA)  of  large-
scale  automated  electricity  grids.  However,  the  vulnerability  of
MLSA  to  malicious  cyber-attacks  may  lead  to  wrong  decisions  in
operating  the  physical  grid  if  its  resilience  properties  are  not  well
understood  before  deployment.  Unlike  adversarial  ML  in  prior
domains such as image processing, specific constraints of power sys-
tems that the attacker must obey in constructing adversarial samples
require new research on MLSA vulnerability analysis for power sys-
tems. In this letter, we propose a novel evaluation framework to ana-
lyze  the  robustness  of  MLSA  against  adversarial  samples  with  key
considerations for damage (i.e.,  the ability of the adversarial  data to
cause  ML  misclassification),  bad  data  detection,  physical  consis-
tency,  and  limited  attacker’s  capacity  to  corrupt  data.  Extensive
experiments are conducted to evaluate the robustness of MLSA under
different settings.

To  achieve  comprehensive  context  awareness  of  power  systems
integrated with renewable energy sources, household loads, and elec-
tric vehicles,  internet-of-things (IoT) technologies have been widely
integrated  into  power  systems  to  enable  autonomous  monitoring,
optimization, and control. However, the increasing complexity of the
power  system  necessitates  ever  more  complicated,  if  not  outright
infeasible, models for traditional analytical methods to achieve suffi-
cient coverage and accuracy, which brings challenges to efficient and
agile  system operations.  To  address  the  problem,  big  data  collected
by IoT monitoring devices may allow data-driven ML approaches to
control/optimize the power system’s operation effectively. As a typi-
cal  example,  MLSA has been widely used to assess/predict  whether
the current  operating condition (OC) of an electrical  grid is  system-
wide stable or unstable subject to credible contingencies in real-time
[1]. It enables the grid to operate close to its stability limits in meet-
ing  significantly  fluctuating  demand,  frequent  kicks-in  and  out  of
intermittent  energy  resources,  extreme  weather  conditions,  etc.  On
the  other  hand,  a  host  of  real-world  incidents,  such  as  BlackEnergy
and  Stuxnet  among  others  [2],  evidence  that  communication  chan-
nels supporting the IoT are prone to attacks by malicious cyber actors
[3] and [4].

Meanwhile,  research has shown that  ML models can be generally
misled  by  adversarial  samples  to  give  wrong  answers  [5].  Interest-
ingly,  adversarial  samples  investigated  for  computer  vision,  due  to
their low energy, are found to escape notice completely by the human
eye while fooling the ML. For example, a cat image, with only a sin-
gle pixel strategically subverted, can be misclassified as a dog. As a
result,  the robustness of  ML models and their  verification [6]  under
adversarial scenarios has attracted a lot of attention. This robustness
metric can play a major role in selecting the best ML models for spe-
cific  applications.  However,  traditional  robustness  analysis  is  not
suitable  for  power  grids  [7].  Venzke  and  Chatzirasileiadis  [8]  ana-

lyzed the robustness of a fully connected neural network trained for
security  assessment  by formulating  it  as  a  mixed-integer  linear  pro-
gramming  problem.  Ren  and  Xu  [9]  analyzed  the  robustness  of
MLSA under different norms and verified lower bounds of adversar-
ial  perturbations.  Their  results  do  not  consider  key  power-domain
properties, however.

To  have  real  impacts  in  the  power  domain,  adversarial  samples
must obey its constraints or they will fail to mislead the MLSA into
wrong decisions.  This  letter  addresses  this  key requirement  that  has
not been well addressed in the state of the art.

Specifically, this letter considers the adversarial scenario shown in
Fig. 1.  Control  centers  usually  adopt  security  measures  such  as  air-
gapped  isolation  or  logical  isolation  by  a  virtual  private  network
(VPN).  We  assume  that  the  attacker  uses  pathways  like  compro-
mised USB drives or  existing VPN intrusions to subvert  the MLSA
by modifying  data  (e.g.,  sensor  measurements)  in  the  local  supervi-
sory control  and data acquisition (SCADA) network.  This  data may
be assessed for integrity before being used by the MLSA, e.g., a bad
data detection (BDD) method in state estimation can be used to reject
abnormal data.  Hence,  we require adversarial  samples to bypass the
BDD before they can do damage. Besides,  the adversarial  examples
must be credible data that meets physical constraints like power bal-
ance and power limits. Lastly, it is assumed that the attacker will not
be able to corrupt certain data due to limited capability or other avail-
able defenses in the system. Note that prior work [10] has advanced
an approach to evaluate MLSA robustness considering physical con-
straints  under  a  linearized  dc  model.  However,  it  has  not  addressed
the  security  of  MLSA  under  a  nonlinear  ac  model.  To  address  the
gap, we propose a constrained robustness evaluation (CoRE) frame-
work that analyzes MLSA robustness under an ac model in the face
of  attacks  that  satisfy  a  set  of  practical  constraints  including  effec-
tiveness  (to  cause  misclassification),  BDD  bypass,  physical  consis-
tency,  and  attacker’s  limited  data  corruption  capability.  We  also
present  extensive  experiments  to  analyze  the  robustness  of  MLSA
under different ML models and model parameters.
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Fig. 1. Adversarial scenario of the MLSA. We assume that the field sensors
and communication networks are vulnerable to cyber-attacks that compro-
mise data integrity [2].
 

Problem formulation:

S = {s1, s2, . . . , sN } si = {zi,yi}
i ∈ {1,2, . . . ,N} zi yi = 0

zi

MLSA:  Use  of  data-driven  MLSA,  supported  by  a  control  center
with  suitable  computational  and  storage  servers,  is  gaining  interest
among researchers  and utility  operators  [11].  Such MLSA works as
follows.  It  consists  of  two  main  stages:  offline  training  and  online
prediction.  First,  detailed  numerical  stability  analysis  is  conducted
for  a  variety  of  OCs under  different  contingencies.  The stability  vs.
instability of the OCs labels each corresponding data point. The train-
ing  dataset  is  denoted  by ,  where  for

;  is  an  OC;  and  or  1,  where “0” stands  for
“unstable” and “1” for “stable”. In general, an OC is driven by power
data such as power injections, power flows, and voltage phasor quan-
tities.  The  offline  training  is  carried  out  with  the  labeled  training
dataset to learn an optimized MLSA model f,  whereas, in the online
prediction  stage,  the  current  OC  is  fed  as  real-time  input  to  the
MLSA model,  which  then  determines  if  the  OC is  stable  or  not.  In
this letter, we mainly analyze the vulnerability of the prediction pro-
cess of MLSA.

For  ease  of  illustration,  we  use  linear  classifiers  for  the  stability
assessment in the following. We consider a binary classifier (a gen-
eral  multi-class  classifier  can be treated as  an aggregation of  binary
classifiers), so that the MLSA model output has two possible values,

 
Corresponding author: Zhenyong Zhang.
Citation: Z.  Y.  Zhang  and  D.  K.  Y.  Yau, “CoRE:  Constrained  robustness

evaluation  of  machine  learning-based  stability  assessment  for  power
systems,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 2, pp. 557–559, Feb. 2023.

Z.  Y.  Zhang is  with the State  Key Laboratory of  Public  Big Data and the
College of Computer Science and Technology, Guizhou University, Guiyang
550025, China (e-mail: zyzhangnew@gmail.com).

D.  K.  Y.  Yau  is  with  the  Pillar  of  Information  Systems  Technology  and
Design, Singapore University of Technology and Design, Singapore 487372,
Singapore (e-mail: david_yau@sutd.edu.sg).

Digital Object Identifier 10.1109/JAS.2023.123252

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 2, FEBRUARY 2023 557 

https://doi.org/10.1109/JAS.2023.123252


ŷi =M(zi) = sign ( f (zi)) sign(·)
M(zi) = 1 f (zi) > 0 M(zi) = −1 f (zi) ≤ 0
namely ,  where  is  a  sign  function:

 if  and  if .  Unlike adversar-
ial  analysis  in  other  domains  such as  computer  vision,  we postulate
detection  and  mitigation  mechanisms  for  rejecting  bad  data  in  the
training and testing phases of the MLSA. Therefore, adversarial sam-
ples must be able to bypass these defenses before they can compro-
mise the MLSA results.

N
pi,qi, f

p
i j , f

q
i j

θi, θ j,vi,v j

Adversarial attack: Assume a power transmission network having a
set  of  buses.  Under  an  ac  power  flow  model,  the  relationship
between  the  measurements  ( )  and  state  variables
( ) is nonlinear and can be formulated as follows:
 

pi = v2
i

∑
j∈Ki

gi j − vi

∑
j∈Ki

v j(bi j sinθi j +gi j cosθi j) (1)

 

qi =−v2
i

∑
j∈Ki

bi j +vi

∑
j∈Ki

v j(bi j cosθi j−gi j sinθi j) (2)
 

f p
i j = v2

i gi j − viv j(bi j sinθi j +gi j cosθi j) (3)
 

f q
i j = −v2

i bi j + viv j(bi j cosθi j −gi j sinθi j) (4)

pi qi i, j ∈ N
θi j = θi − θ j

vi v j
f p
i j f q

i j
{i, j} gi j bi j

{i, j} Ki

m= h(v,θ)+η v = {v1,v2, . . . ,vn}
θ = {θ1, θ2, . . . , θn}

pi qi h(·)

v̂∗, θ̂∗ = argmin
v̂,θ̂

(
m− h(v̂, θ̂)

)T (m− h(v̂, θ̂)
)

v̂∗

θ̂∗

∥m− m̂∥2 < β m̂= h(v̂∗; θ̂∗) = [ p̂T , q̂T , f̂ T
p , f̂ T

q ]T ∥ · ∥2 ℓ2

where  and  ( ) denote respectively the active and reactive
power  injection  of  bus i;  is  the  phase  angle  difference
between bus i and j;  and  are respectively the voltage magnitude
of  bus i and j;  and  are  respectively  the  active  and  reactive
power flows of branch ;  and  are respectively the conduc-
tance and susceptance of  branch ;  and  is  the set  of  neighbor
buses connected to bus i. Normally, the concise form of the ac model
can  be  written  as ,  where  and

 are  the state  variables; m denotes  the sensor  mea-
surements of , ;  represents the nonlinear relationship between
the state variables and sensor measurements;  and η is  Gaussian dis-
tributed  measurement  noise.  Generally,  the  state  variables  are  esti-
mated using the measurements m by minimizing the mean square of

the residual , where  and

 are  optimal  estimates of state  variables v and θ.  BDD is  usually
conducted  for  the  state  estimates  to  detect  abnormal  data,  given  by

, where ;  is the 
norm  of  a  vector;  and β is  a  predefined  threshold.  If  the  inequality
holds, the measurements bypass the BDD.

z = [v̂∗; θ̂∗; p̂; q̂; f̂p; f̂q]
z r = [∆v̂∗; ∆θ̂∗; ∆ p̂;

∆q̂; ∆ f̂p; ∆ f̂q]
∆m= [∆ p̂; ∆q̂; ∆ f̂p; ∆ f̂q]

∆m

Based  on  the  diagram  in Fig. 1,  suppose  that  the  input  to  the
MLSA  model  is ,  Correspondingly,  the
adversarial  perturbation  of  is  formulated  as 

.  The  adversarial  perturbation  on  the  measurement,
say m,  is .  Note  that  the  attacker  cannot
arbitrarily  change the  measurement m.  For  the  adversarial  perturba-
tion to be impactful,  must correspond to feasible power data and
be able to bypass bad data detection and mitigation in the power sys-
tem in question.

zi

CoRE  framework: We  propose  a  CoRE  framework  for  MLSA
models.  An  adversarial  sample  of  a  specific  must  satisfy  the  fol-
lowing constraints:

C11) Misclassification constraint ( ):  The adversarial sample needs
to cause a wrong ML prediction with respect to the ground truth, i.e.,
 

M(zi + ri) ,M(zi), s.t. M(zi) = yi (5)

ri =
[
∆v̂∗i ;∆θ̂∗i ;∆mi

]
∆v̂∗i ∆θ̂

∗
i ∆mi

mi
zi

f (z) = wT z+b

where . , ,  and  denote  adversarial
perturbations  on  the  state  variables  and  measurements  with
respect  to  the  OC .  Considering  the  linearized  ML  model

, the misclassification constraint can be rewritten as
 

wT (zi + ri)+b > 0 if f (zi) ≤ 0, s.t. M(zi) = yi

wT (zi + ri)+b ≤ 0 if f (zi) > 0, s.t. M(zi) = yi. (6)
C2

C3

2) Consistency constraint ( ): As discussed, effective adversarial
samples  cannot  violate  physical  consistency  such  as  power  balance
and limits for generation, loads, power flows, etc. Power balance will
be  maintained  if  the  BDD constraint  (i.e., )  is  satisfied.  To  meet
the power limit constraint, the adversarial perturbation should satisfy
 

∆mmin ≤ ∆mi ≤ ∆mmax (7)
∆mmin ∆mmaxwhere  and  are respectively the lower and upper limits

of the adversarial perturbation on the measurement.
C33)  BDD  constraint  ( ):  Here,  the  spatial  mutual  dependency  of

power  data  is  considered.  The  adversarial  perturbations  need  to
bypass the BDD that filters out bad data. According to [12], the BDD
is circumvented through
 

∆mi = h(v̂∗i +∆v̂∗i , θ̂
∗
i +∆θ̂

∗)− h(v̂∗i , θ̂
∗
i ) (8)

v̂∗i θ̂∗i miwhere  and  are state estimates under the measurement .
C4

P

4) Corruption constraint ( ): Unlike other domains such as com-
puter vision, inputs to the MLSA model may not be easily observed
or  corrupted  if  the  power  system in  question  is  not  fully  open.  The
traditional  adversarial  assumption that  the  attacker  has  good knowl-
edge of inputs to the ML model may not hold in the context of power
systems, e.g., certain measurements are not known because there are
no  available  physical  and  cyber  channels  for  the  attacker  to  access
the data. Suppose the set of such data is denoted by . Then, the cor-
ruption constraint is defined by
 

∆mi = 0, ∀i ∈ P. (9)
ziOverall, the robustness of MLSA for a specific OC  is evaluated

by solving the following problem:
 

δ(zi; f ) = min
∆v̂∗i ,∆θ̂

∗
i

∥∆mi∥

s.t. (5)/(6)− (9) (10)
∥·∥ ℓ0 ℓ1 ℓ2 ℓ∞where the operation  can be the , , ,  and  norm.  We can

see that  the  minimization problem is  nonlinear  and nonconvex.  The
fmincon package,  a  nonlinear  optimizer  in  MATLAB,  is  adopted  to
compute the optimal solution. Overall, the RoCE of an MLSA model
f is defined as
 

ξadv( f ) =
T∑

i=1

δ(zi; f )
∥zi∥

(11)

where T is the number of test OCs. The RoCE framework for MLSA
models is given in Fig. 2.
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Fig. 2. The constrained robustness evaluation framework for MLSA models.
 

Experimental results: We conduct experiments based on an IEEE
68-bus power system [13], which consists of 68 buses, 83 transmis-
sion  lines,  and  16  generators.  For  diversity,  the  active  loads  are
obtained by sampling from a multivariate Gaussian distribution with
a Monte Carlo method. The nonlinear ac model is considered to cal-
culate active and reactive power injections and power flows.

180◦

{63,62} {59,58} {25,54}
{31,30}

The  transient  stability  of  generators  is  analyzed  to  generate  the
dataset. The stability is violated if the difference between any phase
angles  of  generators  is  larger  than  at  any  point  in  time  during
the simulation period. We create four different three-phase line out-
ages,  corresponding  to  the  branches , , ,

, respectively, to act as contingencies, denoted by CT1, CT2,
CT3,  and CT4.  Each  contingency  lasts  for  10  s.  For  each  contin-
gency, a total of 12 000 OCs are collected, in which 10 000 samples
are used for training and 2000 samples for testing.

The  MLSA  is  implemented  with  the  support  vector  machine
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ξadv( f ) ℓ2

C1 C2 C3 C4

ξroc( f ) = # of robust OCs/# of test OCs

ξroc( f )

(SVM).  The  overall  robustness  (11)  is  computed  with 10000 OCs.
The robustness value  is calculated as an  norm. According
to our analysis, it is possible for the RoCE problem (10) to not have
any  feasible  solution,  which  means  that  the  adversarial  perturbation
violates  one  or  more  of  the  constraints  ( , , ,  or ).  There-
fore,  we  define  an  additional  metric  to  quantify  the  robustness  of
MLSA  models ,  where  a
robust  OC  is  one  that  does  not  have  feasible  adversarial  perturba-
tions according to Problem (10). Note that the value of  is the
ratio of robustness OCs among all test OCs.

ξadv( f ) C1∧C2∧C3∧C4
C1∧C2∧C3

ξroc( f )

First of all,  the robustness of RoCE is evaluated for MLSA under
different contingencies. Here the penalty factor for the SVM model is
fixed to 10. We randomly select 8 measurements that cannot be cor-
rupted for each adversarial example. Datasets of the four contingen-
cies CT1, CT2, CT3,  and CT4 are used. Table 1 shows the evalua-
tion  results.  We  find  that  the  robustness  of  MLSA  increases  when
more  constraints  are  added  to  the  optimization  Problem  (10)  under
the contingencies CT1, CT2, and CT4. Although the robustness met-
ric  with the constraints  is smaller than that
with  the  constraints  under  the  contingency CT3,  the
robustness  metric  with  the  former  constraints  is  larger  than
that with the latter constraints. We believe that this result is obtained
because  the  measurements  that  cannot  be  corrupted  are  far  away
from the classification boundary.
 

∧
Table 1.  Robustness of Mlsa Across 4 Contingencies Under

Different Constraints. “ ” Means “and”
CT1 CT2 CT3 CT4

Accuracy 98.80% 98.34% 96.20 % 99.60%

ξadv( f )

C1 0.005 46 0.003 52 0.002 28 0.017 45
C1 ∧C2 0.005 46 0.003 52 0.002 28 0.017 45

C1 ∧C2 ∧C3 0.042 26 0.011 67 0.051 68 0.101 61
C1 ∧C2 ∧C3 ∧C4 0.042 27 0.012 56 0.0122 0.101 61

ξroc( f )

C1 0 0 0 0
C1 ∧C2 0 0 0 0

C1 ∧C2 ∧C3 78.12% 85.23% 92.98% 84.52%
C1 ∧C2 ∧C3 ∧C4 79.20% 87.00% 96.34% 85.00%

 
 

ξadv( f )
C1∧C2

ξroc( f )

Besides,  from Table 1,  it  seems that the BDD constraint increases
the value of  by several  times (e.g.,  8,  3,  20,  9 times of that
with constraints  under CT1, CT2, CT3,  and CT4,  respec-
tively).  Since  BDD is  widely  used  in  power  systems,  attackers  face
increased  difficulty  in  constructing  effective  adversarial  samples  in
practice. Table 1 also presents the number of robust OCs as the value

.  It  appears  that  the  BDD  and  corruption  constraints  can
reduce the attacker’s ability to construct successful adversarial  sam-
ples by 80%,  which implies that the defenses can reject most of the
adversarial samples.

C4 ξadv( f )
ξroc( f )

C1 C2 C3 C4

ξadv( f ) ξroc( f )

Different from the prior work [10],  we also analyze the impact of
the  corruption  constraint  (i.e., )  on  the  values  of  and

. The penalty factor of SVM is fixed to 10. The dataset for the
contingency CT2 is  used.  All  constraints , , ,  and  are
considered. A set of experiments are conducted by varying the set of
measurements  that  cannot  be  corrupted.  In Table 2, PM1, PM2,
PM3, and PM4 mean that there are respectively 10, 8, 5, and 3 ran-
domly  selected  measurements  that  cannot  be  corrupted  for  each
adversarial  sample.  We  find  that  the  values  of  and 
increase  when  there  are  more  protected  measurements,  which  indi-
cates that  the robustness of  MLSA can be enhanced by the conven-
tional wisdom of protecting critical measurements.
 

C4

Table 2.  Robustness of Mlsa Emphasizing on the Corruption
Constraint (i.e., )

PM1 PM2 PM3 PM4
ξadv( f ) 0.020 00 0.012 56 0.092 56 0.092 34
ξroc( f ) 89.76% 87.00% 77.22% 74.00%

 
 

We further  evaluate  the  robustness  of  MLSA with  different  SVM
parameters.  The  contingency CT2 is  used  as  an  example  and  there
are  8  measurements  randomly  selected  that  cannot  be  corrupted  for

ξadv( f )

ξroc( f )
ξadv( f )

each  adversarial  sample.  From Table 3,  the  robustness  of
MLSA  with PF (penalty  factor)  =  0.1  is  the  largest,  whereas  the
robustness is the highest with PF = 1 according to the metric .
The robustness  seems to decrease when the accuracy of the
SVM  model  increases.  It  seems  that  the  robustness  of  MLSA  is
affected by the model parameter, which should be carefully set con-
sidering the security issue.
 

Table 3.  Robustness of Mlsa With Different Penalty Factors (PF)
PF = 0.1 PF = 1 PF = 10

Accuracy 96.63% 96.79% 97.66%

ξadv( f )

C1 0.015 23 0.009 34 0.010 60
C1 ∧C2 0.015 23 0.009 34 0.010 60

C1 ∧C2 ∧C3 0.064 33 0.031 38 0.013 40
C1 ∧C2 ∧C3 ∧C4 0.075 58 0.051 68 0.012 56

ξroc( f )

C1 0 0 0
C1 ∧C2 0 0 0

C1 ∧C2 ∧C3 87.54% 92.00% 86.12%
C1 ∧C2 ∧C3 ∧C4 88.45% 93.43% 87.00%
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