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Abstract
We propose a touch-based editing method for
translation, which is more flexible than tradi-
tional keyboard-mouse-based translation post-
editing. This approach relies on touch actions
that users perform to indicate translation errors.
We present a dual-encoder model to handle the
actions and generate refined translations. To
mimic the user feedback, we adopt the TER al-
gorithm comparing between draft translations
and references to automatically extract the sim-
ulated actions for training data construction.
Experiments on translation datasets with sim-
ulated editing actions show that our method
significantly improves original translation of
Transformer (up to 25.31 BLEU) and outper-
forms existing interactive translation methods
(up to 16.64 BLEU). We also conduct ex-
periments on post-editing dataset to further
prove the robustness and effectiveness of our
method.

1 Introduction

Neural machine translation (NMT) has made great
success during the past few years (Sutskever et al.,
2014; Bahdanau et al., 2014; Wu et al., 2016;
Vaswani et al., 2017), but automatic machine trans-
lation is still far from perfect and cannot meet the
strict requirements of users in real applications
(Petrushkov et al., 2018). Many notable human-
machine interaction approaches have been pro-
posed for allowing professional translators to im-
prove machine translation results (Wuebker et al.,
2016; Knowles and Koehn, 2016; Hokamp and
Liu, 2017). As an instance of such approaches,
post-editing directly requires translators to modify
outputs from machine translation (Simard et al.,
2007). However, traditional post-editing requires
intensive keyboard interaction, which is inconve-
nient on mobile devices.

Grangier and Auli (2018) suggest a one-time
interaction approach with lightweight editing ef-

forts, QuickEdit, in which users are asked to simply
mark incorrect words in a translation hypothesis
for one time in the hope that the system will change
them. QuickEdit delivers appealing improvements
on draft hypotheses while maintaining the flexibil-
ity of human-machine interaction. Unfortunately,
only marking incorrect words is far from adequate:
for example, it does not indicate the missing infor-
mation beyond the original hypothesis, which is a
typical issue called under-translation in machine
translation (Tu et al., 2016).

In this paper, we propose a novel one-time in-
teraction method called Touch Editing, which is
flexible for users and more adequate for a system
to generate better translations. Inspired by human
editing process, the proposed method relies on a
series of touch-based actions including SUBSTITU-
TION, DELETION, INSERTION and REORDERING.
These actions do not include lexical information
and thus can be flexibly provided by users through
various of gestures on touch screen devices. By us-
ing these actions, our method is able to capture the
editing intention from users to generate better trans-
lations: for instance, INSERTION indicates a word
is missing at a particular position, and our method
is expected to insert the correct word. To this end,
we present a neural network model by augmenting
Transformer (Vaswani et al., 2017) with an extra
encoder for a hypothesis and its actions. Since it is
impractical to manually annotate large-scale action
dataset to train the model, we thereby adopt the
algorithm of TER (Snover et al., 2006) to automat-
ically extract actions from a draft hypothesis and
its reference.

To evaluate our method, we conduct simulated
experiments on translation datasets the same as
in other works (Denkowski et al., 2014; Grang-
ier and Auli, 2018), The results demonstrate that
our method can address the well-known challeng-
ing issues in machine translation including over-
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QuickEdit
Hypothesis  y’ travel   far   does   not    necessary   to   proctor   for    food    supply  .

Result travel   far   does   not      require     to   proctor            food   supplies  .

Source  x weite wege müsse proctor für die nahrungsmittelbeschaffung nicht gehen .
Reference  y proctor   does   not   have   to   travel   far   to   buy   food   .

Touch 
Editing

Hypothesis  y’ travel   far does   not    necessary   to   proctor for        food    supply  .

Modified  𝑚𝑚(y’) proctor does   not   necessary   to   travel   far for   <INS> food   supply  .

Action Sequence  a - - - S           - - - S        I            - D      -

Result proctor   does   not       have      to   travel   far     to     buy      food                .

Figure 1: Example of interaction methods. QuickEdit allows users to mark incorrect words. Our method intro-
duces more flexible actions. m(y′) is modified from y′ by applying reordering actions and inserting a special token
〈INS〉 to keep alignment with the action sequence a which contains actions like SUBSTITUTION, INSERTION and
DELETION. “-” denotes the word in that position is unmarked. Our method then generates a refined translation
based on the modified hypothesis m(y′) and the action sequence a.

translation, under-translation and mis-ordering, and
thus it outperforms Transformer and QuickEdit by
a margin up to 25.31 and 16.64 BLEU points re-
spectively. In addition, experiments on post-editing
dataset further prove the effectiveness and robust-
ness of our method. Finally, we implement a real
application on mobile phones to discuss the usabil-
ity in real senarios.

2 Touch Editing Approach

2.1 Actions

QuickEdit allows translators to mark incorrect
words which they expect the system to change
(Grangier and Auli, 2018). However, as shown in
Figure 1, the information is inadequate for a system
to correct a translation hypothesis, especially when
it comes to under-translation, in which the system
is hardly to predict missing words into hypotheses.

To achieve better adequacy, we take human edit-
ing habits into consideration. As shown in Figure
1, a human translator may insert, delete, substitute
or reorder some words to correct errors of under-
translation, over-translation, mis-translation and
mis-ordering in an original translation hypothesis.
Based on human editing process, we define a set of
actions to represent human editing intentions:

• INSERTION: a new word should be inserted
into a given position.

• DELETION: a word at a specific position
should be deleted.

• SUBSTITUTION: a word should be substituted
by another word.

• REORDERING: a segment of words should be
moved to another position.

In Touch Editing, these actions can be performed
by human translators on a given machine hypoth-
esis to indicate translation errors. To keep the
flexibility of interactions, for SUBSTITUTION and
INSERTION actions, our method allows users to
only indicate which word should be substitute or
in which position a word should be inserted. The
light-weight interaction in Touch Editing is non-
lexical, i.e., it does not require any keyboard inputs,
and thus can be adopted to mobile devices with
touch screens.

2.2 Model

Our model seeks to correct translation errors of an
original hypothesis y′ based on actionsA provided
by human translator.

To make full use of the actions, we firstly modify
the original hypothesis by applying A on y′ to
obtain A(y′):

A(y′) = 〈m(y′),a〉. (1)

Specifically, as shown in Figure 1, m(y′) is
modified from y′ by reordering the segment in
gray color and inserting a token 〈INS〉, and thus
the REORDERING actions is implicitly included in
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Figure 2: Model architecture. We add a hypothesis
encoder (the right part) into Transformer which differs
from source encoder (the left part) in positional em-
bedding. We use learned action positional embedding
instead of the sinusoids.
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Figure 3: Action positional embedding. The model
firstly chooses an embedding matrix according to the
action at position i, then lookups the ith row of the ma-
trix as the positional embedding of position i. L is the
maximum length of sentences.

m(y′). The action sequence a below m(y′) con-
tains SUBSTITUTION, INSERTION and DELETION

at the corresponding position.
We then use a neural network model to gener-

ate a translation y for the source sentence x, the
hypothesis y′ and the actions A:

P (y | x,y′,A; θ) =

N∏
n=1

P (yn|y<n,x,m(y′),a; θ). (2)

As shown in Figure 2, the neural network model
we developed is a dual encoder model based on
Transformer similar to Tebbifakhr et al. (2018).
Specifically, besides encoding the source sentence
x with source encoder (the left part of Figure 2),
our model additionally encodes A(y′) with an ex-
tra hypothesis encoder (the right part of Figure
2) and integrates the encoded representations into
decoding network using dual multi-head attention.

Encoding A(y′) As shown in the right part of
Figure 2, the hypothesis encoder firstly embeds
m(y′) with length l in distributed space using the
same word embedding as in decoder, which is de-
noted as w = {w1, · · · , wl}. Then it encodes
a = {a1, · · · , al} with learned positional embed-
ding according to the specific actions. As shown in
Figure 3, the action positional embedding includes
four embedding matrixes corresponding to three
action types and a none action for positions without
any action. For the ith position of a, the encoder
chooses an embedding matrix based on the action
type of ai and selects the ith row of the matrix as
the positional embedding vector, which is denoted
as pi:

pi =


PEINSERTION(i) if ai = I
PEDELETION(i) if ai = D
PESUBSTITUTION(i) if ai = S
PENone(i) if ai = -

(3)

Where PE∗ denote the action positional embed-
ding matrixes in Figure 3. The learned action posi-
tional embedding is used in hypothesis encoder
to replace the fixed sinusoids positional encod-
ing in Transformer encoder. Next, the encoder
adds the word embedding w and the action po-
sitional embedding p to obtain input embedding
e = {w1 + p1, · · · , wl + pl}. The following part
of hypothesis encoder lies the same as Transformer
encoder.

Decoding The output of hypothesis encoder, to-
gether with the output of source encoder, are fed
into the decoder. To combine both of the encoders’
outputs, we apply dual multi-head attention in each
layer of decoder: the attention sub-layer attends to
both encoders’ outputs by performing multi-head
attention respectively:

Asrc = MultiHead(Qtgt,Ksrc, Vsrc)

Ahyp = MultiHead(Qtgt,Khyp, Vhyp)
(4)

Where Qtgt is coming from previous layer of the
decoder, Ksrc and Vsrc matrixes are final represen-
tations of the source encoder while Khyp and Vhyp
matrixes are final representations of the hypothesis
encoder. The two attention vectors Asrc and Ahyp

are then averaged to replace encoder-decoder atten-
tion in Transformer, resulting in the input of next
layer.
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Training The overall model, which includes a
source encoder, a hypothesis encoder with action
positional embedding, and a decoder, is jointly
trained. We maximize the log-likelihood of the ref-
erence sentence y given the source sentence x, the
initial hypothesis y′, and the corresponding actions
A. By applying A on y′, the training objective
becomes:

θ̂ = argmax
θ

{∑
D

logP (y | x,m(y′),a; θ)

}
. (5)

where D is the training dataset consists of quadru-
plets like (source x, modified hypothesis m(y′),
action sequence a, target y). We use Adam op-
timizer (Kingma and Ba, 2014), an extension of
stochastic gradient descent (Bottou, 1991), to train
the model.

After training, the model with parameter θ̂ is
then used in inference phase to generate refined
translations for test data, which consists of triplets
like (source x, modified hypothesis m(y′), action
sequence a).

3 Automatic Data Annotation

The actions we defined in Section 2.1 can be pro-
vided by human translators in real applications.
However, it is impractical to manually collect a
large scale annotated dataset for training our model.
Thus we resort to propose an approach to auto-
matically extract editing actions from a machine
translation hypothesis and its corresponding refer-
ence.

To make our method powerful, the number of
editing actions which convert a hypothesis to its

Algorithm 1 Extracting actions with TER

Input: hypothesis y′, reference y
m(y′)← y′
a← Empty action sequence
repeat

Find reordering r that most reduces min-edit-
distance(m(y′), y)
if r reduces edit distance then
m(y′)← applying r to m(y′)

end if
until no beneficial reordering remains
a← min-edit(m(y′), y)
m(y′)← insert 〈INS〉 into m(y′) based on a

Output: m(y′), a

reference is minimal as presented in Section 2.1.
Snover et al. (2006) study this problem and point
out that its optimal solution is NP-hard (Lopresti
and Tomkins, 1997; Shapira and Storer, 2002). To
optimize the number of editing actions, they instead
propose an approximate algorithm based on mini-
mal edit distance. The basic idea of their algorithm
can be explained as follows. It repeatedly modifies
the intermediate string by applying reordering ac-
tions which is greedily found to mostly reduce the
edit distance between the intermediate string and
the reference, until no more beneficial reordering
remains.

In this paper, we adopt the basic idea of Snover
et al. (2006) to automatically extract actions. As
shown in Algorithm 1, given a reference and a hy-
pothesis, the algorithm repeatedly reorders words
to reduce the word-level minimal edit distance be-
tween reference y and modified hypothesis m(y′)
until no beneficial reordering remains. With the
modified hypothesis m(y′), the algorithm then cal-
culates the editing action sequence a that minimize
the word-level edit distance between m(y′) and y
(see Action Sequence a in Figure 1). It finally in-
serts special token 〈INS〉 to keep alignment between
the modified hypothesis and the action sequence
(see Modifiedm(y′) in Figure 1). The output of the
algorithm, which is a tuple of modified hypothesis
and action sequence, together with the source sen-
tence and its reference, are used to train our model
as described in Section 2.2.

4 Experiment

We conduct simulated experiment on translation
datasets. Specifically, we translate the source sen-
tences in translation datasets with a pre-trained
Transformer model and build the training data
with simulated human feedback using algorithm
described in Section 3.

4.1 Dataset and Settings

The experiment is conducted on three transla-
tion datasets: the IWSLT’14 English-German
dataset (Cettolo et al., 2014), the WMT’14 English-
German dataset (Bojar et al., 2014) and the
WMT’17 Chinese-English dataset (Ondrej et al.,
2017). The IWSLT’14 English-German dataset
consists of 170k sentence pairs from TED talk sub-
titles. We use dev2010 as validation set which
contains 887 sentent pairs, and a concatenation of
tst2010, tst2011 and tst2012 as test set which con-
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Model

IWSLT’14 WMT’14 WMT’17
EN-DE DE-EN EN-DE DE-EN EN-ZH ZH-EN

BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER BLEU TER

ConvS2S† 24.20 - 27.40 - 25.20 - 29.70 - - - - -
QuickEdit† 30.80 - 34.60 - 36.60 - 41.30 - - - - -

Transformer 27.40 0.52 33.17 0.45 26.69 0.56 31.73 0.48 32.53 0.55 21.89 0.61
QuickEdit‡ 34.33 0.43 40.13 0.39 37.00 0.43 41.48 0.39 41.20 0.43 29.78 0.51

Touch Baseline 34.48 0.42 40.09 0.35 33.92 0.43 39.47 0.37 38.96 0.42 29.17 0.51
Touch Editing 44.25 0.32 50.39 0.29 50.49 0.28 56.47 0.24 57.84 0.28 45.67 0.33

Table 1: Results of different systems measured in BLEU and TER. † denotes the results from Quick Edit.
QuickEdit‡ is our reimplementation based on Transformer. Touch baseline is the result modified from initial
hypothesis by deleting and reordering words. Touch Editing is our model trained with all actions described in
Section 2.1.

tains 4698 sentence pairs. For WMT’14 English-
German dataset, we use the same data and pre-
processing as (Luong et al., 2015). The dataset
consists of 4.5M sentence pairs for training1. We
take newstest2013 for validation and newstest2014
for testing. For Chinese to English dataset, we use
CWMT portion which is a subset of WMT’17 train-
ing data containing 9M sentence pairs. We validate
on newsdev2017 and test on newstest2017.

As for vocabulary, the English and German
datasets are encoded using byte-pair encoding (Sen-
nrich et al., 2015) with a shared vocabulary of 8k
tokens for IWSLT’14 and 32k tokens for WMT’14.
For Chinese to English dataset, the English vocabu-
lary is set to 30k subwords, while the Chinese data
is tokenized into character level and the vocabu-
lary is set to 10k characters. Note that even with
subword units or character units, the actions are
marked in word level, i.e. all units from a given
word share the same actions.

We train the models with two settings. For the
larger WMT English-German and English-Chinese
dataset, we borrow the Transformer base parame-
ter set of Vaswani et al. (2017), which contains 6
layers for encoders and decoder respectively. The
multi-head attention of each layer contains 8 heads.
The word embedding size is set to 512 and the feed-
forward layer dimension is 2048. For the smaller
IWSLT dataset, we use 3 layers for each com-
ponent and multi-head attention with 4 heads in
each layer. The word embedding size is 256 and
the feedforward layers’ hidden size is 1024. We
also apply label smoothing σls = 0.1 and dropout
pdropout = 0.1 during training. All models are

1We use the pre-processed data from https://nlp.
stanford.edu/projects/nmt/

trained from scratch with corresponding training
data, e.g., parallel data for Transformer baseline
model and annotated data for Touch Editing.

4.2 Main Results

We report the results of different systems includ-
ing Transformer and QuickEdit. The Transformer
model is tested on bitext data, i.e., the model di-
rectly generates translations based on source sen-
tences. As for the QuickEdit, we followed the
settings of Grangier and Auli (2018), in which they
mark all words in initial translation results that do
not appear in the references as incorrect, and use
the QuickEdit model to generate refined transla-
tions. In Touch Baseline setting, we use the algo-
rithm described in Section 3 to obtain the actions
respect to initial translations and references, and
then apply reordering and deletion actions to ob-
tain refined translations. The Touch Edit setting ac-
cesses the same information as Touch Baseline but
uses the neural model described in Section 2.2 to
handle the actions. Note that the original QuickEdit
model is based on ConvS2S, and thus we reimple-
ment it based on Transformer to keep the fairness
of comparison2.

As shown in Table 1, our model strongly out-
performs other systems. As for BLEU score, our
model achieves up to +25.31 than Transformer and
+16.64 than QuickEdit. Our model also signifi-
cantly reduces TER by -0.28 and -0.18 comparing
to Transformer and QuickEdit.

We also notice that the improvement on the
smaller IWSLT’14 dataset (up to 17.22) is not as

2In fact, the comparison is still unfair because QuickEdit
and our mothod access more supervised information than
Transformer form simulated human feedback, which is the
nature of interaction settings.

https://nlp.stanford.edu/projects/nmt/
https://nlp.stanford.edu/projects/nmt/
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Reordering RIBES

Transformer 4672 79.97
QuickEdit 4799 84.33

Touch Editing 650 90.50

Table 2: Word reordering quality, measured in number
of word reorderings required to align to references, and
RIBES score.

significant as that on the larger WMT’14 dataset
(up to 24.74) and WMT’17 dataset (up to 25.31).
This observation is in consistent with QuickEdit,
which also gains lower improvement on the smaller
dataset. The reason, as described in Grangier and
Auli (2018), is that the underlying machine transla-
tion model is overfitted on the smaller 170k dataset.
Thus the translation output requires less edits on
which we build simulated editing action dataset.
The limited supervised data further impacts the
model quality and final results.

4.3 Analysis

To further investigate the model capacity, we con-
duct four experiments on WMT’14 English to Ger-
man dataset. We analyze the factors that bring the
remarkable improvement by modeling coverage,
reordering quality and accuracy of each action type.
We also test our model with limited number of ac-
tions to evaluate the model usability with partial
feedback.

Reordering We evaluate the word reordering
quality of our model, compared with Transformer
and QuickEdit. We adopt two automatic evalua-
tion metrics. One metric is based on monolingual
alignment. We firstly align model hypotheses and
references with TER, and then count the number
of words that should be reordered. As shown by
Reordering in Table 2, the output of our model
requires less word reorderings to align with refer-
ence.

The other metric is RIBES (Isozaki et al., 2010),
which is based on rank correlation. As shown in
Table 2, our method outperforms the other two
systems with 90.50 versus 79.97 for Transformer
and 84.33 for QuickEdit.

Accuracy As described in Section 2.1, the ac-
tions of our method represent human editing inten-
tions, i.e., they indicate errors in original hypothesis
and our model is expected to correct these errors
based on editing actions. To evaluate the accuracy

Total Correct Accuracy

Quick
Edit

Deletion 6438 4440 68.97%
Insertion 4430 681 15.37%

Substitution 20858 5030 24.12%

Touch
Editing

Deletion 6438 6383 99.15%
Insertion 4430 1609 36.32%

Substitution 20858 6645 31.86%

Table 3: Accuracy of actions. Total means number
of actions to transform the draft machine translations
into references. Correct means how many words are
corrected (or deleted) by the model.

of INSERTION, DELETION and SUBSTITUTION, we
first use TER to align machine translation hypothe-
ses and references, as well as our model’s outputs
and references. With the references as intermedi-
ates, we then align our model’s outputs and original
machine translations. With the alignment result, we
directly check whether the words with actions are
corrected or not to calculate the accuracy of the
three actions. To make a complete comparison, we
also analyze the results of QuickEdit and calculate
the accuracy.

As shown in Table 3, our model achieves the
accuracy of 99.15% for deletion3, 36.32% for in-
sertion and 31.86% for substitution. The high dele-
tion accuracy shows that our model indeed learns to
delete over-translated words. For insertion and sub-
stitution, the actions only indicate where to insert
or substitute, and do not provide any ground truth.
Since the self-attention mechanism in Transformer
is good at word sense disambiguation (Tang et al.,
2018a,b), our model is able to select correct words
to insert or substitute.

Partial Feedback The model we train and test
is based on all actions, i.e., all translation errors
of the initial hypotheses are marked out. However,
a human translator may not provide all marks. In
fact, the feedback of human translators is hard to
predict, and vary with different translators.

In this case, we test our model with simulated
partial feedback. We train our model with all ac-
tions and randomly select 0%, 5%, . . . 100% of ac-
tions in test set to simulate human behavior. To
further investigate the effect of partial feedback

3We do not explicitly remove words that marked as DELE-
TION and the neural model is responsible for making final
decision whether these words should be deleted. It might
slightly hurt BLEU and accuracy but potentially generates
more fluent translations.
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Figure 4: Results of partial feedback measured in
BLEU score. We train five models to investigate the
effects of partial feedback on different actions.

on different actions, we train three extra models
with specific kinds of actions: INSERT, DELETE

and SUBSTITUTE. We then randomly select part of
each kind of actions to test the model. Note that
the REORDERING actions are always enabled since
they are operated on a segment of words and cannot
be partially disabled. To investigate the effect of
REORDERING actions, we also train a model with-
out reordering and partially select three kinds of
actions to test the model.

As shown in Figure 4, for the model trained with
all actions, the BLEU scores increases from 29.43
(with reordering only) to 50.49 (with all actions) as
more actions are provided. For the models trained
with specific kinds of actions and the model trained
without reordering, the observation is similar.

4.4 Experiments on Post-Editing Data

In previous sections, our model is tested and an-
alyzed on automatic machine translation datasets.
However, in post-editing scenarios, our model faces
three major challenges: action inconsistency, data
inconsistency and model inconsistency. For action
inconsistency, the editing actions to train our model
are extracted from machine predictions and refer-
ences. The references in our training data are writ-
ten by human from scratch, while in post-editing
the references (human post-edited results) are revi-
sions of machine translations, and thus the editing
actions might be different. For data inconsistency,
our model is trained on dataset of News domain
(WMT) or TED talks (IWSLT). However in real
world, data may be from any other domains. For
model inconsistency, we use Transformer to build
our training data while the translation model used

WMT 16 WMT 17
BLEU TER BLEU TER

MT 62.48 0.24 62.83 0.24
QuickEdit 67.14 0.19 69.22 0.18

Touch Editing 82.05 0.09 82.88 0.09

Table 4: Results on post-editing dataset in terms of
BLEU and TER.

in real applications may be different.
To investigate the performance facing the three

challenges, we test our model on WMT English-
German Automatic Post-Editing (APE) dataset in
IT domain using data from WMT’16 (Bojar et al.,
2016) and WMT’17 (Ondrej et al., 2017). The test
data consists of triplets like (source, machine trans-
lation, human post-edit), in which the machine
translation is generated with a PBSMT system. We
use the algorithm of Section 3 to extract actions
from machine translations and human post-edited
sentences. With the actions and original machine
translations, we use the model trained on WMT’14
English-German dataset in Section 4 to generate
refined translations. To make a comparison, we
also evaluate QuickEdit with the same setting.

Table 4 summarizes the results on post-editing
dataset. It is clear to see that even with the three
kinds of inconsistency, our model still gains sig-
nificant improvements of up to 20.05 BLEU than
the raw machine translation system (PBSMT). As
for QuickEdit, the improvement on post-editing
dataset (about 4-7 BLEU) is smaller than that on
translation dataset (about 11 BLEU). We conjec-
ture that the stable improvement of our method is
due to more flexible action types. With the detailed
editing actions, the model is competent to correct
various of errors in draft machine translations, and
thus leads to the robustness and effectiveness of
our method.

4.5 Discussion on Real Scenarios

So far, the experiments we conducted are based
on simulated human feedbacks, in which the ac-
tions are extracted from initial machine translation
results and their corresponding references to simu-
late human editing actions. Thus in our simulated
setting, the references are used in inference phase
to simulate human behavior, as in other interac-
tion methods (Denkowski et al., 2014; Marie and
Max, 2015; Grangier and Auli, 2018). These ex-
periments show that our method can significantly
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improve the initial translation with similated ac-
tions. However, whether the actions are convenient
to perform is a key point in real applications.

To investigate the usability and applicable sce-
narios of our method, we implement a real mobile
application on iPhone, in which the actions can
be performed on multi-touch screens. For a given
source sentence, the application provides an initial
machine translation. The text area of translation
can response to several gestures 4: Tap indicated
a missing word should be inserted into the near-
est space between two words; Swipe on a word
indicated that the word should be deleted; Long-
Press a word means the word should be substituted
with other word; Pan can drag a word to another
position.

We conduct a free-use study with four partici-
pants, in which the participants are asked to trans-
late 20 sentences randomly selected from LDC
Chinese-English test set with (1) Touch Editing or
(2) keyboard input after 5 minutes to get familiar
with the application. We observe that the users with
Touch Editing tends to correct an error for multiple
times when the system cannot predict a word they
want, while the users with keyboard input tends
to modify more content of initial translation and
spend more time on choosing words. We then con-
duct an unstructured interview on the usability of
our method. The result of the interview shows that
Touch Editing is convenient and intuitive but lack
of ability of generating final accurate translation.
It can be treated as a light-weight proofreading
method, and suitable for Pre-Post-Editing (Marie
and Max, 2015).

5 Related Work

Post-editing is a pragmatic method that allows hu-
man translators to directly correct errors in draft
machine translations (Simard et al., 2007). Compar-
ing to purely manual translation, it achieves higher
productivity while maintaining the human trans-
lation quality (Plitt and Masselot, 2010; Federico
et al., 2012).

Many notable works introduce different levels of
human-machine interactions in post-editing. Bar-
rachina et al. (2009) propose a prefix-based interac-
tive method which enable users to correct the first
translation error from left to right in each iteration.

4These gestures are explicit and directly supported by Ap-
ple iOS devices: https://developer.apple.com/
documentation/uikit/uigesturerecognizer

Green et al. (2014) implement a prefix-based inter-
active translation system and Huang et al. (2015)
adopt the prefix constrained translation candidates
into a novel input method for translators. Peris et al.
(2017) further extend this idea to neural machine
translation.

The prefix-based protocol is inflexible since
users have to follow the left-to-right order. To
overcome the weakness of prefix-based approach,
González-Rubio et al. (2016); Cheng et al. (2016)
introduce interaction methods that allow users to
correct errors at arbitrary position in a machine hy-
pothesis, while Weng et al. (2019) also preventing
repeat mistakes by memorizing revision actions.
Hokamp and Liu (2017) propose grid beam search
to incorporate lexical constraints like words and
phrases provided by human translators and force
the constraints to appear in hypothesis.

Recently, some researchers resort to more flex-
ible interactions, which only require mouse click
or touch actions. For example, Marie and Max
(2015); Domingo et al. (2016) propose interactive
translation methods which ask user to select correct
or incorrect segments of a translation with mouse
only. Similar to our work, Grangier and Auli (2018)
propose a mouse based interactive method which
allows users to simply mark the incorrect words
in draft machine hypotheses and expect the sys-
tem to generate refined translations. Herbig et al.
(2019, 2020) propose a multi-modal interface for
post-editors which takes pen, touch, and speech
modalities into consideration.

The protocol that given an initial translation to
generate a refined translation, is also used in polish-
ing mechanism in machine translation (Xia et al.,
2017; Geng et al., 2018) and automatic post-editing
(APE) task (Lagarda et al., 2009; Pal et al., 2016).
The idea of multi-source encoder is also widely
used in the field of APE research (Chatterjee et al.,
2018, 2019). In human-machine interaction scenar-
ios, the human feedback is used as extra informa-
tion in polishing process.

6 Conclusion

In this paper, we propose Touch Editing, a flexible
and effective interaction approach which allows
human translators to revise machine translation re-
sults via touch actions. The actions we introduce
can be provided with gestures like tapping, pan-
ning, swiping or long pressing on touch screens to
represent human editing intentions. We present a

 https://developer.apple.com/documentation/uikit/uigesturerecognizer
 https://developer.apple.com/documentation/uikit/uigesturerecognizer
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simulated action extraction method for constructing
training data and a dual-encoder model to handle
the actions to generate refined translations.

We prove the effectiveness of the proposed in-
teraction approach and discuss the applicable sce-
narios with a free-use study. For future works, we
plan to conduct large scale real world experiments
to evaluate the productivity of different interactive
machine translation methods.
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