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Dynamic Weighted Filter Bank Domain Adaptation 

for Motor Imagery Brain-Computer Interfaces 
 

Yukun Zhang, Shuang Qiu, Wei Wei, Xuelin Ma, Huiguang He, Senior Member, IEEE 

Abstract—A motor imagery (MI)-based brain–computer 

interface (BCI) is a promising system that can help neuromuscular 

injury patients recover or replace their motor abilities. Currently, 

before one uses MI-BCI, we need to collect a large amount of 

training data to train the decoding model, and this process is time 

consuming. When trained with a small amount of data, existing 

decoding methods generally do not perform well in MI decoding 

tasks. Therefore, it is important to improve the decoding 

performance with short calibration data. In this study, we propose 

a dynamic weighted filter bank domain adaptation framework 

that uses data from an existing subject to reduce the requirement 

of data from the new subject. A filter bank is used to explore 

information from different frequency subbands. A feature 

extractor with two 1-D convolutional layers is designed to extract 

EEG features. The class-specific Wasserstein generative 

adversarial network (WGAN)-based domain adaptation network 

aligns the distribution of each class between the data from the new 

subject and the data from the existing subject. Additionally, we 

apply an attention network to dynamically allocate different 

weights for different frequency bands. We evaluate our method on 

a public MI dataset and a self-collected dataset. The experimental 

results show that the proposed method achieves the best decoding 

accuracy among the compared methods with different amounts of 

training data. On the public dataset, our method achieves 8.88% 

and 7.16% higher decoding accuracy than the best comparing 

method with on block of training data on the two sessions, 

respectively. This indicates that our method can enhance MI 

decoding accuracy with a small amount of training data. 

 
Index Terms—brain-computer interface, motor imagery, 

domain adaptation, filter bank, attention network 

I. INTRODUCTION 

brain–computer interface (BCI) is a system that 

translates the brain's signal into commands for 

devices[1]. Neuroimaging methods used in BCI 

systems include electroencephalography (EEG), 

electrocorticography (ECoG), functional near infrared 

spectroscopy (fNIRS), functional magnetic resonance imaging 

(fMRI) and magnetoencephalography (MEG). EEG is most 

extensively studied in BCI research owing to its easy access, 

high temporal resolution and high safety[2]. Therefore, EEG-

based BCI systems have gained great attention in recent years 

and include several main paradigms, such as P300, steady-state 
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visual evoked potentials (SSVEPs) and motor imagery (MI). 

Compared with other paradigms, MI decodes spontaneous 

human motor intention without external stimuli. MI-based BCI 

systems can be used to help neuromuscular injury patients 

recover or replace their motor abilities[3-6]. Furthermore, it is 

applicable for smart home applications, education, and 

entertainment[7-14]. 

There have been many studies on improving EEG decoding 

performance. Traditional EEG decoding methods generally 

follow the pipeline of feature extraction and classification[15]. 

The most widely used feature extraction methods are common 

spatial patterns (CSPs) [16]and their variants[17-21], which are 

followed by support vector machine (SVM) or linear 

discriminant analysis (LDA). Recently, deep learning-based 

algorithms have been introduced to MI decoding and reach 

equal or better decoding accuracy compared with traditional 

machine learning methods, such as shallow CNN, EEGNet and 

cascade convolutional recurrent neural networks[22-26]. 

Although MI decoding methods have made great 

achievements, the performance of these methods depends on a 

large amount of training data. In other words, to achieve better 

MI decoding accuracy, more data are needed to train the 

decoding model. Due to the nonstationary property of MI-EEG 

signals, directly using data from other subjects or data from the 

same subject collected before would result in poor decoding 

performance[15, 27]. Thus, before one uses MI-BCI, we have to 

collect many new data to train the decoding methods. It is 

inconvenient for subjects to use BCI systems. Additionally, the 

long data-collecting procedure may cause subject fatigue and 

distraction. Therefore, it is important to develop an MI 

decoding algorithm that performs well given a few training data. 

Domain adaptation is the process of adapting one or more 

source domains to transfer information to improve the 

performance of a target learner[28]. It attempts to bring the 

distribution of the source closer to that of the target. Thus, in 

the case of MI decoding, EEG data of existing subjects can be 

utilized to help a new target subject train a decoding model and 

reduce his/her calibration time through domain adaptation, 

which is capable of transferring knowledge from existing EEG 

data to a new subject and enhancing the MI decoding accuracy 
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when the new subject has limited training data. 

Several domain adaptation methods for MI tasks have been 

proposed, such as composite common spatial pattern (CCSP)[29] 

and Riemannian procrustes analysis (RPA)[30]. However, these 

methods mainly aim at enhancing decoding accuracy when a 

large amount of training data from new user subjects is 

available. The decoding accuracy of these methods with a short 

amount of training data is still limited. Therefore, the effective 

use of EEG data from existing subjects in domain adaptation 

methods is still a challenge and needs further study. 

In this study, we proposed a dynamic weighted filter bank 

domain adaptation (DWFBDA) framework to enhance the 

classification accuracy for MI-BCIs with a short calibration 

time. A small amount of data collected from a new target 

subject and already collected data from a source subject is used 

for the input of our framework. Here, an existing subject with 

already collected data is called a source, and the new subject is 

called a target. Our DWFBDA framework includes four parts. 

First, EEG signals during MI tasks have various frequency 

bands that contain important information for MI decoding[31]. 

We adopt a filter bank to explore information from different 

frequency subbands. Second, we construct a CNN-based 

feature extractor for learning time and spatial information from 

EEG samples. A classifier with two fully connected layers is 

employed to predict the class label. Third, we introduced a 

Wasserstein generative adversarial network (WGAN) to align 

the distribution of two domains separately for each class in 

situations where the target has a small number of training 

samples. Finally, we designed a dynamic weight model based 

on an attention mechanism to dynamically assign different 

weights to each subband to improve the performance of 

decoding MI tasks. 

The main contributions of this paper are summarized as 

follows: 

⚫ We design a class-specific WGAN-based domain 

adaptation network to deal with domain adaptation with 

a small number of samples and align the marginal and 

conditional distribution of the two domains. 

⚫ We propose to adopt a filter bank in the MI decoding 

model. To the best of our knowledge, this is the first 

work that uses the filter bank method in a deep learning-

based MI domain adaptation model. 

⚫ We propose a dynamic weight model based on an 

attention network to dynamically integrate the predicted 

results from all subbands. 

⚫ Experiments on a public dataset and a self-collected 

dataset are conducted to evaluate our method. The 

results show that the proposed method achieves the best 

decoding performance. 

II. RELATED WORK 

A. Non-domain adaptation MI decoding methods 

In 1999, common spatial pattern (CSP)[32], one of the most 

widely used MI feature extraction methods, was introduced into 

MI classification by Müller-Gerking et al. An appropriate 

subject-specific frequency band can improve the classification 

accuracy of CSP. Thus, the filter bank common spatial pattern 

(FBCSP)[31] algorithm was proposed to automatically select 

subband features and has achieved encouraging results. In 2012, 

FBCSP combined with the Naïve Bayesian Parzen window 

classifier won BCI competition IV with a mean kappa value of 

0.569 for four-class MI classification[33]. The Riemannian 

minimum distance to mean (RMDM)[34] has been successfully 

applied in many BCI paradigms, including MI, P300 and 

SSVEP, due to its simplicity and robustness. In four-class MI 

tasks, RMDM achieved a classification accuracy of 63.2%[34]. 

Recently, some studies have proposed some CSP-based 

methods to improve the decoding performance in MI tasks. 

Miao et al. proposed common time-frequency-spatial patterns 

(CTFSP)[35] to extract sparse CSP features from multiband 

filtered EEG data in multiple time windows and achieved a 

decoding accuracy of 75% and 85% in two three-class public 

datasets. 

With the development of deep learning, many neural 

network-based MI decoding models have been proposed. In 

2017, Schirrmeister et al. proposed a shallow CNN[22], 

achieving classification accuracies of 71.9% for a four-class MI 

task. In 2018, a compact CNN-based model, named EEGNet[23], 

was proposed, achieving similar accuracy to shallow CNN with 

fewer parameters. In 2019, Zhang et al. transformed 1-D EEG 

sequences into 2-D meshes according to the electrode 

distribution and then applied cascade and parallel convolutional 

recurrent neural networks to recognize MI intention[24]. In the 

same year, Sakhavi and colleagues used an FBCSP filtered 

signal envelope as input and proposed a channel-wise 

convolution with channel mixing (C2CM) network[36], which 

reached an accuracy of 74.46% for four-class MI tasks. More 

recently, some multiview and multitask methods have been 

proposed to extract better deep representations of EEG features. 

In 2021, Li et al. proposed to parallelly extract temporal and 

spectral EEG features and designed a squeeze-and-excitation 

feature fusion block[37]. This work achieved 74.71% decoding 

accuracy in a four-class public dataset. Liu et al. proposed a 

space-time-frequency EEG representation and designed a 

multitask learning framework[38]. In the same year, Mane et al. 

proposed FBCNet, which takes multiple EEG frequency bands 

as different views and designed a multiview convolutional 

neural network, which achieves 76.2% decoding accuracy in 

the four-class MI task[39]. 

B. Domain adaptation-based MI decoding methods 

Some domain adaptation methods have been proposed to 

alleviate the need for training data from the target subject. In 

2009, Hyohyeong et al. proposed CCSP[29], a CSP-based 

domain adaptation method, which works better than CSP with 

a small number of training samples. In 2019, He et al proposed 

an unsupervised Euclidean space data alignment method and 

achieved a classification accuracy of 79.79% on a two-class MI 

task[40]. In the same year, Rodrigues et al. proposed RPA, a 

Riemannian geometry-based domain adaptation method, which 

achieved over 60% accuracy on four-class MI recognition[30]. 

In 2017, Sakhavi et al. proposed a pretrain fine-tune domain 

adaptation paradigm based on deep learning for MI 
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classification [41]. They applied FBCSP to find spatial filters for 

each subject and then took the envelope power of the spatially 

filtered data as input for a convolutional neural network (CNN). 

This neural network is trained on data from multiple subjects 

and then fine-tuned on the new subject. In 2018, Dose et al. 

proposed training a global model on a large number of subjects 

and then fine-tune the global model on target subjects for a few 

training epochs [42]. In 2019, Jeon [43] et al. developed an MI 

domain adaptation framework with source selection. They first 

proposed a subject selection method with power spectral 

density. A gradient reversal layer was then used to extract 

common features for the new subject and the source subject. 

 More recently, Zhao et al. proposed a deep representation-

based domain adaptation (DRBDA) framework for MI tasks to 

improve the classification accuracy of the target subject [44]. To 

further enhance the domain adaptation performance, a center 

loss was employed to minimize intraclass differences. Their 

model achieved an accuracy of 74.75% on a four-class MI 

decoding task. In 2022, Peterson et al. proposed a domain 

adaptation method called OTDA based on optimal transport 

theory[45]. They first trained a CSP-LDA decoding model on 

existing data. Then, they used the proposed domain adaptation 

pipeline to calibrate the model on new EEG data. Their method 

achieves 90.23% decoding accuracy in a two-class MI task. 

Overall, the existing domain adaptation-based MI decoding 

method still takes a large amount of training data from the target 

subject. They may not perform very well with limited training 

data from the target subject. 

III. METHOD 

A. Notations 

We first introduce the notations and definitions for later use. 

Let 𝑥 ∈ ℝ𝐶×𝑇  represent one sample of a multichannel EEG 

signal, where C is the number of channels and T is the time 

point. 𝑦 ∈ {1, . . . , 𝑁𝑐𝑙𝑠} is the class label, and 𝑁𝑐𝑙𝑠 is the number 

of MI classes. 𝑋 = {𝑥𝑖}𝑖=1
𝑁  is a set of EEG samples, and 𝑌 =

{𝑦𝑖}𝑖=1
𝑁  is a set of labels. 𝑃(𝑋) is the marginal distribution of 𝑋, 

and 𝑃(𝑋|𝑌) is the conditional distribution of 𝑋. A new subject 

for whom we are going to train a decoding model is called the 

target subject. A subject with already collected EEG data is 

referred to as a source subject. Let 𝑥𝑖
𝑡 and  𝑥𝑗

𝑠 denote the 𝑖𝑡ℎ and 

𝑗𝑡ℎ  EEG samples from the target and source subjects, 

respectively. 𝑦𝑖
𝑡 , 𝑦𝑗

𝑠  are the corresponding labels. Then, the 

target domain with 𝑁𝑡 labeled samples from the target subject 

is defined as 𝒟𝑡 = {(𝑥𝑖
𝑡 , 𝑦𝑖

𝑡)}𝑖=1
𝑁𝑡 . Similarly, 𝒟𝑠 = {(𝑥𝑗

𝑠, 𝑦𝑗
𝑠)}𝑗=1

𝑁𝑠  

is the source domain that contains 𝑁𝑠 labeled samples from the 

source subject. The marginal and conditional distributions of 

the two domains are different: 𝑃(𝑋𝑡) ≠ 𝑃(𝑋𝑠) , 𝑃(𝑋𝑡|𝑌𝑡) ≠
𝑃(𝑋𝑠|𝑌𝑠). 

Our motivation is to align the distribution of two domains in 

feature space such that 𝑃(𝑌𝑡|𝐹𝑡)  is close to 𝑃(𝑌𝑠|𝐹𝑠)where 

𝐹𝑡 = {𝑓𝑖
𝑡}𝑖=1

𝑁𝑡 , 𝐹𝑠 = {𝑓𝑗
𝑠}𝑗=1

𝑁𝑠 . 𝑓𝑖
𝑡, 𝑓𝑗

𝑠 is the feature of 𝑥𝑖
𝑡 and 𝑥𝑗

𝑠. 

The classifier trained on the aligned feature space would work 

well for both target and source domains. 

B. Network architecture 

The total framework of our method is illustrated in Fig. 1. 

First, 𝑁𝑏  finite impulse response (FIR) bandpass filters are 

adopted to filter the EEG samples into multiple subbands. The 

passbands include 4-10, 8-14, …, and 32-38 Hz. These bands 

cover the frequency range where the main response of MI is[16, 

22, 33]. In addition, the full band of 4-38 Hz, which is widely used 

in the case of only one single band[22], is also included. 

A feature extractor with two 1-D convolutional layers is used 

to extract EEG features from different frequency bands. A 1-D 

temporal convolution kernel is first used to extract temporal 

features along the time dimension from each channel. The size 

of the temporal convolutional kernel is 25. A large kernel 

allows us to capture relatively long-range information. Next, a 

1-D spatial convolutional kernel is adopted to extract the spatial 

feature of the multiband EEG signal along the channel 

dimension. The spatial convolution works as a spatial filter that 

takes the linear combination of EEG channels. The kernel shape 

of the spatial filter is C × 1. Compared with a 2-D temporal-

spatial convolutional kernel, cascaded 1-D kernels extract 

independent spatial and temporal patterns. The spatial filter 

takes the same channel combinations regardless of the temporal 

point. Furthermore, cascaded 1-D kernels reduce the number of 

parameters compared with one 2-D kernel. This would enhance 

the model robustness and relieve the overfitting problem. The 

features are squared to obtain power information. Finally, a 

temporal average pooling layer with a kernel length of 75 and 

stride of 15 is adopted to reduce the feature dimension. 

Inspired by adversarial training, we further design a 

discriminator to predict which domain the current input belongs 

to. If the distribution between 𝐹𝑡 and 𝐹𝑠 is very different, then 

the discriminator can easily output the right answer. While the 

discriminator keeps learning how to predict the domain, the 

feature extractor tries to cheat the discriminator by extracting 

features that cannot be distinguished. Ideally, the competition 

between the feature extractor and discriminator would finally 

reach a balance point where the distribution of extracted 

features 𝑃(𝐹𝑡)  and 𝑃(𝐹𝑠)  is exactly the same and the 

discriminator is not able to predict the domain. This would 

result in a common feature space for both domains. We can 

further train classifiers on this common feature space that works 

well for both the target and source domains. 

The traditional discriminator is trained by cross entropy loss. 

However, cross entropy cannot well measure the distribution 

difference when there is little or no overlap[46]. Considering that 

the amount of target data is limited and the distribution 

difference of EEG across subjects is large, we use the 

Wasserstein distance in our discriminator. The Wasserstein 

distance can measure the distribution difference even when the 

two distributions have no overlap[46]. Our discriminator 

contains four fully connected (FC) layers. The activation 

function is leaky rectified linear units (ReLU). To further 

improve the prediction performance of our model, we align the 

conditional distribution between two domains by creating 

different discriminators for each class separately. 

Our classifier contains two FC layers. The activation 
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functions are leaky ReLU and LogSoftMax. To enhance the 

stability and performance of the classifier, batch normalization 

and dropout techniques are adopted. 

For the dynamic weight model, we construct an attention 

network. For each band, the classifier outputs a set of 

probabilities that a sample belongs to each class. To combine 

the probabilities from all bands, an attention network is 

designed to output weights for each band dynamically. 

Compared with taking the mean average of band predictions, 

the attention network can give greater weights for bands with 

more information, hence improving the model performance. 

The attention network can also output different weights for 

different samples, which makes the decoding model more 

flexible. The attention network consists of one fully connected 

layer and a softmax output layer. Batch normalization and 

dropout techniques are also adopted. A regular term is used to 

prevent the output weights from being too far from 1/𝑁𝑏, which 

makes the attention network more stable. In addition, we 

adopted a multihead attention technique that allows the model 

to attend to subbands from different views and has been found 

to be beneficial in many studies[47]. 

C. Optimization objective 

In our framework, we first train the feature extractor, 

classifier and discriminator on each frequency band. Then, we 

train the attention network to generate band weights for each 

band. 

For predicting class labels on the ith frequency band, the 

optimization objective is: 

𝑚𝑖𝑛
𝐹,𝐶

ℒ𝑐𝑙𝑠
𝑖 = −𝔼𝑥,𝑦~𝒟𝑡∪𝒟𝑠 𝐶𝐸𝑙𝑜𝑠𝑠 (𝑦, 𝐶𝑖(𝐹𝑖(𝑥𝑖))) (1) 

𝑥𝑖 = 𝐹𝐵𝑖(𝑥) (2) 

where 𝐹𝐵𝑖(⋅) , 𝐹𝑖(⋅) , and 𝐶𝑖(⋅)  are the ith bandpass filter, 

feature extractor and classifier, respectively, and 𝐶𝐸𝑙𝑜𝑠𝑠(⋅) is 

the cross-entropy loss. The output of 𝐶𝑖(⋅) is a column vector 

that represents the probability of the current sample belonging 

to each class. 

For adversarial domain adaptation, we first estimate the 

Wasserstein distance between the target and source domains by 

maximizing the following loss function: 

   𝑚𝑎𝑥
𝐷

ℒ𝐷
𝑖 = 𝔼𝑥𝑡~𝒟𝑡[𝐷𝑖(𝐹𝑖(𝑥𝑖

𝑡))] − 𝔼𝑥𝑠~𝒟𝑠[𝐷𝑖(𝐹𝑖(𝑥𝑖
𝑠))]     (3) 

where 𝐷𝑖(⋅) is the discriminator of the ith frequency band. 

The feature extractor minimizes the Wasserstein distance 

between two domains against the discriminator: 

  𝑚𝑎𝑥
𝐹

ℒ𝑎𝑑𝑣
𝑖 = 𝔼𝑥𝑡~𝒟𝑡[𝐷𝑖(𝐹𝑖(𝑥𝑖

𝑡))] − 𝔼𝑥𝑠~𝒟𝑠[𝐷𝑖(𝐹𝑖(𝑥𝑖
𝑠))]  (4) 

The overall optimization target for the feature extractor and 

classifier is: 

min
𝐹,𝐶

ℒ𝐹,𝐶
𝑖 = 𝑤𝐶ℒ𝑐𝑙𝑠

𝑖 + 𝑤𝑎𝑑𝑣ℒ𝑎𝑑𝑣
𝑖 (5) 

where 𝑤𝐶  and 𝑤𝑎𝑑𝑣  are hyperparameters for weights of 

classification and domain adaptation loss. For each frequency 

band, we alternatively optimize ℒ𝐷
𝑖  and ℒ𝐹,𝐶

𝑖 . This objective is 

optimized on all frequency bands. 

After the feature extractor and classifier were well trained, 

we began to train the attention network. 
min

𝐴
ℒ𝐴 = −𝔼𝑥,𝑦~𝒟𝑡∪𝒟𝑠 𝐶𝐸𝑙𝑜𝑠𝑠(𝑦, 𝑝𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑) +

𝑤𝑅 ⋅ ∑ (𝐴 ((𝐹𝑖(𝑥𝑖))) − 1/𝑁𝑏)
𝑁𝑏

𝑖=1
 (6)

 

𝑝𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = [𝐴 ((𝐹𝑖(𝑥𝑖)))] × [𝐶𝑖(𝐹𝑖(𝑥𝑖))]
𝑇

(7) 

where 𝐴(⋅) is the attention network and outputs a scalar for 

each frequency band and [⋅]  represents the rowwise 

concatenation operation. 𝑤𝑅  is the hyperparameter for the 

weight of our regular term. The optimization method for 

training the discriminator is RMSProp. For training the feature 

extractor and classifier, Adam is used. 

D. Training pipeline 

In the training stage, the feature extractor, classifier and 

discriminator are alternatively optimized. For each training 

Fig. 1. Proposed filter bank Wasserstein adversarial domain adaptation framework. Target data and source data are separately input into the filter bank. Band 
passed data are then feed into CNN based feature extractor to get feature maps. The discriminator estimates the Wasserstein distance between target feature maps 

and source feature maps for each class separately. Feature extractor in the contrary tries to extract features that could not be distinguished by the discriminator. 

By adversarial training, feature extractor learns to extract common feature between target domain and source domain. The common feature maps are then input 
into classifier and attention network. The classifier output class predicts for each frequency bands separately and the attention network output the weights for 

each frequency band. The weighted band predicts are taken as final output. 
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epoch, we first train 𝐷 for 𝑛𝑑 iterations and then train 𝐹 and 𝐶 

for 𝑛𝑐 iterations. The training pipeline for each frequency band 

is summarized in Algorithm 1. For convenience, we omit the 

frequency band index in algorithm 1. Note that the attention 

network is trained after 𝐹, 𝐶, 𝐷  is well trained and is not 

included in Algorithm 1. 
Algorithm 1. Training pipeline of our domain adaptation framework 

Input: training data from target and source domain 𝒟𝑠
, 𝒟𝑡

, maximum 

training epoch 𝑛𝑒𝑝𝑜𝑐ℎ, number of iterations for training classifier and feature 

extractor per epoch 𝑛𝑐, number of iterations for training discriminator per 

epoch 𝑛𝑑, batch size 𝑚 

Output: feature extractor 𝐹, classifier 𝐶, discriminator 𝐷1,…, 𝐷𝑁𝑐𝑙𝑎𝑠𝑠
 

1: initialize 𝐹, 𝐶, 𝐷1,…, 𝐷𝑁𝑐𝑙𝑎𝑠𝑠
, with parameters 𝜃𝐹, 𝜃𝐶, 𝜃𝐷1

,…𝜃𝐷𝑁𝑐𝑙𝑎𝑠𝑠
 

randomly 

2: for t = 1, …, 𝑛𝑒𝑝𝑜𝑐ℎ: 

3:   for 𝑖𝑐𝑙𝑎𝑠𝑠 = 1,…, 𝑁𝑐𝑙𝑠: 

4:     for 𝑡𝑑 = 1, …, 𝑛𝑑: 

5:       sample a batch {(𝑥𝑖
𝑡, 𝑦𝑖

𝑡)}𝑖=1
𝑚  from target class𝑖𝑐𝑙𝑎𝑠𝑠 

6:       sample a batch {(𝑥𝑗
𝑠, 𝑦𝑗

𝑠)}𝑗=1
𝑚  from source class𝑖𝑐𝑙𝑎𝑠𝑠 

7:𝑔𝜃𝐷𝑖𝑐𝑙𝑎𝑠𝑠

← ∇𝜃𝐷𝑖𝑐𝑙𝑎𝑠𝑠

[
1

𝑚
∑ 𝐷𝑖𝑐𝑙𝑎𝑠𝑠

(𝐹(𝑥𝑖
𝑡))𝑚

𝑖=1 − 
1

𝑚
∑ 𝐷𝑖𝑐𝑙𝑎𝑠𝑠

(𝐹(𝑥𝑗
𝑠))𝑚

𝑗=1 ] 

8:𝜃𝐷𝑖𝑐𝑙𝑎𝑠𝑠
← 𝜃𝐷𝑖𝑐𝑙𝑎𝑠𝑠

+ 𝑤𝐷 ∙ RMSProp(𝜃𝐷𝑖𝑐𝑙𝑎𝑠𝑠
, 𝑔𝜃𝐷𝑖𝑐𝑙𝑎𝑠𝑠

) 

9:     end for 

10:  end for 

11:  for 𝑡𝑐 = 1, …, 𝑛𝑐: 

12:    sample a batch {(𝑥𝑖
𝑡, 𝑦𝑖

𝑡)}𝑖=1
𝑚  from target 

13:    sample a batch {(𝑥𝑗
𝑠, 𝑦𝑗

𝑠)}𝑗=1
𝑚  from source 

13:𝑔𝜃𝐹
← −∇𝜃𝐹

[
1

𝑚
∑ log (Σ𝑘

𝑁𝑐𝑙𝑠𝐶(𝐹(𝑥𝑖
𝑡))

𝑘
⋅ 𝛿(𝑘 = 𝑦𝑖

𝑡))𝑚
𝑖=1 +

          
1

𝑚
∑ 𝑙𝑜𝑔(Σ𝑘

𝑁𝑐𝑙𝑠𝐶 (𝐹(𝑥𝑗
𝑠))

𝑘
⋅ 𝛿(𝑘 = 𝑦𝑗

𝑠))𝑚
𝑗=1 ] 

14:    for 𝑖𝑐𝑙𝑎𝑠𝑠 = 1,…, 𝑁𝑐𝑙𝑎𝑠𝑠: 

15:𝑔𝜃𝐹
← 𝑔𝜃𝐹

− ∇𝜃𝐹
[

1

𝑚
∑ 𝐷𝑖𝑐𝑙𝑎𝑠𝑠

(𝐹(𝑥𝑖
𝑡))𝑚

𝑖=1 −
1

𝑚
∑ 𝐷𝑖𝑐𝑙𝑎𝑠𝑠

(𝐹(𝑥𝑗
𝑠))𝑚

𝑗=1 ] 

16:    end for 

17:𝑔𝜃𝐶
← −∇𝜃𝐶

[
1

𝑚
∑ log (Σ𝑘

𝑁𝑐𝑙𝑠𝐶(𝐹(𝑥𝑖
𝑡))

𝑘
⋅ 𝛿(𝑘 = 𝑦𝑖

𝑡))𝑚
𝑖=1 +

          
1

𝑚
∑ 𝑙𝑜𝑔(Σ𝑘

𝑁𝑐𝑙𝑠𝐶 (𝐹(𝑥𝑗
𝑠))

𝑘
⋅ 𝛿(𝑘 = 𝑦𝑗

𝑠))𝑚
𝑗=1 ] 

18:    𝜃𝐹 ← 𝜃𝐹 + 𝑤𝐹 ∙ Adam(𝜃𝐹 , 𝑔𝜃𝐹
), 𝜃𝐶 ← 𝜃𝐶 + 𝑤𝐶 ∙ Adam(𝜃𝐶 , 𝑔𝜃𝐶

) 

19:  end for 

20:end for 

𝑤𝐷, 𝑤𝐹 , 𝑤𝐶  are hyperparameters, and 𝛿(𝑎 == 𝑏) is the indicator function, 

which equals 1 if 𝑎 == 𝑏; otherwise, it equals 0. 

E. Source selection 

The selection of source subjects is important in the MI 

domain adaptation task. An appropriate source subject would 

improve the decoding accuracy for the target subject, while an 

inappropriate source subject would result in negative transfer 

and harm the prediction accuracy. 

Our source selection method has two principles. First, the 

distribution between the target domain and source domain 

should be close. In this case, the distribution alignment process 

would be easier. Second, the source domain should provide 

helpful information for classification. The distribution 

difference between MI tasks in the source domain should be 

large. In other words, the source domain itself should have fine 

decoding accuracy. 

For each subject from one dataset, we perform sixfold-fold 

cross validation on its own data. The subjects are then ranked 

according to their accuracy. The top five subjects are taken as 

optional source subjects for this dataset. Then, we use the 

training set of the target subject to test the models of all optional 

source subjects. The corresponding subject of the trained model 

that achieves the highest classification accuracy is finally 

selected as the source subject for this target subject. 

F. Cropped training 

We adopt a cropped training strategy to effectively train the 

proposed neural network. A sliding window with a length of 

500 time points and a stride of 10 time points is first used to 

generate cropped samples. Our network is then trained on those 

cropped samples. For an original EEG sample 𝑥 ∈ 𝑅𝐶×𝑇 , 63 

cropped samples are generated. The predicted results of the 63 

cropped samples are averaged to obtain the predicted result for 

the original EEG sample. Note that we first divide the data into 

a training set and test set and then crop the samples. The 

accuracy is calculated based on the original EEG samples rather 

than the cropped samples. 

For faster training and inference, in the feature extractor, we 

first apply temporal and spatial convolution on the original 

sample and then crop the sample with a sliding window. By 

doing so, we save the repeated convolution calculations. 

IV. EXPERIMENT AND RESULTS 

A. Dataset 

Our method is evaluated on two datasets. The first dataset we 

use is dataset 2a of BCI competition IV[48] (referred to as dataset 

2a for convenience). Nine subjects were instructed to perform 

four classes of MI tasks (left hand, right hand, both feet, and 

tongue). For each subject, EEG data on different days were 

collected. For EEG data from one day, there were 72 samples 

for each MI task (288 EEG samples in total), which was called 

one session. Twenty-two channels of EEG signals were 

collected. The sampling rate is 250 Hz. 

The second dataset, MI-2, was collected by our self [49] and 

contains data from twenty-five subjects on two different MI 

tasks from the same limb (right hand and right elbow). For each 

subject, there were 100 samples of MI data for each MI task. To 

evaluate our method in situations where available data are short, 

only the first 60 samples from each task are used. EEG data 

were acquired using a Neuroscan 64-channel amplifier. The left 

mastoid was set as the reference channel. The sampling rate is 

1000 Hz. 0.5-100 Hz bandpass filter and a 50 Hz notch filter 

were used for data acquisition. To remain consistent with 

dataset 2a, we downsample the EEG data to 250 Hz. 

For both datasets, the raw EEG signal is bandpassed to 4-38 

Hz. Although the frequency range of MI cortical oscillations 

mainly lies in the alpha and beta bands, some studies found that 
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EEG signals in gamma and theta bands contain MI-related 

information[50-52]. In this study, we chose 4-38 Hz following the 

study of Schirrmeister et al. [22] to extract information from a 

wide frequency band. 

B. Compared methods 

1) Baseline methods: Baseline methods include CSP-based 

methods and a Reimann geometry-based method. 

• CSP[16] and FBCSP[31] followed by LDA are compared. 

They are realized by the MNE toolbox[53] 

https://mne.tools/stable/index.html. 

• Riemannian geometry-based method RMDM[34] extracts 

covariance matrices and makes predictions according to the 

nearest centroid. It is adopted from 

https://github.com/pyRiemann/pyRiemann. 

2) Deep learning-based methods: Deep learning-based 

methods include EEGNet, shallow and deep CNN, C2CM and 

FBCNet. 

• EEGNet[23] is a compact CNN-based MI decoding model. 

we adopt the source code from 

https://github.com/vlawhern/arl-eegmodels. 

• Shallow CNN and deep CNN[22] use temporal and spatial 

convolution layers to extract MI features and output class 

predictions with a dense layer. Codes adopted from 

https://github.com/TNTLFreiburg/braindecode. 

• C2CM[36] takes the envelope of FBCSP filtered signals as 

input and utilizes convolutional layers to learn temporal and 

spatial information. As we do not have access to the source 

code, we reimplemented this method following the original 

paper. 

• FBCNet[39] employs a multiview data representation 

followed by spatial filtering to extract spectra-spatially 

discriminative features. We adopted their codes from 

https://github.com/ravikiran-mane/FBCNet. 

3) Domain adaptation methods: domain adaptation methods 

include OTDA, CCSP, RPA and DRBDA 

• OTDA[45] first builds a CSP-based decoding model on 

source data and then transports the new training data with 

their optimal transport pipeline to calibrate the model. The 

codes are adopted from https://github.com/vpeterson/otda-

mibci. 

• CCSP[29] extracts a spatial filter with weighted summed 

covariance metrics from different subjects. It is adopted from 

the MNE toolbox. 

•RPA[30] applies recentering, stretching and rotation to the 

covariance metrics from different subjects and makes 

predictions with minimum distance to mean classifiers. We 

adopt the source code from 

https://github.com/plcrodrigues/RPA. 

• DRBDA[44] extracts features with convolutional layers and 

utilizes GAN-based adversarial domain adaptation to push 

the feature extractor to learn common features. A center loss 

is adopted to further align the feature distribution. We 

reimplemented this method following the original paper. 

For traditional methods, including SPD, CSP, FBCSP, RPA, 

CCSP and OTDA, a time segment of 0.5 s to 2.5 s after the onset 

of the visual cue is used according to Ang’s study [31]. For deep 

learning methods, including EEGNet, shallow CNN, deep CNN, 

FBCNet, DRBDA and our method, an exponential moving 

average is adopted to reduce the nonstationarity of the EEG 

signal. The decay factor is 0.999. The time segment from 0.5 s 

before to 4 s after the onset of the MI task is used according to 

Schirrmeister’s study [22]. For C2CM, which uses CSP filtered 

signals and convolutional layers, a time segment from 0 s to 4 s 

after the onset of the visual cue is used according to the original 

paper [36]. 

C. Comparison experiment 

We evaluated the decoding accuracy of the proposed method 

TABLE I CLASSIFICATION ACCURACY OF DIFFERENT ALGORITHMS WITH 

DIFFERENT NUMBER OF TRAINING BLOCKS ON SESSION 1 OF DATASET 2A OF 

BCI COMPETITION IV (IN PERCENTAGE %, ‘*’, ‘**’ REPRESENTS COMPARED 

WITH OUR METHOD P<0.05 AND P<0.01 RESPECTIVELY) 

method 

Training data amounts (blocks) 

1 2 3 4 5 

SPD 55.57 ** 58.80 ** 60.52 ** 61.42 ** 61.38 ** 

CSP 54.50 ** 57.54 ** 58.95 ** 59.03 ** 60.11 ** 

FBCSP 53.24 ** 63.74 ** 66.86 ** 70.62 * 71.84 * 

EEGNet 31.99 ** 42.26 ** 51.65 ** 57.18 ** 58.02 ** 

Shallow CNN 51.87 ** 60.23 ** 66.41 ** 70.31 ** 70.99 ** 

Deep CNN 42.85 ** 52.57 ** 60.01 ** 62.75 ** 65.93 ** 

C2CM 52.46 ** 60.10 ** 66.80 * 69.00 * 71.76 * 

FBCNet 50.91** 62.22** 67.19* 70.99 71.95* 

RPA 52.84 ** 54.95 ** 57.52 ** 58.41 ** 59.57 ** 

CCSP 55.20 ** 58.15 ** 59.41 ** 60.57 ** 60.69 ** 

DRBDA 55.96 ** 58.76 ** 61.91 * 67.09 ** 69.06 ** 

OTDA 45.51 ** 47.13 ** 46.91 ** 46.76 ** 47.05 ** 

ours 64.84 69.92 73.01 74.61 76.62 

 
TABLE II CLASSIFICATION ACCURACY OF DIFFERENT ALGORITHMS WITH 

DIFFERENT NUMBER OF TRAINING BLOCKS ON SESSION 2 OF DATASET 2A OF 

BCI COMPETITION IV (IN PERCENTAGE %, ‘*’, ‘**’ REPRESENTS COMPARED 

WITH OUR METHOD P<0.05 AND P<0.01 RESPECTIVELY) 

method 

Training data amounts (blocks) 

1 2 3 4 5 

SPD 59.03 ** 62.55 ** 63.72 ** 64.66 ** 64.89 ** 

CSP 56.18 ** 59.36 ** 61.01 ** 61.00 ** 61.19 ** 

FBCSP 55.73 ** 64.79 ** 67.90 * 69.68 ** 71.99 * 

EEGNet 33.02 ** 47.29 ** 54.58 ** 59.63 ** 64.04 ** 

Shallow CNN 53.24 ** 62.12 ** 67.57 ** 70.93 ** 73.26 ** 

Deep CNN 45.46 ** 57.15 ** 62.41 ** 67.80 ** 67.55 * 

C2CM 55.98 ** 65.37 ** 69.71 ** 71.55 ** 72.03 ** 

FBCNet 52.65 ** 64.44 ** 69.16 * 72.22 * 74.42 

RPA 55.43 ** 57.89 ** 59.39 ** 61.00 ** 61.07 ** 

CCSP 56.67 ** 60.17 ** 61.59 ** 62.25 ** 61.73 ** 

DRBDA 54.55 ** 59.18 ** 61.86 ** 67.23 ** 69.64 ** 

OTDA 47.44 ** 47.19 ** 48.08 ** 48.90 ** 48.63 ** 

ours 66.19 70.98 74.11 76.29 77.70 
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by comparing existing methods on each session (each day) from 

dataset 2a and the MI-2 dataset. For each session of dataset 2a, 

we use one, two, …, five blocks of data from the target subject 

as the training set. The remaining data are taken as the test set. 

Data from the source subject are also used for training our 

models. For each amount of training data, we perform six runs 

of experiments using repeated K-folder cross validation. For 

each folder, a part of the data in the training set are used as 

validation data. 

Table I shows the averaged decoding accuracies of different 

methods with different amounts of training data from the target 

subject in the first session of dataset 2a. The two-way repeated-

measures ANOVA showed significant main effects of different 

methods and training data amounts on decoding performance as 

well as a significant interaction effect between the two factors 

(all: p<0.001). With each amount of training data, our method 

achieves the best performance among all compared methods. 

With one block of training data, the Riemannian geometry-

based method achieves the best accuracy among traditional 

methods, and C2CM gains the best accuracy among deep 

learning-based methods. CCSP, a CSP-based TL method, is 

higher than CSP. DRBDA, a deep domain adaptation method, 

obtains higher decoding accuracy than all compared methods. 

This indicates that domain adaptation can improve MI decoding 

performance. Our method achieves a decoding accuracy of 

64.84%, which is 8.88% higher than that of DRBDA (p<0.01). 

Post hoc tests show that our method significantly outperforms 

each compared method (p<0.01). With two blocks of training 

data, the decoding accuracy of FBCSP is 63.74%, which is 

better than that of the other compared methods. This suggests 

that FBCSP is still a very competitive MI decoding method. 

With each kind of data amount, our method obtains 

significantly higher results than the best compared methods (p 

< 0.05). Except for FBCNet with four blocks of training data (p 

= 0.052). These results indicate that our method improves the 

MI classification performance. Table II summarizes the 

comparison results in session two of dataset 2a. It shows similar 

results to Table I. Our method achieves better performance than 

the best compared method (p ≤ 0.05) with each data amount. 

Except for FBCNet with five blocks of training data (p = 

0.0501). Specifically, with one block of training data, our 

method improves the accuracy by up to 7.16% compared with 

TABLE III CLASSIFICATION ACCURACY OF DIFFERENT 

ALGORITHMS WITH DIFFERENT NUMBER OF TRAINING BLOCKS 

ON MI-2 DATASET (IN PERCENTAGE %, ‘*’, ‘**’ REPRESENTS COMPARED 

WITH OUR METHOD P<0.05 AND P<0.01 RESPECTIVELY) 

method 

Training data amounts (blocks) 

1 2 3 4 5 

SPD 53.89 54.52 ** 55.18 * 55.07 ** 57.03 * 

CSP 54.56 55.23 ** 57.57 57.40 * 58.97 * 

FBCSP 52.25 ** 53.62 ** 55.58 * 56.03 * 56.53 * 

EEGNet 50.63 ** 52.13 ** 54.07 ** 55.20 ** 56.00 ** 

Shallow CNN 55.09 57.91 58.59 59.73 60.97 

Deep CNN 52.26 ** 53.78 ** 55.21 ** 55.42 ** 58.20 ** 

C2CM 52.45 * 54.94 ** 56.33 * 55.10 * 56.12 * 

FBCNet 51.31 ** 54.47 ** 55.52 ** 57.70 * 57.57 * 

RPA 54.35 54.67 ** 54.76 ** 54.75 ** 57.10 * 

CCSP 54.51 55.10 ** 56.86 * 57.15 * 59.20 * 

DRBDA 55.37 57.41 ** 58.23 59.17 * 60.13 

OTDA 51.31 ** 51.72 ** 51.60 ** 53.13 ** 52.63 ** 

ours 56.58 59.23 59.77 60.82 62.07 

 

TABLE IV ABLATION STUDY RESULTS ON THE FIRST SESSION OF DATASET 2A OF BCI COMPETITION IV (IN PERCENTAGE %, ‘*’, ‘**’ REPRESENTS 

COMPARED WITH MODEL 7 P<0.05 AND P<0.01 RESPECTIVELY) 

Model ADV FB ATT SRC t1 t2 t3 t4 t5 t6 t7 t8 t9 mean 

1   
  

58.82 36.39 68.82 39.79 32.43 31.81 74.51 69.44 58.19 52.25 ** 

2   
 

√ 66.74 38.54 75.63 42.71 37.01 41.25 75.42 73.54 62.57 57.04 ** 

3 √  
 

√ 64.65 37.36 74.86 45.83 42.57 36.53 74.24 73.68 65.14 57.21 ** 

4  √ 
  

69.51 45.49 70.35 50.97 50.35 41.88 75.28 75.49 64.58 60.43 ** 

5  √ 
 

√ 75.00 41.53 73.96 49.03 47.92 42.78 77.99 80.07 67.85 61.79 ** 

6 √ √ 
 

√ 75.35 45.28 77.22 54.17 53.82 44.24 78.96 79.72 69.58 64.26 * 

7 √ √ √ √ 75.83 45.42 78.96 55.07 54.51 44.44 79.86 79.03 70.42 64.84 

 
TABLE V ABLATION STUDY RESULTS ON THE SECOND SESSION OF DATASET 2A OF BCI COMPETITION IV (IN PERCENTAGE %, ‘*’, ‘**’ REPRESENTS 

COMPARED WITH MODEL 7 P<0.05 AND P<0.01 RESPECTIVELY) 

Model ADV FB ATT SRC t1 t2 t3 t4 t5 t6 t7 t8 t9 mean 

1   
  

66.39 38.06 69.51 52.22 32.99 37.57 69.44 67.78 73.89 56.43 ** 

2   
 

√ 73.54 35.35 71.74 51.39 31.25 41.94 68.89 67.08 75.42 57.40 ** 

3 √  
 

√ 75.00 38.75 75.69 53.96 35.83 41.60 67.92 70.83 78.26 59.76 ** 

4  √ 
  

73.06 43.89 68.61 58.26 42.85 44.17 74.58 71.46 76.94 61.54 ** 

5  √ 
 

√ 78.68 44.03 75.90 58.13 40.00 43.19 79.10 73.68 79.65 63.60 ** 

6 √ √ 
 

√ 79.24 47.85 76.18 62.71 47.22 43.82 81.11 74.86 80.76 65.97 

7 √ √ √ √ 79.03 47.15 77.57 64.03 45.42 44.93 82.15 74.24 81.18 66.19 
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the best comparing method. The comparison results on the MI-

2 dataset show that our method obtains the best performance 

(Table III). Therefore, the proposed method outperformed non-

domain adaptation methods and domain adaptation methods on 

datasets 2a and MI-2. 

Bland–Altman (BA) analysis shows that the proposed 

method’s classification accuracies with one and two blocks of 

training data from the target subject are similar to those of the 

best compared method with one more block of training data 

(one block vs. two blocks: ours vs. FBCSP (Table I), p=0.250; 

ours vs. C2CM (Table II), p=0.294; ours vs. shallow CNN 

(Table III), p=0.068; two block vs. three blocks: ours vs. 

FBCNet (Table I), p=0.091; ours vs. C2CM (Table II), p=0.212; 

ours vs. shallow CNN (Table III), p=0.285). Moreover, our 

model trained on three blocks of data achieves similar 

classification results with the best compared method trained 

with five blocks (ours vs. FBCNet (Table I), p= 0.276; ours vs. 

FBCNet (Table II), p=0.423; ours vs. shallow CNN (Table III), 

p=0.222). Therefore, our method can reduce the need for 

training data for at least one block on both dataset 2a of the BCI 

Competition IV and MI-2 datasets. 

D. Ablation study 

We conduct an ablation study to evaluate the effectiveness of 

utilizing source data, domain adaptation framework, filter bank 

and attention network. Table IV shows the comparison results 

on one block of training data from session one of dataset 2a. Six 

folder cross validation is conducted. Model 1 is our basic 

feature extractor-classification network trained with one target 

subject’s data. Model 2 is our basic network trained with data 

from both target and source subjects. 

One-way repeated-measures ANOVA revealed a significant 

effect of different models (p<0.001) on the decoding accuracy. 

The classification accuracy of our basic network trained with 

both target and source data (model 2) is significantly higher 

than that of the basic network trained with only target data 

(model 1) (p < 0.05). After adopting the filter bank strategy, the 

performance of the network trained with both target and source 

data (model 5) is not different from that trained with target data 

(model 4) (p=0.136). This indicates that data from source 

subjects are not helpful for the classification performance of our 

filter bank network. 

With the filter bank strategy, our basic network trained with 

target data (model 4), our basic network trained with target and 

source data (model 5) and our basic network with adversarial 

domain adaptation (model 6) perform better than those without 

the filter bank (models 1, 2, and 3) (p<0.01). This indicates that 

the filter bank can effectively increase the model performance. 

Moreover, our domain adaptation method can enhance 

decoding performance (model 6 vs. model 5, p<0.01). 

Furthermore, the network after adding the attention network 

improves decoding accuracy (model 7 vs. model 6, p<0.05) and 

achieves the best accuracy. In summary, each part of our model 

has a significant impact on the decoding performance. 

Table V and Table VI show the ablation study results on 

session two of dataset 2a and the MI-2 dataset. For MI-2 dataset, 

only the mean results are presented. Accuracy for each subject 

is presented in the Supplementary Information. 

E. Visualization results 

We applied t-distributed stochastic neighbor embedding (t-

SNE) to explore the effect of our adversarial training method. 

Fig. 2 shows an example from one target subject and the 

corresponding source subject with one block of training data 

from the target subject. All data of the target subject and all data 

of the source subject are plotted. Fig. 2 (a) is the distribution of 

raw data. Either the source domain and target domain or 

different classes have maximum overlap. Fig. 2 (b) shows that 

features extracted by our basic feature extractor network trained 

without adversarial training are separated into clusters. 

However, the distribution between the two domains does not 

overlap well. There exists an obvious distribution gap. Fig. 2 (c) 

shows the distribution of features extracted by the model trained 

with our domain adaptation method. The distribution between 

the two domains is more consistent. The distribution of samples 

from the same class between different domains is closer. We 

Fig. 2. Visualization of data distribution. Figure (a) is the distribution of raw EEG data. Figure (b) is the distribution of feature extracted by our model without 

domain adaptation. Figure (c) is the feature extracted by our model with domain adaptation. 

TABLE VI ABLATION STUDY RESULTS ON MI-2 DATASET (IN 

PERCENTAGE %, ‘*’, ‘**’ REPRESENTS COMPARED WITH MODEL 7 

P<0.05 AND P<0.01 RESPECTIVELY) 

Model ADV FB ATT SRC mean 

1   
  

55.58 

2   
 

√ 55.22 ** 

3 √  
 

√ 56.03 

4  √ 
  

56.28 

5  √ 
 

√ 56.04 

6 √ √ 
 

√ 56.38 

7 √ √ √ √ 56.58 
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observed that samples from different classes were separable. 

These results demonstrate that our adversarial training 

framework can effectively align the target and source 

distributions. 

We further visualize the band weights output by our proposed 

attention network to explore how the attention network works 

for MI decoding. Fig. 3 shows the average band weights of one 

run from the test set of a target subject. The model is trained 

with one block of target data and all data from the 

corresponding source subject. We can see large weights for 

alpha and high-beta bands, which is consistent with the EEG 

response during MI tasks. This reveals that EEG data in these 

frequency bands provide useful information for classification. 

Additionally, the whole frequency band (4-38 Hz) attains large 

weights. Moreover, the different classes are slightly different 

from each other. At 8-14 Hz, left- and right-hand MI tasks have 

larger weights than feet and tongue MI tasks. In 4-38 Hz, the 

feet and tongue tasks receive larger weights. These results 

indicate that the attention mechanism can adaptively assign 

different weights to each frequency band based on different 

input samples. 

F. Source selection 

In this study, one source subject is necessary to train our 

DWFBDA model. We select 𝑚𝑠 best subjects as the source set 

(𝑚𝑠 = 1,2,3, … ,8) and then choose one best fitted subject from 

the source set as the final source subject. Fig. 4 displays the 

classification accuracy of our method for different source sets. 

Repeated-measures ANOVA shows a significant effect of 

different strategies on accuracy (p<0.05). The classification 

accuracy is the worst when the source subject is randomly 

selected. This indicates that the source selection strategy is vital 

for decoding performance. With the source selection strategy, 

the averaged decoding accuracy increased gradually from one 

to five best sources and became stable from the five best 

sources. Therefore, the source set with five optional source 

subjects is used for training the domain adaptation model. 

V. DISCUSSION 

In this study, we proposed a dynamic weighted filter bank 

domain adaptation framework to classify MI tasks through 

already collected data from the source subject and a small 

amount of data from the target subject. Our study focuses on a 

training model with less training data. In our experiment, we 

test the model performance with different amounts of training 

data. Our method outperforms the compared MI decoding 

methods on dataset 2a of the BCI competition IV and MI-2 

datasets. Additionally, our method can achieve similar MI 

decoding performance with one fewer block of training data. 

A. The proposed DWFBDA network 

Our framework consists of three models: a filter bank 

strategy, a dynamic weight model based on an attention 

network and a WGAN-based adversarial training network. The 

filter bank strategy has been proven to be effective in many 

traditional EEG decoding methods[31, 54]. Particularly, in MI 

tasks, FBCSP, which combines CSP and filter bank strategy, 

shows a great improvement on MI classification tasks 

compared to CSP. In this study, the filter bank strategy is 

adopted in our MI decoding model. Ablation experiments show 

that the filter bank can effectively improve the decoding 

accuracy (Table IV). This may be because the filter bank can 

mine information from multiple frequency bands thoroughly 

and ensemble multiband results. It is worth mentioning that the 

filter bank strategy is also efficient for decoding SSVEP signals. 

Traditional CCA focuses on fundamental frequencies, while 

FBCCA can focus on not only fundamental frequencies but also 

high harmonic frequencies. FBCCA grasps more useful 

information for decoding. In addition, FBCCA benefits from 

the advantage of ensemble learning and fuses the prediction 

results from all frequency bands[55]. 

Generally, bandpass filters and 1-dimensional convolutional 

layers both conduct convolution operations on a temporal 

sequence. However, their parameters were obtained in different 

Fig. 3. Visualization of band weights that output by our proposed attention 

model 

Fig. 4. Decoding accuracy of different source selection strategy. For 

horizontal axis, ‘random’ refers to case where source subject is randomly 
selected and numbers indicate how many optional source subjects is used. 

‘*’ indicate that in paired t-test p<0.05. 

Fig. 5. Decoding accuracy with different amount of source data blocks. ‘*’, 

‘**’ indicate that in paired t-test p<0.05 and p<0.01respectively. 
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ways. The coefficients of the bandpass filters are computed 

through specific methods, such as the Butterworth method[56] 

and Chebyshev[57] method, while the coefficients of the 1-D 

convolutional layers are learned from the training data in a data-

driven manner. Some DL-based MI decoding methods, for 

example, shallow CNN and EEGNet, employ a temporal 

convolutional layer to simulate the performance of bandpass 

filters[22]. However, these temporal filters in CNN-based 

decoding models may extract time patterns and can hardly learn 

to mimic bandpass filters. Thus, they have difficult mining 

information from different frequency bands. In our framework, 

we explicitly deploy a filter bank and push the network to 

extract features from multiple frequency bands. Therefore, our 

framework is more capable of mining multiband information. 

We proposed a WGAN-based domain adaptation network to 

utilize source data from the other subject to support the training 

of the decoding model for the target subject. Ablation study 

shows that our domain adaptation network significantly 

enhances the decoding performance. Furthermore, visualization 

of the feature distribution shows the effectiveness of our 

domain adaptation network. The advantage of our domain 

adaptation network depends on two aspects: the Wasserstein 

distance and domain adaptation separately applied for each 

class. In our case, MI EEG data have a large distribution gap 

between subjects. As shown in Fig 2 b, the distribution between 

two subjects could be very different and have no overlap for 

some classes. Additionally, we only use a small amount of data 

from one target subject, which further increases the risk that 

distribution mismatches. Compared with GAN, WGAN can 

measure distribution differences even when two distributions 

have no overlap by the Wasserstein distance[46]. Thus, WGAN 

is suitable for our case and better aligns the distributions. The 

second advantage of our domain adaptation network is that we 

align the distribution for each class separately. Even when the 

marginal distribution has been well aligned, it is difficult to 

train a classifier that can discriminate classes well for both 

subjects with a large conditional distribution difference. Thus, 

we draw the distribution between EEGs of two subjects for each 

class separately to align the conditional distribution between the 

target and source. Therefore, with domain adaptation for each 

class in our framework, source data can assist the training of the 

decoding model for the target subject effectively and enhance 

the decoding performance. 

B. Difference between our method and compared methods 

In our experiments, FBCSP and FBCNet achieved the best 

decoding accuracy among traditional methods and deep 

learning-based methods, respectively. Both methods adopted 

filter bank. This shows that the filter bank is a powerful tool in 

MI-BCI that helps the model to better explore the frequency 

information. However, both FBCSP and FBCNet did not 

achieve the best decoding accuracy with one block of training 

data. This may be because that many training data are needed 

to fully take advantage of the filter bank. Our domain adaptation 

method utilizes the existing training data from a source subject, 

thus allowing us to take advantage of filter bank with limited 

training data from the target subject. 

We compared four domain adaptation methods, including 

RPA, CCSP, DRBDA, and OTDA.  Thereinto, OTDA, 

originally proposed on the cross-session domain adaptation of 

MI, did not achieve a similar high decoding accuracy in our 

experimental setting. This may be caused by the large 

difference of the CSP matrix between different people. OTDA 

could work better in a cross-session domain adaptation 

paradigm rather than a cross-subject domain adaptation 

paradigm. 

CCSP, RPA and OTDA focus on the spatial features of EEG 

signals and ignore the temporal features. DRBDA, a deep 

learning-based domain adaptation network, extracts deep 

representations of EEG signals from both spatial and temporal 

perspectives. The experimental results show that DRBDA 

generally achieves a better decoding accuracy than CSP, RPA 

and OTDA. Compared with DRBDA, our method uses a class-

specific domain adaptation that can align the conditional 

distribution of the target and source, while DRBDA only algins 

the marginal distribution. We use WGAN-based adversarial 

domain adaptation, which works better when training data are 

limited. In addition, we adopt a filter bank and a dynamic 

weight model to fully explore the frequency information that 

lies in the EEG signal. Therefore, our method obtains higher 

decoding accuracy, especially when the training data are short. 

C. Effect of the amount of source data 

In our experiments, we used all available data from the 

source subject to train our proposed model. To investigate the 

effect of the amount of data from the source subject on the 

performance of our model. We conduct the following 

experiment using one block of target data and different amounts 

of source data (one, two, three…six blocks) to train our model. 

The rest of the target data are used as test data. The decoding 

accuracy is shown in Fig. 5. Repeated-measures ANOVA 

revealed that the amount of source data had a significant main 

effect on the classification accuracy (p<0.001). Classification 

accuracy increases as source data increase from one block to 

three blocks (both p<0.05), increases but not significantly from 

three blocks to four blocks (p=0.15) and significantly increases 

from four to five blocks (p<0.01). When increasing the source 

data from five blocks to six blocks, the decoding accuracy only 

increases by 0.3% (p=0.259). These results show that decoding 

accuracy reaches a relatively stable level when source data 

reach five blocks. In our comparative experiments, using six 

blocks of source data is sufficient for training our domain 

adaptation model. 

D. Simulated online experiment 

We use cross validation in our experiments to fully exploit 

the dataset and evaluate the proposed method. Cross validation 

has also been adopted by many MI decoding studies [23, 33, 34]. 

However, the EEG signals of MI tasks also suffer from 

nonstationarity over time. EEG signals from the same block or 

session may share similar patterns. Cross validation will ignore 
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time nonstationary problems and may result in higher decoding 

accuracy. To test whether our proposed method works well in a 

real application situation, we also perform the following 

experiment. We select the first 48 samples of each target subject 

from session 1 of dataset 2a as target training data, and the rest 

of the samples are taken as test data. In this manner, we simulate 

the situation where a new target subject comes to use the BCI 

system, and we collect only a small amount of training data for 

this subject. The average decoding accuracy is 62.36%. Indeed, 

this is lower than the cross validation accuracy on session 1 of 

dataset 2a, but it is still significantly higher than the cross 

validation accuracy of all compared methods (paired t test, all p 

< 0.05) (Table I). This suggests that our proposed method may 

work well in real MI-BCI application scenes. 

E. Effect of frequency range selection 

The selection of frequency range is important in MI 

decoding. Although the main EEG response of MI lies in the 

alpha and beta bands, mostly from 8-30 Hz, frequency bands 

near 8-30 Hz also contain some valuable information for 

decoding[50-52]. We compare the performance of two frequency 

bands (8-30 Hz and 4-38 Hz) through our method, FBCNet (the 

best deep learning method among the compared methods), and 

DRBDA (the best transfer learning method among the 

compared methods) on session one of dataset 2a. The results are 

presented in table VII. 

The three-way repeated-measures ANOVA showed 

significant main effects of method (p<0.01), data amounts 

(p<0.01) and frequency (p<0.05) on decoding performance. For 

FBCNet, the decoding accuracy between the two frequency 

bands is not significantly different with each amount of training 

data. For DRBDA, decoding accuracy between two frequency 

bands is only significantly different with four and five blocks 

of training data (4-38 Hz > 8-30 Hz, p<0.05). Our method 

obtains significantly better decoding accuracy in the frequency 

range of 4-38 Hz than 8-30 Hz with each data amount (all 

p<0.05). Therefore, it is feasible for our proposed method to use 

a filter range of 4-38 Hz. This is because we use a filter bank 

and an attention network to automatically assign weights for 

different frequency bands. Our network is more capable of 

capturing information from a wider frequency range. 

In addition, when using the 8-30 Hz frequency band, our 

method still achieves significantly better decoding accuracy 

than DRBDA with each amount of training data (all p<0.05). 

Our method achieves significantly better decoding accuracy 

than FBCNet with one, two, three and five blocks of training 

data (all p<0.05). Our method tends to achieve better decoding 

accuracy than FBCNet (p=0.08) with four blocks of training 

data. 

F. Future works 

Although our proposed method enhanced the decoding 

accuracy of MI-BCI with a short amount of training data, the 

decoding accuracy was still relatively low. There is still much 

work to do to realize a convenient and practical MI-BCI. First, 

future work should propose an algorithm to adaptively update 

the model parameters with online EEG data to prevent the 

performance decline of the decoding model over a long period 

of time. Second, in future studies, we could employ multimodal 

recordings, such as EEG and fNIRS, in combination with deep 

learning methods to further improve the decoding performance 

of MI-BCI. 

CONCLUSION 

In this paper, we proposed a dynamic weighted filter bank 

domain adaptation framework to improve the classification 

accuracy for MI-BCIs. Experiments on both the public dataset 

and self-collected dataset demonstrate that our method could 

achieve the best performance with the same amount of training 

data compared with existing methods. In particular, our method 

enhances the decoding accuracy when the target subject has 

only one block of training data. This study indicates that our 

method can enhance MI decoding performance with a short 

calibration time. 
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