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Abstract: The convolution operation possesses the characteristic of translation group equivariance. To achieve more group equivari-
ances, rotation group equivariant convolutions (RGEC) are proposed to acquire both translation and rotation group equivariances.
However, previous work paid more attention to the number of parameters and usually ignored other resource costs. In this paper, we
construct our networks without introducing extra resource costs. Specifically, a convolution kernel is rotated to different orientations for
feature extractions of multiple channels. Meanwhile, much fewer kernels than previous works are used to ensure that the output channel
does not increase. To further enhance the orthogonality of kernels in different orientations, we construct the non-maximum-suppression
loss on the rotation dimension to suppress the other directions except the most activated one. Considering that the low-level-features be-
nefit more from the rotational symmetry, we only share weights in the shallow layers (SWSL) via RGEC. Extensive experiments on mul-
tiple datasets (i.e., ImageNet, CIFAR, and MNIST) demonstrate that SWSL can effectively benefit from the higher-degree weight shar-
ing and improve the performances of various networks, including plain and ResNet architectures. Meanwhile, the convolutional kernels

and parameters are much fewer (e.g., 75%, 87.5% fewer) in the shallow layers, and no extra computation costs are introduced.
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1 Introduction

Convolutional neural networks (CNNs)lll have de-
veloped rapidly in the past two decades. In various tasks
of computer vision, including classificationl?, detection3],
and semantic segmentation¥, CNNs have achieved excel-
lent performance. CNNs have translation group equivari-
ance and share weights in different positions. Compared
to fully-connected networksPl, CNNs have significantly
higher parameter efficiency due to weight sharing, and
can better resist the influence of translation, thus achiev-
ing better performance. Inspired by this, we aim to
achieve better performance with an even higher degree of
parameter efficiency(6-8l.

In 2016, Cohen and Welling® proposed group
equivariant convolutional neural networks(G-CNNs). It
extended the translation group equivariance of tradition-
al convolutions to more group equivariances (e.g., rota-
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tion group equivariance, mirror group equivariance).
When changing the sampling grids of a kernel, the shape
of the kernel will be irregular. It results that G-CNN can
only work on square lattices (i.e., rotation angles of im/2)
and therefore is limited in rotational symmetries. In or-
der to exploit more symmetries, some methods design
special convolutions such as the steerable filter CNNs
(SFCNN)I0l general E(2)-equivariant steerable CNNs
(E2CNN)[M, and partial differential operator based
equivariant convolutions (PDO-eConvs)l2l. They com-
bined some basic kernels (e.g., Gaussian radial profiles,
partial differential operators) and conducted rotation by
changing the weights of the basic kernels. However, these
indirect approaches increase the difficulty of applying
them to ordinary networks.

Furthermore, previous approaches paid more atten-
tion to the number of parameters, often introducing more
computational costs. Most previous works, such as G-
CNNs, SFCNN, E2CNN and PDO-eConvs, rotated each
convolution kernel to multiple orientations. As a result,
they consumed much more computational costs under the
same parameters. Especially for SFCNN, E2CNN and
PDO-eConvs, they combined some base kernels to gener-
ate final kernels in convolution operations. The size of the
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base kernel is lager than the conventional kernel (7x7 or
9x9 for SFCNN and E2CNN, 5x5 for PDO-eConvs).
Thus, each convolution operation will consume more com-
putational costs than the conventional convolution with
the same parameters.

This paper exploits and explores a novel method to
take more advantage of the rotation group equivariant
convolution (RGEC). In addition to improving the effi-
ciency of the network parameters, we also ensure that no
additional computational burden is introduced. To this
end, we keep the output channels of the RGEC the same
as those in the ordinary convolutions, rather than increas-
ing the output channels to keep the number of paramet-
ers alike. Therefore, no computing resources are in-
creased, whereas the kernels and parameters are much
fewer. To avoid introducing extra computational cost, we
construct an arbitrary shape convolution, which can ro-
tate the convolution kernels directly and conveniently.
Considering that the RGEC is more efficient for the low-
level features, we construct networks that share weights
of different orientations only in shallow layers. With fewer
parameters and no extra computational burdens, a non-
maximum-suppression loss on the orientation dimension
is designed and added to improve performance. Extens-
ive experiments demonstrate that sharing weights for dif-
ferent orientations in the shallow layers can improve the
performance with fewer parameters and no extra compu-
tations when utilizing a drop-in replacement for conven-
tional convolutions.

2 Related work

2.1 Convolutional neural networks

Unlike fully-connected neural networksl: CNN shares
weights in different positions, so that it can achieve bet-
ter performance with fewer parameters in many com-
puter vision tasks. LeNet-5[ introduced the convolution
layer to neural networks, which initiated extensive re-
search on convolution neural networks. After that, more
complex and deeper CNNs such as AlexNet[13l, VGGI[4],
GoogleNet[!5], ResNet[l8l and Densenet(l7 are proposed
and achieved state of the art in image classification[!8],
detection(1924 semantic segmentation[2>27], etc.

2.2 Rotation group equivariant convolu-
tion

CNN owns the property of the translation group
equivariance. To extend the equivariancel?®l to a larger
group[?d, RGEC was proposed® 30, 31, Some works ob-
tained rotation-invariant by rotating input images32 331,
These methods cannot benefit from the rotational sym-
metriesB4 of features. G-CNNsl used a rotation group
convolution to exploit rotation symmetries of features and
enjoy a higher degree of weight sharing. Due to the irreg-
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ular shape of the convolution kernels35 36, G-CNNs can
only work on square lattices and achleve 4-orientation
symmetries. To exploit more symmetries, SFCNN[9 and
PDO-eConvsl'2 designed special convolution kernels com-
posed of some basic kernels. They rotated the whole ker-
nel by indirectly changing the weights of basic kernels.

3 Methodology

CNNs have much higher parameter efficiency than
fully connected networks and achieve better performance
in various tasks. According to Occam’s RazorB7 fewer
parameters will take less generalization risk. To further
improve the parameter efficiency, we incorporate the

RGEC into the existing neural architectures.

3.1 Review of rotation group equivariant
convolution

As defined in G-CNNUI, group equivariance satisfied:

O(Ty(f)) = Ty(2(f)) (1)

where T, is a transformation operation with group g, f is

the input, and & is the feature mapping function. For a
rotation group,

21

G =A{g0,91,++ s gn-1lgs =i~} (2)

Ty, (f),9: € G means rotating f with degree of g;. To

simplify it, we denote Ty, (f) as r(f), and Ty, (f) as r*(f),

which represents the 7(-) operation i times. For a general

convolution kernel k, when we rotate the feature map f
with g;, the convolution can be represented as

r(f)xk =t ()T (R) =0 (F TN (R) (3)

where r~‘(:) represents rotating the target with degree
—¢i, and * is convolution operation.

In order to obtain the rotation group equivariance as
well as share weights in different orientations, a kernel k

[0 (k),r* (k) -,

can be expanded to group kernels K =
r™~1(k)], the convolution process is

foK =[fxr0k), fxr'(k), -, f+r""(K)]. (4)

When we rotate the feature map f with degree g;, it
can be represented as

P K = (e (K) =
P T k), frrt T (R),
' (f % shift'(K)) =
r(shift'(f * K)) (5)

TR =

where shift'(-) is shifting the target cyclically by i
elements and shift'([z1, 72, -+, Zn]) = [Tn, T1,+ , Tn_1).
If we regard 7°(-) as Ty, (-), and r*(shift'(-)) as T}, (), the
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convolution with kernel K satisfies the group
equivariance on G.

For a subsequent convolution, we shift the feature
maps cyclically before the convolution in each orienta-
tion. Specifically, the group kernels are denoted as
K1 = [r%(k1),r*(k1),--- ,7" *(k1)], then the convolution

is defined as

Lshift™ ™D (2)xr™ (k)]

(6)

Easy to prove that it still satisfies the rotation group

Fr, ()= [shifto(:r)*ro(kl), e

equivariance on G when we stack multiple convolution
layers (see detail proof in Appendix):

Fie, (r'(f) * K) = r'(shift'(Fie, (f x K)))
Frk, (FKI (Tl(f) * K)) = Ti(Shifti(FKz (Fr, (f * K))))

(7)

Fig. 1 illustrates the posture relationship between ker-
nels in different layers. f means the input image. k means
the original convolutional kernel. r*(k) means rotating the
original kernel. K is the group kernel after a series of ro-
tations. After f* K, we can get a series of feature maps.
shift™" means changing the order of the feature maps
after convolution in the Previous layer. Fx, means the
convolution in the second layer, where K; is a series of
kernels rotated from the original kernel k;. One point of
the kernel in a deeper layer can be regarded as represent-
ing a whole kernel in its previous layer. To illustrate the
posture relationship, we replace the left-top point of the
kernel in the deeper layer with the whole kernel in the
previous layer. As Fig.1 shows, two stacked convolution
layers with rotation group equivariance can hold a stable
kernel posture relationship between layers. Among differ-
ent orientations, networks share the same parameters
with the same structure. As a result, the stacked RGEC
can maintain rotation group equivariance.

In the above description, only the convolution opera-

Kernel k£ in
the first layer

The posture
relationship
between k and k,

tion is discussed. In prevalent CNNs, the batch normaliz-
ation (BN) and rectified linear units (ReLU) layers are al-
ways indispensable. It can also be proved easily that the
ReLU operation has the characteristic of rotation group
equivariance. As for the BN layer, it can be equivariant
when it shares the parameters (e.g., mean, variance) in
different orientations.

3.2 Arbitrary shape convolution

As the convolution kernel is rotated, the shape of the
kernel becomes irregular. It has been found in many pre-
vious works that a special kernel is designed to avoid res-
ulting in an irregular kernel. However, the base kernels
are usually bigger than the original kernels, introducing
plenty of extra computations. In our approach, we pro-
pose an arbitrary shape convolution, therefore, the kernel
can be rotated directly without introducing base kernels.

For a convolution kernel, it can be represented as
,arn] and their cor-

P(k) = [(z1,91),
(z2,9y2), +* , (Tn,yn)] (see in Figs.2(c) and 2(d)). For ex-

weight parameters W (k) = [a1, a2, -

responding location recordings

ample, a general 3 x 3 kernel

ar az as
[a4 as aﬁ} (8)
ar as ag

can be represented as weight parameters [a1,az,: - ,ag]
and  corresponding recordings  [(—1,—1),
(0,—1),---,(1,1)] (central element as locates (0,0)). In

this way, the convolution kernel can be arbitrary shape.
Define:

location

Stack_py(f) = [S(—ar,—u) (F)s = 5 8(—am,—um) (N (9)

where s(_;,, —y,.)(f) denotes the shift of the input feature
maps —z, in dimension z and —y,, in dimension y (see in

*r! (k)

| f*K I

FK|(f*K) ]

Fig. 1 Posture relationship between kernels in different layers
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(@) (b)

(©
k)

(d)

Fig. 2  Arbitrary shape convolution

Fig.2 (d)). The element of kernel shifting P(k) is
equivariant to the feature maps shifting —P(k). Then the
convolution is (intuitive view in Fig. 2)

The two forms of convolution have the same paramet-
ers and computations.

When rotating a convolution kernel, its weights re-
main unchanged, and its locations multiply a rotation
matrix:

gU
—~
<
.
—~
N
~
=
Il

P(k) Ry, (11)

where R, is a rotation matrix with degree g;. Then the
convolution with rotated kernel is

frr'(k) = Stack_pgyr,, (f)* W (k). (12)

By this approach, the convolution kernel can be an ar-
bitrary shape. At the same time, the kernel can be conveni-
ently transformed (including rotation) by changing P(k).

3.3 Share weights in shallow layers

In shallow layers of networks, kernels are more likely
to share features in different orientations. For example,
edges in different orientations can share their weights as a
single kernel. Unlike previous methods which share
weights in all layers, we construct networks that only
share weights on shallow layers.

As shown in Fig. 3, the shallow layers are RGECs and
the deeper layers are traditional convolutions. In order to
induce the rotated kernel to be more sensitive to a specific
direction, an orientation dimension non-maximum-sup-
pression (NMS) loss is designed. The NMS loss will sup-
press the activation in all directions except the direction
with the largest activation. Formally, the NMS loss is
defined as the following:

Lyms =

i 3054y (A (5] # max{f{'[j], - fas 1) S 1]

n; X n;

(13)
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where f{[j] is a point in the last RGEC layer (after batch
normalization and ReLU operations), and ¢ indicates the
rotation dimension. Notably, n; is the total number of
points in the single orientation feature maps, and
n; = hpwrcr where hr, wr, and cr, are the height, width,
and kernel number, respectively.

b LNMS ;

Ldi.w:rim

Traditional convolution

Fig. 3 Sharing weights in shallow layers

Naturally, the final loss is defined as

L = Laiscrim + M Lnyms + AaL2 (14)

where Lgiscrim is the discriminative loss, and A1, A2 are
the coefficients of the Lyars and Lo, respectively. Lo is
the Lo regularization.

4 Experiments

We conducted experiments of both plain and ResNet
architectures on various datasets (i.e., MNIST, CIFAR,
ImageNet). Previous works with RGEC usually increase
the output channels to keep the number of parameters
alike. However, it will bring more computational burden.
In our experiments, we keep the output channels the
same as the baseline, as shown in Table 1. Therefore, no
extra computations are required and the parameters and
kernels are much fewer. Furthermore, to better compare
the effects of RGEC, we utilized a drop-in replacement
for conventional convolution.

Table 1 keeps the number of output channels in con-
ventional convolution and RGEC the same. In Table 1,
Conv is the conventional convolution, and RGEC is the
rotation group equivariant convolution. C,, is the num-
ber of output channels in the n-th layer, and we keep C,,
of Conv and RGEC the same. Orientation is the number
of orientations, and 7 is the orientations of RGEC that
we set. K, parameters, computations are the number of
kernels, parameters, and computations of the n-th layer,
respectively. When we keep C, of Conv and RGEC the

1
same, parameters and K, of RGEC are — of Conv, and
r

computations are the same.

4.1 MNIST

The MNIST database! of handwritten digits has a
training set of 60 000 examples and a test set of 10 000

! http://yann.lecun.com/exdb/mnist/
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Table 1 Detailed setting and resources of RGEC

Chn Orientation Kn Parameters Computations
Conv kn 1 kn X kn—1 X kn X kn—1 X kn
RGEC kn r kn Fn—1 Xkn o kn_1 X kn

T

T

examples, where the digits have been size-normalized and
centered in a fixed-size image. Training is performed on
28 x 28 images that have been shifted by up to 2 pixels in
each direction with zero padding. No other augmenta-
tion/deformation is used. The models are trained using
an stochastic gradient descent (SGD) optimizer with a
nesterov. momentum of 0.9. We set both A1 and o
(weight decay) as 0.0001. The models have trained 200
epochs with an initial learning rate of 0.1, divided by 10
at 130, 160, and 180 epochs, respectively.

Ordinary networks

Firstly, we evaluate our approach SWSL (share
weights on shallow layers) on MNIST via a CNN archi-
tecture. It contains 6 layers of 3 x 3 convolution for fea-
ture mapping, with 16, 16, 32, 32, 64, and 64 channels in
each layer, respectively. Each convolution layer is fol-
lowed by a batch normalization38] and ReLU functions/!3l.
The max-pooling layer is followed after every 2 layers.
Following the 6 feature mapping layers, a classifying lay-
er, and a global max-pooling layer map features to 10
classes. We replace 1 to 6 layers by rotation group convo-
lution with a basic degree of 27 /8.

As shown in Table 2, SWSL(4L) denotes that the first
i layers are replaced by RGECs with 8 orientations. The
kernel numbers of replaced layers are in bold. The re-
placed layers have only 1/8 kernels compared with ordin-
ary convolution. Due to parameter sharing, SWSL(3L)
can achieve an error of 0.35% (with Lnys), outperform-
ing the baseline (0.40%). SWSL(3L) only has 2, 2, 4 ker-
nels in the first three layers, while the baseline has 16, 16,
32 kernels. By sharing weights in shallow layers,
SWSL(1L, 2L, and 3L) can all outperform the baseline
with much fewer kernels.

Tiny networks

However, the results in Table 2 are based on a relat-
ively large network. The large network may be over-para-
meterized, which may benefit from parameter reduction.
To clarify this potential concern, we establish two tiny
networks. The first tiny network has three feature map-
ping layers with kernels of 16, 16, and 16, respectively
(Table 3). The second tiny network has 8, 16, and 32 ker-
nels, respectively (Table 3). For these two tiny networks,
the rotation group has 4 orientations. For baseline-1,
SWSL(2L) with kernels 4, 4, and 16 achieves the same er-
ror of 0.63% as the baseline with kernels 16, 16, and 16.
SWSL(1L) achieves 0.53% error (with Lyass), which out-
performs the baseline 0.1% error. For Dbaseline-2,
SWSL(2L) (0.57%) with kernels 2, 4, and 32 even per-

Table 2 Results of an ordinary network in the MNIST dataset.
The kernel numbers of the replaced layers are in bold.

Methods #Kernels Errors (with/without Lnms)
CNN 16,16,32,32,64,64 0.40%
SWSL(1L)  2,16,32,32,64,64 0.39%/0.40%
SWSL(2L)  2,2,32,32,64,64 0.38%/0.39%
SWSL(3L) 2,2,4,32,64,64 0.35%/0.42%
SWSL(4L) 2,2,4,4,64,64 0.47%/0.46%
SWSL(5L) 2,2,4,4,8,64 0.42%/0.50%
SWSL(6L) 2,2,4,4,8,8 0.44%/0.48%

Table 3 Results of tiny networks on MNIST dataset

Methods #Kernels Errors (with/without LNums)
CNN-tinyl  16,16,16 0.65%/0.63%
SWSL(1L)  4,16,16 0.53%,0.61%
SWSL(2L) 4,4,16 0.63%/0.66%
SWSL(3L) 4,4,4 0.81%/1.00%

CNN-tiny2 8,16,32 0.72%/0.61%

SWSL(1L) 2,16,32 0.52%/0.62%
SWSL(2L) 2,4,32 0.57%/0.71%
SWSL(3L) 2,4,8 0.77%/0.89%

forms slightly better than the baseline (0.61%) with ker-
nels 8, 16, and 32. SWSL(1L) (0.52%) outperforms the
baseline 0.09%. Although these two networks are small
enough, SWSL can still perform better with fewer kernels.
In each layer, the number of feature maps in SWSL is the
same as the baseline, and the computation cost is also the
same. By sharing the weights in different orientations, the
rotation group layers have 1/8 (8 orientations) or 1/4 (4
orientations) kernels and parameters that are different
from the layers in the baseline networks. Meanwhile, it
can improve the performance with fewer parameters by
sharing weights in shallow layers.

In Tables 1-3, the results with and without NMS loss
of SWSL are given, respectively. The NMS loss induces
kernels in each orientation to be more sensitive to a spe-
cific direction. Therefore, it can reduce redundancy in dif-
ferent directions. In general, SWSL with NMS loss can
achieve better performances in most networks (-0.01 to
0.19 lower errors). To demonstrate that the performance
increases are not from the regularization effect, we also
added the NMS loss on the baseline networks in Table 3.
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The NMS loss on the baseline is added on the first layer,
and every 4 feature maps are regarded as a group like
that in SWSL with 4 orientations. The results in Table 3
show that it cannot improve the performance of baseline
networks. In conclusion, the NMS loss can improve the
performance of SWSL, and the benefits do not come from
regularization effects.

4.2 Natural image classification

We also test our method on natural image datasets
such as CIFAR10, CIFAR100, and ImageNet. We re-
place the shallow layers with RGEC convolutions for
various architectures such as VGG[4 ResNetl!6]
SENet 39,

CIFAR? dataset consists of CIFAR10 composed of 10
coarse classes and CIFAR100 composed of 20 coarse
classes and 100 fine classes. Both CIFAR10 and CIFAR100
have 60000 32 x 32 color images, 50 000 and 10 000 of
which are for training and testing, respectively. For both
training and testing images, channel-wise normalization is
applied. Each image is shifted by up to 4 pixels for each
direction with zero padding and random cropped to
32 x 32 from the padded image or its horizontal flip.

ImageNet? large scale visual recognition challenge
(ILSVRC) contains over 1.2 million various-size images of
1 000 classes for training and 50 000 images for validation.
For both training and testing images, a channel-wise nor-
malization is applied. For each training image, it is ran-
domly cropped to 224x224 after randomly horizontally
flipped and resized with random scales and aspect ratios.
For each test image, the shorter size is resized to 256 and
a 224 x 224 center image is cropped for evaluation. As
time and computing resources are limited, we utilize 100
instead of 1 000 classes to test our approach.

Plain networks

The VGG16 has 16 convolution layers with kernels of 64,
64, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512, 512,
512, 512, and 512, and max pooling after 2, 4, 8, 12, and
16 layers. After the 16 feature mapping layers, a final layer
maps the features to 10 or 100 classes. In Table 4,
SWSL(1L) to SWSL(5L) replace the first 1 to 5 layers
with the rotation group convolutions with 4 orientations.
We still keep the output feature maps of each layer the
same between the baseline and SWSL so that the re-
placed layers reduce the parameters and do not increase
the amount of calculation. As shown in Table 4,
SWSL(3L)(6.61%) on CIFARI0 outperforms the baseline
(7.35%) with a 0.74% error lower. And in CIFARI100,
SWSL(5L)(26.43%) outperforms the baseline (27.51%)
with a 1.08% error lower. The SWSLs of 1L to 4L on CI-
FARI10 have lower errors (0.33% to 0.74% lower) than
the baseline, and the SWSL(5L) has slightly higher

2 http://www.cs.toronto.edu/kriz/cifar.html
3 http://www.image-net.org/challenges/LSVRC/
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errors of 0.04%. Except that SWSL(1L) has slightly high-
er errors (0.05% higher), all SWSLs on CIFAR100
achieve better performances (0.20% to 1.08% lower er-
rors).

Networks with shortcuts

Networks on both CIFAR and ImageNet datasets are
trained using SGD optimizer with nesterov momentum/4(]
of 0.9. We set both A\; (NMS loss) and A2 (weight decay)
as 0.0001. For CIFAR, the models have trained 200
epochs with an initial learning rate of 0.1, divided by 10
at 120, 160, 180 epochs, respectively. For ImageNet, the
models have trained 100 epochs with an initial learning
rate of 0.1, divided by 10 at 60 and 80 epochs, respect-
ively.

As shown in Table 5, we perform experiments on more
architectures and datasets. For ResNet[16l, SWSLs(1S) re-
place all layers (7, 11 and 37 layers for ResNet-20/32/110
on CIFAR, respectively; 5 and 7 layers for ResNet-18/34
on ImageNet, respectively) in the first stage with RGEC.
The replaced layers have only 4 kernels (16 in the
baseline) on CIFAR and 16 kernels (64 in the baseline)
on ImageNet with 4 orientations. Between the first and
second stages, a layer of 1 x 1 is inserted to mix the fea-
ture maps with different orientations. For fair comparis-
ons, ResNet’ is ResNet with an extra 1 X 1 layer between
the first and second stages, too. With the same amount of
computations and 25% parameters in the first stage,
SWSLs(1S) can still outperform both ResNets’' (0.10% to
0.86% lower errors) and ResNets (0.17 to 0.46% lower er-
rors) on CIFAR. On ImageNet, SWSLs(1S) can outper-
form both ResNets’ (0.26% and 0.28% lower errors for
ResNet-18/34', respectively) and ResNets (0.52% and
0.36% lower errors for ResNet-18/34, respectively). For
more architectures, VGG and SENet can also achieve
better performances by replacing shallow layers. All the
results demonstrate that shallow layers can benefit from
rotational symmetry.

4.3 Rotated MNIST

MNIST-rot-12k[4! contains 12 000 training images and
50 000 test images, which are rotated at a random angle
from the classical MNIST. For data preprocessing, we ap-
ply the channel-wise normalization and cutout operations.
We use a 6-feature-mapping-layer architecture, 10 ker-
nels (40 channels) each layer with 4 orientations. We set
the dropout rate to 0.2 at the last feature-mapping layer.
The model is trained by the Adam algorithml2 with a
weight decay of 0.01. The initial learning rate is 0.001
and is divided by 10 at 160 and 180 epochs (a total of 200
epochs). In Table 6, we use a similar architecture with G-
CNN, and the version without NMS loss achieves a simil-
ar error rate (2.24%) with G-CNN(2.28%). Adding the
proposed NMS loss (A1 = 0.0001) can achieve a lower er-
ror rate of 2.15%.
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Table 4 Results of VGG16 on CIFAR datasets

Methods #Kernels Errors (C10) Errors (C100)
VGG 64, 64, 128, 128, 256, 256, 256, 256, 512, -+, 512 7.35% 27.51%
SWSL(1L) 16, 64, 128, 128, 256, 256, 256, 256, 512, -+, 512 6.82% 27.56%
SWSL(2L) 16, 16, 128, 128, 256, 256, 256, 256, 512, ..., 512 6.79% 27.31%
SWSL(3L) 16, 16, 32, 128, 256, 256, 256, 256, 512, ---, 512 6.61% 26.82%
SWSL(4L) 16, 16, 32, 32, 256, 256, 256, 256, 512, -, 512 7.02% 26.83%
SWSL(5L) 16, 16, 32, 32, 64, 256, 256, 256, 512, -, 512 7.39% 26.43%

Table 5 Results on ImageNet(100 classes) and CIFAR datasets

Table 6 Results on MNIST-rot-12k

ImageNet Networks Errors Paras
Methods #Kernels (shallow Errors ScatNet-2 [43] 7.48% _
layers)
PCANet-2 [44] 7.37% -
ResNet-18 64, {64,64}X2 21.36% )
TIRBM [45] 4.2% -
ResNet-18’ 64,{64,64}x2 21.10% )
ese t y ° ORN-8(ORNAlign) [46] 2.25% 0.53M
16, {16,16}x2 .
SWSL(18) 116,16} 20.84% TI-Pooling [47] 2.2% 13.3M
ResNet-34 64, {64,64}X3 20.12% CNN 9] 5.03% 22K
ResNet-34' 64, {64,64}x3 20.04% G.CNN 1 0.28% 95K
SWSL(18) 16, {16,16}x3 19.76% Ours (without NMS) 2.24% 25K
CIFAR Ours (with NMS) 2.15% 25K
#Kernels Errors Errors
Methods
shallow layers C10 C100 . . . . .
( ) (€19 ( ) visualize the feature maps in baseline (in blue) and
ResNet-20 16, {16,16}x3 8.03% 32.85% SWSL(3L) (in green) of Table 2 in Fig.4. The first
Re;l(;l/et- 16, {16,16}x3 8.43% 39.49% column is the input images. On the right of the input im-
ages, there are 16 feature maps of the first layer. In
SWSL(18) 4,14,4)x3 7.65%  32.39% SWSL, each line is the feature map of a single kernel in
ResNet-32 16, {16,16}x5 7.14% 30.85% different orientations. On the right of the feature maps,
ResNet- we add the feature maps with the same kernel together.
; 16, {16,16}x5 7.27% 30.75% : fo
32 f ' ’ ° As we can see, both kernels tend to find edges. This is be-
SWSL(18) 4,{4,4}X5 6.93% 30.49% cause different orientations of a kernel are sensitive to
) edges of different orientations. Although both kernels
ResNet- 16,{16,16}x18 6.02%  27.31% . . o
110 tend to find edges, their emphases are still different.
Relslh(l)?t_ 16, {16, 16)x18 6.52% 07 55% From the sum.s of feature maps .of each kernel, the first
one tends to find pure edges, while the second one tends
SWSL(1S) 4,{4,4}x18 5.66% 27.14% to retain more information about the original image.
SENet-20 16, {16,16}x3 7 78% 31.68% Compared with the baseline, SWSL utilizes a single ker-
SWSL(1S) 4,14, 4153 7.36% 31.26% nel to detect edges in all orientations, while the baseline
utilizes many different kernels.
SENet-32 16,{16,16}Xx5 7.00% 30.04%
SWSL(1S) 4,{4,4}x5 6.86%  29.99% 5.2 Parameter analysis
SENet-110 16,{16,16}x18 6.05% 26.36%
In our networks, few extra hyperparameters are
SWSL(19) 4,{4,4}x18 5.59%  26.34%

5 Analysis

5.1 Visualization

To see what the rotation group convolution learns, we

needed compared with ordinary networks. For \; (the
weight of the NMS loss), an additional set of experi-
ments are conducted in Table 7 (a) to show the influence
of A1. From the results, it works well with A; ranging
from 107° to 1073. In our experiments, though adjusting
A1 for each model can further improve the performances,
we set A1 = 10™* for all models. In Table 7 (b), different
orientations (1 orientation is the baseline, which equals

@ Springer
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Input image
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~ 1.000
+ 0.889
1 0.778
-+ 0.667
0.556
0.444
0.333
0.222
0.111

SWSL(3L)

By the same kernel in different orientations

Fig.4 Visualization: The feature maps in the first layer of the baseline and SWSL(3L) in Table 2 are visualized.

Table 7 Parameter analysis: (a) The influences of A1; (b) The

Table 8 Comparisons of ResNet with different types of the first

influence of the numbers of different orientations. We utilize layer
networks of SWSL(3L) in Table 2.
First layer . . Errors Errors
(a) Methods type #Orientations (C10) (C100)
)\1 1072 1073 1074 1075 1076 0 ResNet-20 Normal - 8.03% 32.85%
SWSL(3L)  0.44% 0.37%  0.35% 0.38% 0.44% 0.40% ResNet-20  Repeat - 8.96% 33.66%
) SWSL(IL)  Rotate 8 8.08% 32.67%
= - |4

#Orientations 1(Baseline) 2 4 8 ResNet-32 Normal 7-14% 30.85%
SWSL(3L) 0.40% 0.35% 0.37% 0.35% ResNet-32 - Repeat N 7-63% 32.03%
SWSL(IL)  Rotate 8 7.26% 30.81%
no rotation) are adopted with the same output channels ResNet-110  Normal - 6.02% 27.31%
in each layer. Benefiting from the weights sharing in the ResNet-110  Repeat - 6.43% 28.70%
shallow layers, SWSLs(3L) with 2, 4 and 8 orientations SWSL(1L) Rotate 8 5.97% 27.48%

all outperform the baseline.

To further study the effect of the number of output
channels, we also reduce the number of kernels and keep
the number of output channels the same by repeating
them in Table 8. For SWSL(1L), we only replace the ini-
tial layer before the residual blocks with rotation group
convolution. The first layer of SWSL(1L) only has 2 ker-
nels with 8 orientations, and it has 16 feature maps which
are the same as the baseline. To study the effect on the
number of feature maps, we also test on ResNet that the
first layer only has 2 kernels and repeats 8 times to 16
feature maps. The results in Table 8 show that the
SWSLs(1L) of ResNet-20/32/110 achieve similar errors
compared with their baselines (range from -0.18% to
0.17%). And ResNet-20/32/110 with repeat feature maps,
which have the same kernels and feature maps with
SWSL(1L), show obvious error increases than both
SWSL(1L) (range from 0.37% to 1.22%) and the baseline

@ Springer

(range from 0.41% to 1.39%). It demonstrates that the
benefits are from weight sharing instead of the number of

feature maps.

6 Conclusions

Based on RGEC, we have designed novel networks
that share the kernel weights of different orientations in
the shallow layers. Experimental results show that this
approach requires much fewer kernels and parameters in
the shallow layers when maintaining superior perform-
ance. It keeps the same output channels and brings no
additional burden in computation. It shows that the con-
volution kernels in the shallow layers have rotation sym-
metries, and RGEC can benefit from the symmetries.
Fewer kernels are more intuitive and interpretable, lead-
ing to fewer potential generalization risks.
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Appendix

Proofof (A1)
ri(f) * K = ri(shift'(f * K)). (A1)

Proof. First, we can obtain (A2) with single kernel k:

r(f)xk = ()T R) = (F TN (R). (A2)

A kernel k can be expanded to group kernels

K =[r°(k),r'(k),--- ,7""'(k)]. Define fx* K = [f *r°(k),
Frri(k), -, fxr" " (k)] Then,

r(f)« K =r'(f+r7'(K)) =

r(f [P0 (k)T 1(k¢)_»"' T (R)) =

P T k), frr T R), e T T (R)]) =

i (shift'([f «r°(k), fxr' (k) -, fxr" " (R)]) =

r(shift'(f x K)) (A3)
Wherg shift*([x1, T2, ,x0]) = [Tn, T1, -, Tn_1],
shift'([x1, T2, , Tn])=[Tn—it1, Tnit2, , Tn, T1, T2,

Zn—;i],and nis the total number of orientations.

Notably, ri(z xy) =r'(z) x r'(y), r"i(z)=ri(z),
shift" Vi (x) = shift'(z). Because r'(-) works on the spa-
cial dimensions and shift'(-) works on the rotation di-

mension, they do mnot influence each other and
ri(shift! (x)) = shift’ (r*(z)). ]
Proof of (A4)

Fie, (r' (f) * K) = r'(shift' (F, (f * K)))- (A4)

Proof.

Define Fr,(x) = [shift®(x) = r°(k;), shift™" (z)*
ki), shift= ™ Y (z) « 1" (k;)], where k; is the

weight parameter of K.

Fr, (r'(f) * K) =

Fre, (r'(shift' (f x K))) =

[+, shift™ "D (shift'(f « K))) «r" " (k)] =
[t (shift™ T (f 2 K)) w7 (k)] =
([ ,shiftf("fl)“(f * K)sr" ' (ky)]) =

P shift™ T (fx K) " (k))) =
r(shift' (F, (f * K))). (A5)
O

Proof of (A6)

Frep (Fip_y (- Ficy, (7' (f) % K))) = v (shift' (Fx,, (Fi,,_, (-~
Fi, (f x K)))))- (A6)

Proof.

If  Fr,_, (- Fg, (r'(f) * K)) = 7' (shift' (Fx,,_, (-

Fk,(f*K)))), it can be proved easily that

Fie,, (- Frey (r' (f) < K)) =1 (shi ft' (Frc,,, (- -
Denote Fk,, (- Fr,(f*K)) =M.

Frey (f%K)))).

Pt (Ficp 1 (- Fry (7' (f) % K))) =

Fre,, (r' (shi ft'(M))) =

[ oshift™ "D @ (shaft' (M) " (k)] =

[+ P (shift™ T DTM)) 5 ™ (k)] =

P, shift™ " TOTM) « T (ky)]) =

P (shift' ([, shift™ "D (M) s " (km)])) =

r'(shift' (Fx,, (M))) =
(

r'(shift' (Fx,,(Fx,, (- Fi,(f * K))))). (AT)
According to the above proof and Fx, (r'(f) x K) =
ri(shift'(Fi, (f * K))) in proof of (A6), it can be deduced
that Frk, (Fr, (- Fr,(r'(f) x K))) = r*(shi ft'(Fx,, x
(Frp o (- Frey (f % K0))))). O
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