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Abstract: Traditional joint-link robots have been widely used in production lines because of their high precision for single tasks. With
the development of the manufacturing and service industries, the requirement for the comprehensive performance of robotics is growing.
Numerous types of bio-inspired robotics have been investigated to realize human-like motion control and manipulation. A study route
from inner mechanisms to external structures is proposed to imitate humans and animals better. With this idea, a brain-inspired intelli-
gent robotic system is constructed that contains visual cognition, decision-making, motion control, and musculoskeletal structures. This
paper reviews cutting-edge research in brain-inspired visual cognition, decision-making, motion control, and musculoskeletal systems.
Two software systems and a corresponding hardware system are established, aiming at the verification and applications of next-genera-
tion brain-inspired musculoskeletal robots.
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1 Introduction

Robot was acclaimed as “the jewel on the crown of
the manufacturing industry”. It has become a critical in-
dicator for measuring the comprehensive strength of a
country in science and technology. Since the first indus-
trial robot, Unimate, went online in 1962, plenty of robot-
ic systems have been employed in industrial production
lines, replacing workers to complete tasks with high repe-
tition, high risk, and heavy load, continuously creating
tremendous production benefits for manufacturing enter-
prises. With continuous advancements in mechanical en-
gineering, control, and artificial intelligence technologies,
an increasing number of applications, including national
defense, health care, and advanced manufacturing, have
put forward urgent demands for robotic applications.
However, the performance of existing robotic systems is
still limited by sensor precision, repetition accuracy of the
systems, and the performance of auxiliary mechanisms.
Advancing the performance of robots requires the syner-
getic development of multiple disciplines, such as mech-
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anical engineering, material science, control theory, intel-
ligent chips, and information science, which significantly
limits the broad application of robots owing to the re-
quirement of high investment and a long development
cycle.

In comparison, humans can achieve an outstanding
overall performance superior to the independent capabil-
ity of each body unit under the condition of low preci-
sion of sensory feedback, behavior control, and limited
computation dissipation. It mainly benefits from the ex-
traordinary ability of humans to integrate information
from multiple brain regions and sufficiently exploit the
advantages of the body structure. Therefore, research on
human-inspired intelligent robots by mimicking their bio-
logical structure, behavioral features, intelligent prin-
ciples, and control mechanisms will be significant in de-
veloping new-generation robots.

Humans have long been considered the reference
standard for improving robots. At present, according to
the difference in motivation, the research work of human-
inspired robots mainly includes two routesl!. The first is
to mimic the functionality of humans. Based on the ob-
servation and analysis of human behavior, this research
route aims to endow robots with the ability to complete
human work. For example, the most widely used articu-
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lated robots are composed of rigid links, gearboxes, joint
reducers, and auxiliary tools. Although they are very dif-
ferent from humans in appearance and actuating prin-
ciples, they can replace humans in completing specific op-
eration tasks with the help of sophisticated sensors and
specialized control programs. Another typical example is
a humanoid robot with a human-like appearance and
function designed to mimic human mechanisms from out-
side-in. Representative studies include advanced step in-
novative mobility (ASIMO) (1997C) by Honda Motorl?,
BHR (2000C) by the Beijing Institute of Technologyl® 4,
iCub (2008C) by the Italian Institute of Technologyld),
and Atlas (2016C) by Boston Dynamicslfl. These robots
are normally endowed with bipedal locomotion and have
a preliminary self-learning ability and adaptability to
complex tasks by introducing an artificial intelligence al-
gorithm. By deploying highly redundant actuators, hu-
manoid robots are capable of human-like dexterity;
however, challenges for the design of controllers are intro-
duced simultaneously. Many mathematical algorithms
have been proposed to control humanoid robots with
highly redundant actuators, such as the zero moment
point[™9], capture point[l9-12l, and central pattern generat-
or algorithms[!3: 1] for stable bipedal locomotion, model-
free reinforcement learning[!® 16l and imitation learning
based on demonstration(l”> 18] for diverse manipulation.
Although these methods are still in the early stages of re-
search, they exhibit remarkable performance and might
be a promising avenue for promoting the application
range of humanoid robots.

The second route is oriented by mimicking the core
and fundamental mechanism of humans, forming the re-
search of brain-inspired intelligent robots. Brain-inspired
intelligent robots imitate humans, from their inner mech-
anisms to their external structures, by referring to the
neural mechanisms and structural characteristics of visu-
al cognition, decision-making, motion control, and muscu-
loskeletal systemsl!9. By integrating multiple disciplines
of brain science, artificial intelligence, and robotics, re-
search on brain-inspired intelligent robots aims to build
brain-inspired information processing algorithms with
high computational efficiency and general intelligence and
musculoskeletal systems with high flexibility and strong
robustness, laying the foundation for next-generation ro-
bot development. In the past few years, because of the
nature of exploring humans and the urgent need for the
treatment of mental diseases, many countries, including
the United States, the European Union, Japan, Republic
of Korea, Canada, Australia, and China, have proposed
brain projects to support research in brain science and
brain-inspired intelligence. As an indispensable part of
brain-inspired intelligence, brain-inspired intelligent ro-
bots act as comprehensive systems integrated with soft-
ware and hardware, which are of great significance in
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verifying the research results. Many research groups have
conducted preliminary research and have achieved many
milestones in brain-inspired algorithms/20-24 neuromorph-
ic chipsl?5 26] and musculoskeletal robotic systemsl27-29],
As a typical application form of the musculoskeletal sys-
tem, wearable exoskeleton system has been a hot spot in
recent years. In [30—34], some promising techniques and
frameworks, such as region-based control and interactive
framework, human-in-the-loop control, and barrier-en-
ergy function design, have been employed to improve the
performance of wearable exoskeleton system in assisted
walking and weight-bearing work. These works are signi-
ficant in musculoskeletal applications, and represent the
state-of-the-art research in human-machine interaction
using bio-inspired wearable exoskeleton systems. Owing
to the introduction of human internal mechanisms, brain-
inspired intelligent robots are expected to achieve em-
pathy with humans and realize deeper cooperation with
co-workers.

Compared with previous relevant reviews of brain-in-
spired robotics!!% 35 this study introduces the cutting-
edge works along the research chain of brain-inspired ro-
bots, which are composed of instructive neural mechan-
isms, designing of the brain-inspired algorithm, building
the software platform, and development of hardware sys-
tem. In particular, the latest progress in the system integ-
ration of software and hardware is introduced. The re-
mainder of this paper is organized as follows. Section 2
introduces the core neural mechanisms in vision, decision-
making, control, and body structure and the correspond-
ing brain-inspired algorithm. Section 3 introduces the
software and hardware system integration. The simula-
tion platform for brain-inspired robots integrates brain-in-
spired algorithms in vision, decision making, and move-
ment control, providing efficient tools for researchers
from different fields. The hardware platform was de-
signed to mimic the human musculoskeletal system,
providing a physical system to validate the performance
of the brain-inspired algorithm. Section 4 summarizes and
concludes the study.

2 Bio-inspired methods

2.1 Brain-inspired visual models

2.1.1 Neural mechanisms of the visual cortex
Compared with other perception methods, visual per-
ception is a highly complex process with continuous
learning, development, and evolution. It has many good
characteristics, such as a large amount of information,
noncontact, fast speed, strong integrity, and high accur-
acy. In the past decades, neurobiologists have found
many neural mechanisms (e.g., attention mechanism,
two-level cognition, and regional cooperation) of visual
perception through various experimental and analytical
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methods.

First, many layers of the visual cortex can produce a
salience map through attention mechanism. The visual
system tends to selectively perceive some objects or ele-
ments in the field of view based on salience, and this se-
lection process is very rapid. The V1 layer can generate a
bottom-up salience map through comparing the local and
overall differences between features% 371, The ventral in-
hibition mechanism between V1 layer neurons can inhib-
it the responses of adjacent neurons with similar regulat-
ory characteristics. Neurons in the V2 layer primarily re-
spond to top-down modulation38l. In the V4 layer, the
bottom-up salience and top-down regulation are integ-
rated, and an integrated salient feature map is output(3% 40l,

Second, in the process of visual cognition, classifica-
tion and recognition will not be carried out simultan-
eouslyl4l 421, A functional magnetic resonance imaging
study of the human brain3 showed that the fusiform
face area (FFA) is involved in low-level face detection
and face recognition. Electrophysiological studies on mon-
keys have shown that the activation selectivity of neur-
ons in the advanced visual area increases with exposure
duration4l. The initial firing activity of neurons is suffi-
cient to meet the needs of object detection and classifica-
tion tasks, whereas object recognition tasks rely on the
deeper firing activity of neuronsl42].

Third, each visual cortex region has a specific division
of labor, and it only completes the perception of a lim-
ited range. Recognition and memory of different types of
objects are associated with different brain regions. The
overall perception of visual information is completed
through the cooperation of multiple visual cortical re-
gions. The recognition of objects with shareable features
is associated with the activity of the lateral fusiform gyr-
us, while the recognition of objects with few shareable
features is generally associated with the intermediate fusi-
form gyrus. The perirhinal cortex of the anterior medial
temporal lobe was used to identify highly similar
objects45]. In addition, the parahippocampal gyrus area
can distinguish between scenes and objects, and the FFA
is more sensitive to face and body recognition than to
general object recognitionl46].

Knowledge of neural mechanisms of the visual cortex
benefits the design of artificial intelligence algorithms.
First, it provides clear working principles for brain-in-
spired visual models that imitate specific visual cortical
areas. Second, semantic features and concept formula-
tions can be introduced into visual models to enhance
their robustness. Third, lateral and feedback connections
enable visual models to associate with primitive memory
and discover more discriminative features. Next, we list a
few examples.

2.1.2 Brain-inspired visual models and algorithms

Brain-inspired visual models can be divided into two
categories: cellular-level models and neural pathway-level
models, as shown in Table 1.

Table 1 Overview of brain-inspired visual models

Models References
Cellular level models Retina, [47, 48]
Cortex [49, 50]
Neural pathway level models Perception [51-55]
Cognition [21, 23, 24]

Cellular-level models work by simulating the coding
mechanisms of visual neurons. Riesenhuber and Poggiol4Y]
proposed the hierarchical-max (HMAX) V1 cell model
that simulates the information mapping process of simple
and complex cells in the V1 region of the visual cortex.
Azzopardi et al.[’% proposed a push-pull combination of
receptive fields model with the merits of improved signal-
to-noise ratio and contour enhancement based on the
characteristics of simple cells in the V1 region. McIntosh
et al.[7] established a convolutional neural network-struc-
tured model that reflected the internal structure and
function of the retinal sensory circuit. Klindt et al.[48! pro-
posed a convolutional neural networks (CNN) architec-
ture for neural system identification that contains a
sparse readout layer that separates space and time.

Neural pathway level models are based on the struc-
tures of visual neural pathways. Serre et al.l5l proposed
the HMAX model, which mimics the ventral pathway of
the primate cortex and is capable of learning from only a
few samples. Dura-Bernal et al.52 developed a Bayesian
network with a similar architecture to HMAX and used
loopy belief propagation to simulate selectivity and in-
variance operations. Subsequently, more studies!53 54 ex-
tended and developed the HMAX model. Rollsl pro-
posed VisNet, a feature hierarchy model that builds in-
variant representations of visual input through temporal
and spatial statistics using self-organized learning.

There are some deficits to the above existing brain-in-
spired visual models, such as lacking integral modeling of
the visual pathway, modeling of high-level mechanisms of
the visual cortex (e.g., semantics, memories, and concep-
tion), and robustness to ambiguity and occlusion. Next,
we present some studies that address these issues.

Yin et al.2l proposed an integrated dynamic visual
cognition model based on several mechanisms of the hu-
man visual system: 1) semantic extraction via communic-
ations between the hippocampus and the medial prefront-
al cortex?658] 2) structural learning by neurons in V459,
and 3) selective attention involving areas like the frontal
eye fields[6%. Experiments on four datasets show that the
proposed model achieves higher accuracy than existing
visual recognition methods and manifests robustness to
semantically ambiguous samples.

Qiao et al.2Y introduced the mechanisms of memory
and association into HMAX. Memory is divided into sim-
ilarity discrimination and recall matching stages based on
episodic and semantic memories(6ll using semantic and
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situational features62: 63, Experiments show that the new
model can produce semantic descriptors for recognition
and achieve a higher accuracy than HMAX.

Qiao et al. further introduced active attention adjust-
ment based on [21]. The recognition stage uses the local
occlusion information of the object, and the classification
stage is actively adjusted according to the initial cognit-
ive information. Experiments proved the robustness of
the proposed model for occlusion.

2.2 Brain-inspired decision making based
on emotional mechanism

Studies on the decision-making tasks of robots have
shown increasing significance. Some related works have
been classified into Table 2. Although it is difficult to
make a non-controversial definition of robotic decision-
making, we try to describe that the purpose of decision-
making is to work out solutions to reach the goal based
on sensory cognition results, providing target and guid-
ance to the robotic control module, such as which move-
ment to make next and when to make it. Robotic tasks,
such as action selection and path planning, can be con-
sidered robotic decision-making. Research on this topic
has undoubtedly helped robots improve their perform-
ance in flexible robotic movement(™, human-robot inter-
action & corporationl’8l, multi-agent collaboration(’], etc.
In the past time period, reinforcement learning has be-
come a powerful tool for solving Markov decision process
(MDP)-modeled robotic decision-making problems(7s].
These learning-based methods have achieved excellent
performance in terms of robotic knowledge acquisition
and skill mastery. However, traditional reinforcement
learning-motivated robots are still unsatisfactory in some
human-like aspects, such as low learning speed, frustrat-
ing generalization ability, flexibility, and lack of capacity
to adapt to rapid environmental changes/!9.

Table 2 Approaches to develop robotic decision-making
methods with emotion modulation

Type of emotion

model References

Inspiration

Artificial model Functions of emotion [64]

Roles of emotion in
reinforcement [65-68]
learning (RL)

Brain-inspired Selective attention modulated

model by emotion (69]
Interaction between amygdala
and orbitofrontal cortex [70,71]
(OFC)
Hormone regulation [72]
Neural circuit regulation [73, 74]

In contrast, humans can quickly build causality
between perceived states and actions based on limited ex-
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perience under brain control, which shows excellent learn-
ing efficiency and generalization. Meanwhile, emotion,
one of the advanced functions of the brain, enables hu-
mans to balance the decision-making mode when faced
with a situation where the environment or condition
changes rapidly, which is the important reason for hu-
mans to conduct flexible reactions, adapt to rapid
changes, and achieve excellent decision-making. There-
fore, it is convinced that brain-inspired methods with
emotional mechanisms significantly help increase the per-
formance of human-like capabilities in robotic decision-
making tasks.

The fundamental problem with such methods is the
integration of emotion mechanisms into the decision-mak-
ing framework. A class of studies focuses on the ap-
proaches to building up artificial emotion, expecting ro-
bots to benefit from emotional learning and memory. Sch-
eutz concluded the twelve possible functions of emotion in
artificial agents, which is instructive for the problem(¢4.
Moerland et al.l65 investigated several modeling methods
for artificial emotion modeling, including reward adjust-
ment, state modification, action selection, and meta-
learning. For example, in [66], emotion was integrated as
an internal reward for learning an algorithm that en-
codes value information from the perceived states. In [67],
the degree of fear was considered a part of the state
space, playing the role of motivation for guidance actions.
Other studies have also integrated emotion to balance the
exploration/exploitation trade-offl®l. The above methods
succeeded in taking advantage of emotion to improve the
performance of robots in decision-making tasks. However,
the implementation of emotion in these works is heuristic,
and the mechanism of artificial emotion differs from that
of the brain.

Meanwhile, another class of studies follows the emo-
tional modulation mechanism in the human brain, which
makes the decision-making methods benefit from biologic-
al plausibility. For example, Taylor and Fragopanagost9]
integrated the functions of emotion-related brain regions
into an attentional control model, which brings up select-
ive attention through emotion regulation. Another suc-
cessful brain emotion learning (BEL) model proposed by
Balkenius and Morén[™ attempts to mimic the interac-
tion between the amygdala and OFC to explore the emo-
tion learning process of mammals, where the rapid emo-
tional response originates from the amygdala model and
is then modulated by feedback signals from the OFC
model. The proposed model has been successfully applied
to robot control tasks[”™ and is comparable to linear
quadratic regulator control in terms of performance.

A series of recent works have paid attention to the
two pathways of the emotion-modulated decision-making
process in the human brain hormone and neural circuits.
This is inspired by the opinion that emotion can modu-
late the learning process by adjusting the levels of sever-
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al neurotransmitters(”. Huang et al.["2 try to mimic the
corresponding process in the algorithm and modulate the
meta-parameters by emotional valence, including the
learning rate, reward prediction error, and randomness of
action selection. The proposed framework is used to up-
grade the Hebbian and Oja learning rule, which is ap-
plied to the operation of the musculoskeletal arm, thereby
achieving higher precision and faster learning speed. A
second studyl™! considered the neural circuit between the
amygdala and striatum in the human brain, which is re-
sponsible for the shift between goal-oriented decision-
making and habitual modes. It proposed a biologically
plausible computational amygdala model that generates
emotional signals to adjust the learning type between
model-based and model-free. The computational emotion
model was also used for another decision-making task for
mobile robots in sparse-reward environments[’4. Besides,
the raised amygdala model shows properties that fit the
fear conditioning learning experiment in neuroscience,
proving that with mechanism simulated and biologically
plausible model built, brain-inspired methods can reflect
some properties of the human brain, which is hopefully of
help to studies in cognitive neuroscience, thereby promot-
ing the development of related research.

2.3 Brain-inspired motion control

2.3.1 Methods based on control theory and artificial
intelligence

The highly complex dynamic characteristics of muscu-
loskeletal robots lead to many problems, such as the diffi-
culty in solving the inverse dynamics of the system and
huge demand for computing resources. Several methods
have been proposed for the control of musculoskeletal ro-
bots. Depending on whether explicit models of musculo-
skeletal robots are established during the solution process,
these methods can be divided into two categories: model-
based and model-free methods as shown in Table 3. The
details are as follows:

Table 3 Overview of motion control methods of
musculoskeletal robots

Control of musculoskeletal robots References
Methods based on control Model-based methods [80-86]
theory and artificial
intelligence Model-free methods [87-94]
Brain-inspired methods Muscle-synergies-inspired (95, 96]

methods
Cortex-inspired methods [97, 98]

Hierarchical-mechanism-
inspired methods (99, 100]
Cerebellum-inspired

methods [101,102]

Many model-based control methods for musculoskelet-

al robots have been proposed by establishing kinematic
and dynamic models of musculoskeletal systems. First,
static and dynamic optimizations were used to study
musculoskeletal robots. Thelen et al.80] proposed a com-
puted muscle control method. This method brings the
calculation results of the forward model into the signal
solution process to optimize the error at each step, which
improves the efficiency of model optimization. Second,
proportional-derivative control8ll, iterative learning con-
troll82], and adaptive controll83 have made some achieve-
ments in the control of musculoskeletal robots. Tahara
and Kion84 designed a proportional-integral-type iterat-
ive learning control algorithm for the task space. This al-
gorithm collects the time-series errors of the position and
velocity of the end-effector to form a dataset and takes
the result of multiplying the error by the gain term into
the next iteration, which avoids the real-time inverse dy-
namics solution process for redundant systems. Jantsch et
al.B3 proposed a scalable joint space control scheme
based on the computed torque control. This method first
uses a multilayer perceptron to establish the mapping
from muscle force to joint torque and then uses a propor-
tional-integral-derivative controller to calculate the joint
torque required to complete the motion task. Kawaha-
razuka et al.[] proposed an antagonist inhibition control
method that avoided unnecessary muscle tension or ten-
don slack caused by model errors so that the musculo-
skeletal robot could safely perform wide-range motion for
a long time. The proposed method was verified using the
Kengoro hardware platform. However, model-based meth-
ods rely on accurate models of complex musculoskeletal
systems, which are usually not readily available. There-
fore, these algorithms are primarily applied to simplified
musculoskeletal systems and simple motor tasks.
Correspondingly, some model-free methods do not de-
pend on the characteristics of the models and are also
used to realize the control of musculoskeletal robots.
First, supervised learning can predict muscle signals, ac-
tivating muscle forces to produce movements. Nakada et
al.B7 used 20 deep neural networks to simulate the neur-
omuscular motor and visual sensory subsystems. Based
on the supervised training of a large amount of synthetic
data, a full-body musculoskeletal robot containing 352
muscles can efficiently learn visuomotor control of its
eyes, head, and limbs. Rane et al.l8] used convolutional
neural networks to learn the mapping from the move-
ment space to the muscle space, which accurately pre-
dicted the muscle force and the musculoskeletal model.
Second, reinforcement learning also provides new inspira-
tion to solve this problem. Deep reinforcement learning
methods, such as deep deterministic policy gradient,
proximal policy optimization, and trust region policy op-
timization, have been successfully used to control the
lower limb musculoskeletal system to run as long as pos-
sible while overcoming obstacles, such as slippery floors
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and muscle weakness[®. The natural policy gradient al-
gorithm was used to implement dexterous manipulation
tasks for musculoskeletal fingers/®l, such as tip-reaching,
key-turning, and pen-twirl. The actor-critic algorithm was
introduced to realize the motion control of a three-joint
musculoskeletal arm(®%: 92, The deep deterministic policy
gradient and hindsight experience replay algorithms were
combined to control the musculoskeletal arm to perform
motor tasksl3 94 such as playing taichi. Although these
algorithms perform well on musculoskeletal systems, they
incur enormous computational overheads. Meanwhile,
model-free methods regard musculoskeletal systems as
black-box environments, lacking specific analysis of sys-
tem structures and functional characteristics. Addition-
ally, they did not consider the further enhancement of the
motor learning ability of robots based on biological neur-
al mechanisms.

2.3.2 Brain-inspired control methods

Humans can realize all types of high-precision and
flexible movements and manipulations in complex envir-
onments, significantly benefiting from the control of the
central nervous system. According to neuroscience re-
search, the motor cortex, cerebellum, spinal circuits, and
neural mechanisms related to motion control are essen-
tial for generating precise motion commands. First, some
neuroscientists proposed that the motor cortex can be de-
scribed as a dynamical system that embeds muscle-like
commands in the population response of neurons/103, 104],
For some motions, such as fast ballistic movements, the
motor cortex will form the initial state of the dynamical
system through a motor preparation stage, which will
largely determine the subsequent evolution of neural
activity and behavior[l9]. Secondly, in some motions, the
cerebellum can generate correction values for motor com-
mands as a feedback controller to make the movement
more accurate and adaptable. Furthermore, muscle syn-
ergy is found in muscle activity, which can be regarded as
a specific type of motor primitivell06],

Some methods to obtain inspiration from these find-
ings have been proposed, which have improved the per-
formance of musculoskeletal robots. Chen and Qiaol%
proposed a novel muscle-synergy-based neuromuscular
control method. In this method, a computational model
of time-varying phasic and tonic muscle synergies is con-
structed, which is modulated by a radial basis function
neural network according to reaching directions and dis-
tances. The introduction of synergy effectively reduces
the control dimension and enhances the speed and accur-
acy of motion learning. The concept of muscle synergy
has also been applied to the manipulation tasks of muscu-
loskeletal robotic systems. In [96], the muscle synergies
were first extracted as movement primitives. Sub-
sequently, using a strategy based on an attractive region
in the environment, the combination coefficients of the
primitives are generated by an iterative learning control-
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ler, and muscle excitations are further computed to drive
the musculoskeletal robotic system to realize human-like
manipulation. Additionally, based on the dynamic encod-
ing hypothesis in the cortex, a recurrent neural network
(RNN) with a cortex-like consistent population response
was designed and applied to generate motor com-
mands®7. Combined with the reinforcement learning al-
gorithm, motion learning and multi-task learning were
implemented using the RNN, and motion precision and
multi-task learning performances were improved com-
pared with traditional methods. Inspired by the hypo-
thesis of motor preparation in the cortex, a motion-learn-
ing framework based on an RNN modulated by initial
states was proposed®8l. The initial state defines the evolu-
tion of the RNN and the motion of the musculoskeletal
robotic system. With the modulation of the initial states,
the initial learned states can be explicitly expressed as
the knowledge of movements and can be utilized to con-
struct a proper initial state corresponding to a new move-
ment target, significantly improving the generalization ef-
ficiency for new movements. To accelerate solution space
exploration and reduce the difficulty of learning, consider-
ing that the learning goal of humans changes stepwise
with the progress of learning, Zhou et al.l% proposed a
phased target learning framework with hierarchical task
architecture that provides different targets to learners at
varying levels. This realized a tracking task based on the
musculoskeletal arm. Inspired by the motion modulation
mechanism of cortex-basal ganglia circuits, a hierarchical
motion-learning framework decoupling between the tar-
get position and motion control was proposed(l9]. Intro-
ducing a hierarchical mechanism enhances the adaptabil-
ity of musculoskeletal robot systems for uncertain tasks.
Inspired by the prediction and correction mechanism of
the cerebellum in motor control, Zhang et al.l9l pro-
posed a cerebellum-inspired feedforward control model.
The cerebellum prediction network predicts the motion
result of the musculoskeletal robot under the control of
the original muscle signal. Subsequently, the cerebellum
correction network outputs the correction value of the
original signal based on the prediction error, effectively
improving the motion precision of the robot. Addition-
ally, inspired by habitual planning theory and the inform-
ation propagation mechanism from the cerebellum to the
spinal cord, Qiao et al.['02 proposed a method to calcu-
late the muscle control signal based on motion primitives.
Some primitives obtained by optimization can form
muscle control commands corresponding to new motion
targets through a combination, which improves the fast
response and learning ability of robots.

The above methods for musculoskeletal robotic con-
trol are classified and listed in Table 3.

2.4 Bio-inspired structures and dynamics

Compared to traditional joint-link robotic systems,
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the drive structure of musculoskeletal systems has sever-
al advantages worth learning. Inspired by the perform-
ance of complex human operations, muscle dynamics and
redundant muscle distributions are regarded as critical
points and have been widely researched[!07-109, Therefore,
bio-inspired musculoskeletal robotics is a promising direc-
tion for next-generation robots.

2.4.1 Anti-interference analysis of musculoskeletal

dynamics

In contrast to the approximately linear motor-driven
systems in most robotic systems, the actuators of the
musculoskeletal system are highly nonlinear and redund-
ant. These provide a strong anti-interference ability for
neural noise and environmental disturbances. Since Hill et
al.[110-115] proposed contractile muscle dynamics to de-
scribe the relationship between muscular activation and
muscle forces, numerous different muscle models have
been studied to better fit the features of muscle dynam-
ics. In addition, research has been conducted on artificial
muscles in robotics. Tandem springs and dampers are
combined to mimic the structures and dynamics of Hill-
type muscle models in the theoretical analysis[116-120],
Pneumatic and cable-driven muscles are the two main
types of artificial muscles in application research and
have realized flexibility and robustness in robotics.
However, theoretical analyses of the benefits of muscle
dynamics are scarce.

Inspired by the fact that humans can realize high-pre-
cision and robust operations under huge neural noise, Wu
et al.ll2l] established sophisticated musculoskeletal dy-
namics to analyze the potential advantage of nonlinear
muscular driving mechanisms for such performance. In
this work, three crucial reasons for the anti-interference
ability of the activation signal for the humanoid musculo-
skeletal system were proposed after mathematical deriva-
tion. The nonlinear and indirect driving mechanisms re-
duce the effect of input error, the inter-system feedback
caused by the coupled structure can regulate muscle force
to improve control accuracy, and the redundant muscle
space can provide a broader solution space for the activa-
tion signal. Furthermore, comparison experiments
between the musculoskeletal and joint-link robots were
designed and conducted to verify the analytical results.
This study provides a theoretical reference for the applic-
ation of bio-inspired musculoskeletal robotic systems.
2.4.2 Bio-structure inspired motion control

Organisms have an inherent talent to complete stable,
rapid, and diverse free movements with their complex
body structure. Realizing such extraordinary movement
ability relies on the cerebral cortex to complete the com-
plex calculation and benefits from the cooperative mech-
anism between the physiological structures formed in the
long-term evolution. For example, the Henneman size
principle proposed by Henneman indicates that during
movement, muscles with a low innervation ratio but

strong fatigue resistance are recruited first, while muscles
with a high innervation ratio and high explosiveness are
recruited later. This coordination mechanism between the
muscles provides a physiological basis for the stability
and rapidity of movement[122, The knee-jerk reaction is a
typical example. When the length of a muscle changes
due to an unexpected disturbance, alpha motor neurons
in the spinal cord quickly produce a regulatory signal for
the muscle to contract back to its original length. This
mechanism guarantees limb stability and postural bal-
ance under disturbance conditions/123],

The equilibrium point hypothesis is one of the classic-
al theories on how organisms realize motion control by
leveraging the coordination mechanism of physiological
structures. During research on the synergistic regulation
of spinal cord interneurons in muscles, neuroscientists
have found that applying constant micro-electrical stimu-
lation to specific areas of the spinal cord activates mo-
tion-related forces in the extremities. The distribution of
the extremity force in motion space converges to an equi-
librium point, forming a so-called convergent force
field[24. Neurophysiological experiments in animal mod-
els, such as frogs and monkeys, have further verified the
equilibrium point hypothesis, providing an important
viewpoint to explain the efficient and stable motor con-
trol ability in organisms[1257127. Recently, this mechan-
ism has also inspired the study of motion control
strategies for musculoskeletal robotsl128, 129, Inspired by
two types of natural constraints, convergent force
fieldsl'24 and attractive regions in the environmentt30],
Zhong et al.128] proposed a structure-transforming optim-
ization algorithm for constructing a constraint force field
(CFF) in a musculoskeletal robot. By optimizing the ar-
rangement of the muscles, a CFF with the target posi-
tion as the equilibrium center can be constructed in the
task space of the musculoskeletal robot. In the construc-
ted CFF, the robot can reach the target position with
high accuracy using constant control signals, effectively
reducing the requirement of the sensor feedback of the
control signal. Meanwhile, the system also exhibits strong
robustness to noise disturbances in the control signal.
Therefore, it provides an important inspiration for design-
ing a new type of variable-structure musculoskeletal ro-
botic system to achieve high-precision robotic manipula-
tion under limited precision of the structures and sensors.

3 System integration
3.1 Simulation platform for bio-inspired
musculoskeletal system
Research on brain-inspired intelligent robotics re-
quires a comprehensive platform that can mimic the

mechanisms and behavior of humankind. Integrating
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visual, decision-making, and motion control models with-
in the same system is often necessary to achieve more
complex tasks, which would be very challenging for re-
searchers in certain areas. For studies focusing on motion
and the decision cortex, it is advised to study the mech-
anisms of a musculoskeletal system, which should be
highly redundant and flexible and have variable stiffness.

A flexible virtual platform is a very efficient way to
implement such ideas. Thus, researchers can first use the
virtual musculoskeletal system to train and optimize
brain-inspired models, which can be further transferred to
other software and hardware platforms, which will be in-
troduced in Section 3.1.1. The algorithms are flexibly or-
ganized in terms of vision, decision, and motion. There-
fore, they can develop end-to-end models from vision to
motion and integrate their own algorithms with existing
algorithms to build a complete model for more complex
tasks. Virtual platforms also enable researchers to design
and develop a series of standard tasks for evaluating
brain-inspired robotic algorithms. With standard tasks on
the platform, researchers would have a better benchmark
for comparing different algorithms and incidents for fur-
ther improvement.

We develop such a platform which is a web-based
platform and enables users to use it remotely. As shown
in Fig.1, the whole virtual platform can be divided into
three modules, integration back-end, front-end demon-

/ Task definition module \

System framework of the simulation platform
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stration, and task definition. Currently, most musculo-
skeletal
however, defining the task and a comprehensive output

platforms focus on the dynamics module;
are also important. In this subsection, we first introduce
the three modules and their implementations. We then
provide some examples of the applications.
3.1.1 Integration back-end module

The integration back-end module is based on the dy-
namic engine of the musculoskeletal system but integ-
rates the vision and decision parts. Several current plat-
forms can serve as dynamic engines, including Open-
Sim(131] and MyoSuitel®l. In brain-inspired robotics, re-
searchers need an engine with biological plausibility and
execution efficiency and have different preferences for a
certain project. In our virtual simulation platform, we de-
veloped a wunified application programming interface
(API) to enable researchers to easily switch between dif-
ferent back-end engines. We also developed tools to trans-
fer the models to different platforms so that researchers
can translate their custom models from one engine to an-
other. The vision and decision parts are also integrated
into the back-end module, and more details are discussed
in the following sections.

We provide a series of API interfaces in the integ-
rated back-end module. The basic structure of the API
follows that of OpenSim, including the model/agent, sim-

ulation, and visualization. The model defines the forms

Front-end demonstration module

1 1
i |
1 1
1 1
1 1
! 1
1 1
: { N { N\ :
! Task Task Simulation Evaluation Model output 1
! type parameters display result chart visualization i
i |
1
i e D r 2 Simulation Evauation Model |
] Environment{ . Environment results output signals |
i settings database !
Tas‘k 1 - < Integration back-end module |
settings | Para !
1 'S N\ 'd 3\ g 1
i Agent | o Agent JGISTS :r Dynamic engine H Evaluation ] H
i settings database L !
: \ J \ J /P \I/ |
1
i , . = 9 [ Unified API interface ] !
1

1 Model Brain-inspired Control Camera |
i preset model zoo signal GUIEL !
1
! \ J \ J Q Model integration function y !
i i
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Fig. 1

System framework of the simulation platform, including integration back-end, front-end demonstration, and task definition

modules. Users can set up a task and the corresponding environment and agent in the task definition module, then combine their models
and the models from model-zoo. The back-end module integrates vision, decision, and motion models and interacts with the dynamics
engine via the unified API. Then all the simulations and corresponding results will be displayed in the front-end module.
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and parameters of the virtual musculoskeletal system.
The simulation is related to a dynamic engine. It uses ac-
tivation signals from the algorithms and generates the
corresponding movement. The visualization module gen-
erates a 3D visualization of the system. Although the
structure follows OpenSim, the platform also wraps differ-
ent back-end engines with the same API. Thus, different
engines can be easily switched using a line of code.

We developed an integration function to adaptively
compose these algorithms to better integrate vision, de-
cision, and motion algorithms. The function was automat-
ically generated according to the task definition and al-
gorithm parameters. For example, if the task is a motion
control task, the function will only use the motion con-
trol algorithm as the input, and the vision and decision
algorithms will be ignored. However, if the task is a hy-
brid task that requires both vision and decision, the func-
tion connects the vision, decision, and motion models to
complete the tasks. In this way, the platform is compat-
ible with end-to-end, vision, decision, and motion models.
3.1.2 Front-end demonstration module

Front-end and task definition modules are often over-
looked by the current platform. However, such modules
are essential for evaluating brain-inspired robotic al-
gorithms. Most front-end display modules on current
platforms are designed simply to display a simulation en-
vironment but not for the results of the algorithms. To
evaluate the results, one has to write their own demon-
stration module or use another tool, such as a Tensor-
Board. To combine these demands into one platform, we
simultaneously integrated the simulation and algorithm
results. Our front-end module is a web-based platform
that enables researchers to visualize the results of brain-
inspired algorithms. It shows the animation of the simula-
tion engine, the trend of the model parameters, and the
numerical training and testing results simultaneously.
This will provide researchers with a more intuitive illus-
tration. For example, one could watch the movement of a
musculoskeletal upper arm while simultaneously obser-
ving changes in muscle force and kinetics.

To implement the front-end module, we designed a
flexible framework to combine the simulation results and
signals from the algorithms. The framework is based on
Vue.js, a JavaScript framework used for building user in-
terfaces. This framework provides a simple but powerful
way to organize the results. In the current version, the
simulation results are displayed as a video from the view-
point assigned by researchers. This will be more interact-
ive in the future, illustrating the 3D visualization in
WebGL canvas. The framework also synchronizes all the
outputs in the same timeline so that the researchers can
simultaneously replay all the results and observe how the

activation signal triggered the movement.
3.1.3 Task definition module
The task definition module is a special part that al-

lows researchers to define their tasks and experimental
environments. The module provides many predefined ex-
perimental settings. In this manner, a comparison
between algorithms is implemented on a series of stand-
ard tasks. It also enables researchers to design and share
their tasks and environments with other users on a plat-
form. Details of the task definition module are intro-
duced in the application section.

In the task definition module, we transfer the tasks in-
to a set of parameters, including the environment set-
tings, musculoskeletal models, and how the entire model
is organized. The parameters are stored in a JavaScript
object notation (JSON) file and can be easily shared with
other users. We provided a series of preset standardized
parameters for comparison. After the parameters are
defined, the platform builds up a custom environment
from a template for each task in a separate docker, and
the researchers can use the environment to train their
models. It will also generate the integration function men-
tioned above and integrate the vision, decision, and mo-
tion models.

3.1.4 Application

As discussed above, the platform can be used for not
only single types of models, such as vision or motion
alone, but also integrated models. In this section, we in-
troduce two applications of the virtual platform: the
standard reaching and vision-based assembly tasks. Both
tasks were executed on an upper arm model with 15
muscles.

1) Standard reaching task: The reaching task is a
standard experimental paradigm in biomechanics and
neurosciencel!32 133, From the starting point of the hand,
the subject will be given a set of targets and try to reach
one of them each time. Researchers will study the entire
moving process. In this experiment, we provided stand-
ard task settings. The targets appeared on the circle
around the starting point of the hand. Researchers can
define different positions of the starting point, targets,
and the number of targets.

The muscle-synergy-based neuromuscular control
method”l was applied in this experiment. As introduced
in Section 2.3.2; based on muscle-synergy mechanisms,
this method generates a series of activation signals for all
muscles until the target is reached. In the platform, the
algorithm takes the positions of the hand and targets and
outputs the signals to the back-end module. The back-
end module then generates the movement and calculates
the corresponding errors. All the related results are dis-
played by the front-end module. Researchers can focus on
developing and tuning the algorithm to achieve the best
results and free themselves from the pain of the system.

2) Vision-based peg-hole assembly task vision-based
peg-hole assembly is a more complex task. The research-
ers use a camera to capture the scene and then use a
series of algorithms to assemble the peg into a hole. This
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requires the coordination of vision, decisions, and motion
models. This experiment provides a good example of the
flexibility of the platform.

During the experiment, researchers could use ground
truth, baseline models, or their own models for different
parts. For example, in the early stage, users can use the
positions of the peg and hole from the platform directly
and use the attractive region in such an environment, a
method inspired by human behavior, as the decision-mak-
ing model to generate a viable assembly strategy. In this
way, researchers can focus on developing a brain-inspired
motion model. Subsequently, the ground-truth vision out-
put can be easily switched to a brain-inspired visual mod-
el. Researchers can also connect decision-making with
motion control and directly generate the control signal
from the visual model output. Thus, an integrated brain-
inspired model will be developed step-by-step. The front-
end module simultaneously displays the output of each
part.

3.2 Musculoskeletal robotic system

To realize flexible motion control and robust manipu-
lations like humans, we construct bio-inspired musculo-
skeletal robotic software and hardware systems. The soft-
ware system can be used to test the performance of brain-
inspired algorithms in a simulation environment and then
provide models and algorithms for hardware platforms
based on the simulation results.

3.2.1 Software system

Considering the research purpose and providing guid-
ance to the hardware constructed, we first established a
simulation system in Matlab and CoppeliaSim. We built
a realistic muscle dynamics module based on theoretical
analysis and research that preserves the nonlinearity and
coupling properties. In addition, a fifteen-muscle seven-
degree of freedom (DOF) upper limb model was estab-
lished in CoppeliaSim. The distribution of the muscle at-
tachment was designed and optimized according to the
anatomical results and convex optimization theory. The
software platform consists of three parts: structural
design, dynamics modeling, and controller design. The
framework is illustrated in Fig. 2.

A combination of muscle chips and motor cable-driv-
en system is used in this robotics to simulate the relation-
ship between muscle states and muscle forces accurately.
Muscle attachment can be parametric to a matrix; there-
fore, it can be easily modified. The system dynamics can
be derived through the inner vector product using the at-
tachment matrix and other size parameters. Forward and
inverse dynamics were then established in the module.
The kinematics from task space to joint space and then
to muscle space is modular in Matlab. Considering the
vast data transmission between the control algorithms
and the robotic model in Matlab and CoppeliaSim, re-
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Fig.2 Control framework of the software system. In Matlab
client, we constructed two kinds of control methods, model-
based and motion learning controllers. CoppeliaSim, as a server,
transmits data to the client through a socket.

spectively, the Socket module with the user datagram
protocol (UDP) protocol is used to guarantee timely com-
munication.

This software platform provides a simulation environ-
ment for two different control methods. First, a tradition-
al controller can be designed based on the dynamics of
musculoskeletal robotics according to control theory.
Some beneficial force control methods, such as propor-
tional-integral-derivative control, impedance control, and
adaptive dynamic control, have been tested in this sys-
tem to obtain =+ 2 millimeters position error. Moreover,
this environment can be used to train motion learning
controllers. Some reinforcement learning algorithms, such
as proximal policy optimization (PPO) and deep determ-
inistic policy gradient (DDPG), as well as brain-inspired
learning algorithms, have been migrated to obtain better
performance.

Unlike the first system in Section 3.1, this software
aims to obtain realistic hardware system parameters and
provide guidance for constructing a physical system.
Many research experiments must first be tested in a sim-
ulation environment to avoid hardware damage. In par-
ticular, the modular components of the system provide al-
ternative models and controllers.

3.2.2 Hardware system

Based on the simulation results, we constructed a
hardware platform with the same muscle distribution and
structure as shown in Fig.3. The lightweight musculo-
skeletal arm (LM-Arm) is composed of four joint limbs
(shoulder, elbow, forearm, and wrist joints) with seven
DOFs and 15 artificial muscles, and an internal-driven
hand according to the arm biological, anatomical struc-
ture, and mechanical design principles, as shown in Fig. 1.
High-precision angle sensors were installed at each joint.
In addition, vision and high-precision tension sensors for
each artificial muscle are indispensable. The skeletons
were made of nylon using 3-D printing technology. Key
connecting components, such as gears, are made of alu-
minum alloy using computer numerical control techno-
logy. We used a motor cable-driven muscle module to
mimic the dynamics and coupled relations better. All ar-
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Fig. 3 Diagram of the structural design and muscle distribution of the hardware platform

tificial muscle units were installed in the chest cavity
with an arm weight of 2kg. The lengths of the upper
arm, forearm, and hand were 330, 390 and 260 milli-
meters, respectively. The terminal load was approxim-
ately 3kg. This design is dedicated to highly simulate the
musculoskeletal structure of the human arm to reduce the
weight of the arm and improve structural accuracy and
controllability.

The circuit configuration of the LM-Arm includes four
levels. The industrial Ethernet for control automation
technology (EtherCAT) protocol was used to connect the
physical level with the lower level in the Simulink envir-
onment under a 1-millisecond control cycle. The Ether-
CAT protocol transferred the feedback of the muscle ten-
sion, muscle length, and joint angle from the physical to
the lower level. The UDP protocol was used with a cycle
time of 2-millisecond to connect the lower-level control to
the sensor system and algorithms.

The cable transmission from the chest cavity to the
limbs will lead to severe friction. The power loss caused
by friction is a huge uncertainty for motion control;
therefore, we propose a feed-forward compensation ap-
proach to identify the dynamics model of the hardware
platform. Friction is mainly divided into pipeline friction
generated by the cable through the casing and that gener-
ated by the linkage joint. Some slack cable phenomena
were also considered in this approach. Model-based com-
pensation and model-free methods are considered in this
study. Considering the complexity of muscle and cable-
driven dynamics, the effectiveness of the neural network
fitting method is superior.

A feed-forward friction compensator can be obtained

using the data collected from the uncompensated hard-
ware to train the neural networks. With these methods,
the system performance can be obviously improved, as
shown in Fig.4. Based on the robust and relatively accur-
ate hardware platform, brain-inspired algorithms in mo-
tion control and decision-making can be verified and then
applied to the new robotic system.

4 Conclusions

The human advantages of dexterous operations are
apparent. Although state-of-the-art robotics research can
accurately complete millimeter and even micrometer as-
sembly missions, there are still many complex and re-
peated operations and assembly in the computer, commu-
nication, and consumer electronics (3C) field, which need
to be handled by humans. Determining the pivotal ad-
vantages of completing such tasks and the neural mech-
anisms behind their performance can significantly pro-
Control
sparsity and robustness are two crucial advantages found

mote the development of advanced robotics.

in neuroscience. Brain-inspired motion-learning algorith-
ms can use sparse rewards to realize generalized control-
policy learning. With this method, robotics can accom-
plish a series of manipulations after simple training. Con-
tinuous learning ability will equip the robot to adapt to a
new environment through adjusting a few parameters.
Furthermore, system robustness comes from redundancy
and anti-interference can improve system reliability. Ex-
cept for neuron redundancy in neural systems, muscle re-
dundancy expands the range of feasible control signal
space. Besides that, the special muscle actuator provides
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Fig.4 Effectiveness of friction compensator diagram. (a) Trajectory tracking task with inverse dynamic feed-forward control; (b) Add
a friction compensator to repeat the same tracking task with the same inverse dynamic feed-forward control. Evidently, the compensator

improves the performance of hardware control.

nonlinear dynamics and coupled feedback modulation,
which can reduce the effects of disturbances from the con-
trol input and environment.

In the future, next-generation robotics could be de-
veloped with numerous brain-inspired algorithms and
novel musculoskeletal structures. The new robot can
safely complete human-machine collaborations by benefit-
ting from lightweight musculoskeletal body design and
brain-inspired cognitive and control algorithms. In addi-
tion, organic structural design and hardware construc-
tion should be reinforced and emphasized. Meanwhile, we
hope that this generation of robotics can provide inspira-
tion and reference for brain-computer interface control.
These two systems will be polished, and additional func-
tional modules will be added in future studies. A growing
number of research will be simulated and verified using
these platforms.
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