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Abstract. Optimization using the L∞ norm is an increasingly important area in
multiview geometry. Previous work has shown that globally optimal solutions can
be computed reliably using the formulation of generalized fractional program-
ming, in which algorithms solve a sequence of convex problems independently
to approximate the optimal L∞ norm error. We found the sequence of convex
problems are highly related and we propose a method to derive a Newton-like
step from any given point. In our method, the feasible region of the current in-
volved convex problem is contracted gradually along with the Newton-like steps,
and the updated point locates on the boundary of the new feasible region. We pro-
pose an effective strategy to make the boundary point become an interior point
through one dimension augmentation and relaxation. Results are presented and
compared to the state of the art algorithms on simulated and real data for some
multiview geometry problems with improved performance on both runtime and
Newton-like iterations.

1 Introduction

In recent years, the L∞ norm has been increasingly used in many kinds of computer
vision problems. In multiview geometry, the L∞ norm is geometrically meaningful.
The L∞ norm error means how well a geometric configuration explains measurements
by its maximal reprojection residual. As pointed out in [1], the L∞ norm is perhaps
equally justified compared with the L2 norm for a noise model on measurements. The
L∞ norm error assumes the noise follows a uniform distribution between 0 and an error
bound. This is true in some cases of image measurements. For example in a discrete
image, the pixel precision may be hard to arrive at the sub-pixel level but it is accurate
in pixel unit. Thus the measurement error has equal chance to be 0 to 1 pixel, but has
no chance to be more than one pixel unit.

Using theL∞ norm for the noise model of measurements has many advantages. First,
some classical problems of multiview geometry have unique single minima with the
L∞ norm, such as triangulation and camera resectioning. Second, efficient optimization
solvers are available for lots of problems in the form of L∞ norm. Thus it is commonly
acknowledged that the running time of L∞ norm is between algebraic solutions and
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L1 or L2 norm based solutions. The efficiency of L∞ solutions is a key factor for its
popularity and usability, especially in some real time cases. It is also the basis to make
more problems globally optimal solvable in a large scale, such as the relative pose
problem.

In previous research, many L∞ problems are formulated in the form of quasi-convex
(or strongly pseudo-convex) programming. With this formulation, efficient algorithms
are immediately available from the field of mathematical optimization. Quasi-convex is
not new and has been extensively researched for decades. Apparently there is no hope
to speed up the matured solvers any more. On the contrary of belief, we will show there
is still some room left to make it run faster for some vision problems.

The existing algorithms for mini-max problems are mostly based on self-dual linear
or second-order-cone programming (SOCP). They heavily depends on general solvers
from self-dual programming. In this paper, we will propose a fast specific solver for the
L∞ norm minimization.

2 Related Works

Hartley and Schaffalitzky [2] proposed to use the L∞ cost function in geometric vision
problems. Since then there has been a booming interest in the L∞ norm. The solved
vision problems under the L∞ formulation have been continuously growing, such as
camera localization [3], camera motion recovery [4], and calibration [5]. Almost at the
same time, Kahl, and Ke & Kanade have found many L∞ minimization problems are
of quasi-convex [6,7]. After that, Olsson et al. [8] found a stronger property for these
problems, which is pseudo-convex. Based on this property, they proposed two methods
to speed up the standard bisection algorithm. One is a solution based on KKT condi-
tions. They use LOQO software to search global optima based on the conditions, but it
suffers convergence problem while optimizing over variables with a large dimension.
Another one is a special case of Dinkelbach type algorithms [9] which is discovered
by Agarwal et al. [10]. This discovery brought us to the field of generalized fractional
programming [11]. Among algorithms in this research field, they recommended to use
Gugat’s algorithm [12] as a standard algorithm for L∞ optimization.

The development of generalized fractional programming could be traced back to the
landmark work of [13] which gave rise to the field of interior-point methods. Mod-
ern optimization solvers are focused mainly on elegant primal-dual methods which is
a powerful class of interior-point methods [14]. The mainstream of research on gener-
alized fractional programming is using generic solvers such as SeDuMi [15]. Never-
theless, there have been interior point methods developed specially for fractional pro-
grams [16,17] for more than a decade. Unfortunately, these specialized methods have
only comparable performance with the Dinkelbach type algorithms and no significant
speedup has been found.

Besides solving full optimization problems, another strategy of solvingL∞ problems
is based on the fact that only a small subset of measurements constrains the solution.
Seo & Hartley has proposed an iterative algorithm to construct the supporting set of
optimal solution [18]. The efficiency of the algorithm depends on the distribution of
L∞ residuals which is observed in [10]. In [19][20], it has been shown that the number
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of measurements in the supporting set is no more than n+ 1, where n is the dimension
of x for problem minx maxi fi(x), and this has been further explained by the number
of extremal points in the simplex solution of linear programming (LP) [21]. Also, the
randomized algorithms of [19] work well on triangulation problem, but the complexity
of subset selecting grows (sub)exponentially with n.

Finally, works on the approximation for L∞ norm are interesting as well. In [22], a
smooth function has been proposed to approximate the L∞ norm gradually for address-
ing its non-differentiability. They use gradient-descent method to optimize the smooth
function and the algorithm is fast to get approximate solutions for triangulation. In our
practice, we observe that gradient-descent performs well for small dimensional prob-
lem, but the performance on large dimensional problem suffers slow convergence very
often. With the popularity of the L∞ norm, new practical formulations similar to this
norm are also promising [23]. In this paper, we limit our scope on the L∞ norm.

3 Problem Background

In this section, we review some parametric formulations [10] on L∞ problems in mul-
tiview geometry and give a brief description of the underlying idea of our method.

In [8][21], it has been shown that many multiview geometry problems (triangulation,
known-rotation) could be written in the following minimax form,

min
x

maxi
‖(aT

i1x+ b1,a
T
i2x+ b2)‖

aT
i3x+ b3

(1)

s.t. aT
i3x+ b3 > 0, i = 1, ...,m (2)

where x and aij , j = 1, 2, 3 belong to R
n. The norm ‖ · ‖ is usually L∞, L1, or L2

norm. Using L∞ or L1 norm as reprojection error provides four linear constraints from
a measurement, and the L2 norm error gives a second-order cone constraint from a
measurement. Constraints (2) come from the requirement of the depth of a 3D point
should be positive. We use X to denote the polyhedron which is the feasible region of
(2). Then (1-2) is a special case of a more general version (Let g2(x) be the denominator
of (1) and g1(x) be the numerator of (1), then (1)-(2) is converted to O.)

O : min
x,γ

γ (3)

s.t. g1(x)− γg2(x) � 0 (4)

x ∈ X γ ≥ 0, (5)

where g1(x) − γg2(x) � 0 is a short form of m inequalities g1i(x) − γg2i(x) ≤
0, ∀i = 1, . . . ,m. Also, g1(x) is convex and g2(x) is concave. Thus the set Sγ =
{x|g1(x)− γg2(x) � 0} is a convex set for fixed γ. For the bisection algorithm, each
iteration solves the following convex problem,

Pγ : Find x (6)

s.t. g1(x)− γg2(x) � 0 (7)

x ∈ X . (8)
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Previously proposed algorithms need to solve a series of feasibility problem Pγ , and Pγ

is formulated as Qγ ,

Qγ : min
x,w

w (9)

s.t. g1(x)− γg2(x) � w1 (10)

x ∈ X . (11)

The problemQγ could be solved by primal-dual interior point methods. We use (x∗, w∗)
to represent the solution of the problemQγ∗ for a given γ∗. If w∗ ≤ 0, then the problem
Pγ∗ is feasible, otherwise it is infeasible.

Previously, it has been thought we could not vary γ in Newton steps due to it is not on
the central path. For methods like bisection, Dinkelbach, or Gugat, they need to solve
problems of Qγ independently. Suppose a sequence of γ for problem Qγ is (γ1, γ2, ...).
The solution of Qγk

will not be used for Qγk+1
in these methods. Therefore every

single convex optimization problem Qγk
needs a standard iterative procedure to get

the solution. Although we could stop the iteration once we get w ≤ 0 in bisection, it
cannot save much iterations when γ is near optimal. This is because the feasible region
becomes small with γ approximating to optimal, and the minimized w will be near to
zero. In Dinkelbach or Gugat algorithm, the minimized w is solved such that γ could be
reduced as much as possible from the solution of Qγ . In the kth iteration of Dinkelbach
algorithm, (xk, wk) is obtained by solving Qγk

, then γ is updated as

γk+1 = max
i

g1i(xk)

g2i(xk)
. (12)

This updating is aggressive and make xk locate on the boundary of the feasible region
of Pγk+1

. Thus xk is not used for the initialization of Qγk+1
.

Intuitively, if we relax γk+1 a little bit to a bigger value γk+1 + ε, the feasible region
of Qγk+1+ε will be expanded and xk will be an interior point for the problem Pγk+1+ε,
and (xk, 0) will be an interior point for the problem Qγk+1+ε. This is our original idea
on how to connect the two optimization problems Qγk

and Qγk+1
. The relaxation and

updating strategy will be further explored in subsection 4.2.

4 Our Method

In this section, we will propose a method to vary γ in Newton-like steps of primal-dual
interior point algorithm.

The key of our method is how to get an updating step toward the optimal solution
from current point xk in the problem O. After moving forward a step, we get a new up-
per bound from the updated location of x. A direct way to get a good step is computing
the optimal solution of Qγk

, but it costs lots of Newton-like iterations. Among these
iterations, the first step is usually the largest and makes a significant progress towards
the optimal solution, and other steps will move slowly compared with the first step. The
optimal solution of Qγk

usually has a distance with the optimal solution of O when the
feasible region is not small. Thus we update xk to xk+1 after the first Newton-like step
which is computed based on the formulation of Qγk

.
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Next we will propose to use a dual infeasible step for Qγ , and the updating strategy
for γ will be introduced after this.

4.1 Dual Infeasible Step for Qγ

To introduce how we compute an updating step from a point (x, w) for problem Qγ , let
us consider a more general convex programming problem.

Qg : min
x

f0(x) (13)

s.t. f(x) � 0, (14)

where f0 is a convex objective function, f(x), which is composed ofm functions(f1, ...,
fm), is a mapping from a n + 1 dimensional variable x to a m dimensional variable.
The problem Qγ is a special case of the problem Qg , and here the symbol x in Qg rep-
resents (x, w) in Qγ . In the following context, x is interchangeable with (x, w). The
Lagrangian function of Qg is

L(x,λ) = f0(x) + λT (f(x)). (15)

We also assume constraints (14) are convex and KKT conditions are applicable, then an
optimal solution(x∗,λ∗) satisfies

Qg KKT :
∂L

∂x∗ = 0 (16)

λ∗ ◦ (f (x∗)) = 0 (17)

f(x∗) � 0 (18)

−λ∗ � 0, (19)

where the symbol ◦ is a Hadamard (entry-wise) product operator. Given an initial value
of (x0,λ0), we want to solve KKT equations for the updating of (x,λ).

Next, we customize the long-step strategy in [14] for our procedure.

Step with Centering-Corrector. For the notation, the superscript ·a denotes affine
scaling step. Here the affine scaling means the different scaling along the steps of primal
and dual variables. The symbol Δ with a variable means the updating for the variable.
From KKT conditions of Qg, we want to make the updating steps satisfy the conditions

∂L

∂x
(x0 +Δxa,λ0 +Δλa) = 0 (20)

(λ0i +Δλa
i )fi(x0 +Δxa) = 0, i = 1, ...,m. (21)

The surrogate duality gap μ̂ for any x satisfies f(x) ≺ 0 and λ 
 0, is

μ̂ = −λTf(x)/m. (22)

It would be the duality gap μ if λ were dual feasible.
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Using the first order approximation for (20-21), we could get the following
equations,[∇2f0(x) +Σm

i=1λi∇2fi(x) Df(x)T

−diag(λ)Df (x) −diag(f (x))

] [
Δxa

Δλa

]
= −

[
rd
rc

]
, (23)

where
rd = ∇f0(x0) + JTλ0 (24)

is called dual residual, and rc is called centrality residual by adding a centering
corrector term,

rc = −f(x0) ◦ λ0 − μ̂

t
1, (25)

where the weights between centering and reducing duality gap are controlled by t. For
L1 or L∞ norm residual, Qγ is a LP, the affine scaling step is very efficient and we set
a large t = 10 in this case. For L2 norm residual, Qγ is a SOCP, and make the current
step towards more to current central path achieving fast convergence, we set t = 2 for
this case.

Let H = ∇2f0(x) + Σm
i=1λi∇2fi(x), J = Df(x), C = −diag(f (x))−1, S =

−diag(λ)Df (x)C, then we have

(H − JTSJ)Δxa = −rd + JTCrc. (26)

After get Δxa by solving this normal equations, Δλa is got by back substitution

Δλa = −Crc − SJΔxa. (27)

The affine step lengths along directions of Δxa and Δλa are

αa
x = argmax

α
{α ∈ [0, 1]|f(x+ αΔxa) � 0}, (28)

αa
λ = argmax

α
{α ∈ [0, 1]|λ+ αΔλa 
 0}. (29)

Equations (23) may be solved efficiently when H − JTSJ is sparse in some com-
puter vision applications. Using the sparsity in L∞ norm minimization for structure and
motion reconstruction has been proposed in [24,25].

4.2 Relaxation

The central path C of Qγ is a set of primal dual points (x,λ) satisfy

−λ ◦ f(x) = μ1. (30)

It is unnecessary that a sequence of x generated in iterations flows exactly along the
central path. We only need to make the sequence along a neighborhood of central path
for convergence, and this is the main reason attributed to the success of primal-dual
method. We use a very large neighborhood around the central path which is represented
as N−∞(ζ),

N−∞(ζ) = {(x,λ)| − λifi(x) ≥ ζμ, for all i = 1, ...,m}, (31)



122 Z. Dai et al.

where ζ ∈ (0, 1). For each iteration, we need to set (γ,x,λ) to guarantee (x,λ) in a
region N−∞(ζ) such that the procedure could converge. The region size of N−∞(ζ) is
controlled by the parameter ζ. A simple method of relaxation is to add a small value
on γ, and then ζ value could be computed from the γ relaxation by equation (31). This
strategy will generate neighborhoods for a sequence of different ζ value.

Back to the problem Qγ , we set w to zero for each new iteration. In the kth iteration,
(xk, λk) comes from the step

xk = xk−1 + αa
xk−1

Δxa
k−1, (32)

λk = λk−1 + αa
λk−1

Δλa
k−1. (33)

For the γ sequence, we set

γk = min{max
i

g1i(xk)

g2i(xk)
, γk−1}, (34)

which makes Pγk
be always feasible. Assume we relax γk to

γ
′
k = γk +Δγk, (35)

then new steps for (xk,λk) could be got by the equations (23) which is derived from
Qγ

′
k
.

The relax strategy described above works well in our practice. However, we found a
more sophisticated strategy. For the problem Qγk

, if the γk is near optimal, the solution
of w will be close to zero. The finally optimal w is pre-known to be zero. The point
((xk, 0),λk), where xk ∈ X , is not on the region of N−∞(ζ), because (xk, 0) makes
some constrains be strictly equal to zero from last updating. Instead of relaxing on γ,
we could modify w value so that ((xk, w),λk) belongs to N−∞(ζ). The modification
on x has no influence on x. The (xk, wk) is feasible for any wk ≥ 0. In each step, if
λk is dual feasible,

w
′
k = ζμk/max

i
λi +max

i
(fi(xk, 0)), (36)

which guarantee ((xk, w
′
k),λk) ∈ N−∞(ζ). However, in each iteration we have a dual

residual
rλk

= ∇f0(xk) + JTλk (37)

which is not equal to 0. Thus we use the surrogate gap to replace the unknown duality
gap in (36) to approximate w

′
k,

wk = ζμ̂k/max
i

λi +max
i

(fi(xk, 0)). (38)

This cannot guarantee ((xk, wk),λk) ∈ N−∞(ζ), but it will make ((xk, wk),λk) in a
similar neighborhood with an unknown ζ parameter.

The term maxi(fi(xk, 0)) means the maximum infeasibility for xk in constraints.
In the initialization, it may be bigger than zero for a random starting point, such as
a point behind a camera in the triangulation problem. After the initialization, the point
will move to feasible region quickly and the maximum infeasibility will always be zero.
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4.3 Algorithm

Now we are ready to present our complete method in Algorithm 1.

Stop Criterion. The condition in line 27 is the stop criterion. When rd is very small,
the surrogate gap μ̂ is close to the duality gap. Therefore, if μ̂ is near to zero, current
solution (x∗, w∗) of Qγ∗ will be near optimal. Under this condition, if w∗ is near to
zero, then the γ∗ will be near optimal. This criterion guarantees the solution (x, γ)
arrives at a desired precision through controlling ε1 and ε2.

Initialization. Varying γ in the procedure could take advantage of a good initial point.
Previous methods use a dummy initial point. We make the solution approaches to the
global optimum gradually. We recommend to use an algebraic solution for an initial
point. The time complexity of an algebraic solution is comparable with one Newton step
in other geometrically meaningful solutions. In our experiments, we solve the equations

g1(x) = 0. (39)

This is over-determined, and we compute its closed-form linear least-squares solution.
However, an algebraic solution may not in χ of Qγ in very rare cases. For this situa-
tion, we recommend to employ standard primal-dual algorithm to solve the feasibility
problem

Find x (40)

s.t. x ∈ X , (41)

and the algebraic solution is used as its initial point.
Our algorithm is always dual infeasible until stopped. It is always primal feasible if

it starts from a feasible point. Otherwise it will take several steps to arrive at a primal
feasible point, and in subsequent steps it will be always feasible.

Outputs. We output both x and dual variables λ. The dual variables λ are useful. The
top non-zero values (at most n+1) of λ correspond to the supporting set of constrains.
Furthermore, the max number of supporting set can also be clearly explained from the
complementary slackness between constraints and dual variables.

Scaling. The Qγ we deal with is a scaled version by g2(xk) which is the same in
Dinkelbach type II algorithm.

Convergence Analysis. The code in lines 12-14 is an adjustment strategy. In the case of
making a small step on the last iteration, it guarantees the relaxed amount r no less than
c1 so that the relaxed point ((x, w),λ) has an enough large region to move. Assume the
relaxed point ((x, w),λ) locates on the boundary of N−∞(ζ), then the relation between
relaxed amount r and ζ is proportional

r ∝ ζ. (42)

With a bigger ζ, the next iteration will keep the point move along more towards the
central path. In experiments, we set c1 = 10−4 for L1 and L∞ norm residual, and
c1 = 10−2 for L2 norm residual. The condition wk ≥ c2 in line 15 prevents equations
(23) from getting a bad conditional number (we set c2 = 10−6). Lines 9-30 is a loop
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Algorithm 1: Relax algorithm

Input: x0, u0(upper bound of γ), functions g1(x) and g2(x)
Output: x, λ, γ

1 begin
2 k ← 0, wk ← 0, λk ← 1,αprev ← 1;
3 γk ← u0;
4 if x0 ∈ X then
5 γk ← min{maxi g1i(xk)/g2i(xk), γk};
6 end
7 while true do
8 Setting up coefficient for Qγk ;
9 repeat

10 μ̂k ← λT
k |f (xk)|;

11 r ← ζμ̂k/maxi λi;
12 if αprev < αT then
13 r ← max{r, c1};
14 end
15 r ← max{wk, c2};
16 wk ← r +maxi(fi(xk, 0));
17 Compute Δxa

k, Δλa
k from (23);

18 Compute αa
xk

, αa
λk

from (28-29);
19 αprev ← αa

xk
;

20 xk+1 ← xk + βαa
xk

Δxa
k;

21 λk+1 ← λk + βαa
λk

Δλa
k;

22 xk ← xk+1, λk ← λk+1;
23 γk+1 ← γk;
24 if xk ∈ X then
25 γk+1 ← maxi g1i(xk)/g2i(xk);
26 end
27 if |wk| < ε1 and μ̂k/m < ε2 and γk+1 − γk < ε1 and ‖rd‖2/m < ε1 then
28 return xk,λk, γk;
29 end
30 until γk+1 < γk;
31 k ← k + 1;
32 end
33 end

/* In our current implementation, we set ζ = 0.1. Parameter β
is close to one, and we set β = 0.995 to prevent the
duality pair −fiλi from being strictly equal to zero. The
parameter αT is set to 0.1 for L1 and L∞ norm residual,
and it is set to 0.2 for L2 norm residual. */
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to make sure from current point xk to move a point with a smaller γ. It is observed
that the loop usually takes one iteration to reduce γ value. It may take more than one
iteration from an initial point with an unrealistic large γ value (γ = ∞ if x �∈ X , and
we set γ = u0 if γ > u0), then the loop will work like the long-step path following
algorithm (see [26] or chapter 5 in [14]) to get a point with reduced γ. The process of
our algorithm produces a non-increasing sequence of γ, each iteration is a Newton-like
step piercing into the current feasible region of Pγ . The algorithm is always convergent
in our experiments, but rigorous proof is not pursued in this paper.

5 Experiments

In this section we report some experiments carried out to evaluate our method. Cur-
rently, the algorithm is implemented with Matlab.

Three algorithms were compared. Bisection refers to the implementation of Bisect
II from [10]. Dinkelbach II refers to Dinkelbach procedures of type II. Gugat refers to
Gugat’s algorithm [12]. Kernel solvers of the three algorithms are implemented using
SeDuMi [15]. In experiments, we found our algorithm can always get a precision of
optimal γ at least ε1 by setting ε2 = 10−2ε1. We present experimental results with
ε1 = 10−4. Parameters of compared algorithms are set such that the precision of γ
arrives at ε1. In algorithm 1, the algebraic solution of (39) is used to give an initial
point. For other algorithms, algebraic solution is used to provide an upper bound on γ
value. In the implementation, the setting up of coefficients of linear or second order cone
constraints is significantly efficient compared with the solver runtime, thus only the time
used by the solver is noted for wiping out the influence of different implementations of
the setting up. The time to get the initial algebraic solution is also not included.

Purely runtime may be influenced by computer configuration, coding language, and
compiling optimization. Besides comparing execution time, we compare the total itera-
tions for solving linear equations. It is generally recognized that the main computational
cost of mathematical optimization is spent on solving linear equations [27] (See chapter
10). Different algorithms such as the Gugat and Dinkelbach need to solve linear equa-
tions with the same structure and time complexity of (23). Therefore the most important
criterion for comparing the efficiency is to check how many iterations needed to get the
global optimum.

5.1 Experiment on Triangulation

We use simulated data in this experiment. We randomly generate m views for a random
3D point, where m = 50 in the following report. The 3D point is located within a cube
in front of all m views.

Our algorithm is always convergent from any initial point. Figure 1 is a running case
using 20 different random initial points with the L2 norm for measurement residual.

Figure 2 and 3 show the runtime and iterations of 100 random running cases for
three kinds of residual norms. Algorithm 1 significantly outperforms previous methods
on both the time and iterations. It only needs around 7 iterations to jump from algebraic
solution to L∞ solution with high precision. The runtime is in log scale. It shows that
algorithm 1 is ten times faster than previous solvers.
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5.2 Structure and Motion Recovery with Known Camera Orientation

For SOCP formulation, Sedumi cannot solve problems in a very large scale (out of
memory error). Here, we present experiments on two real standard data set, Dino and
Oxford which are publicly available from the Oxford Visual Geometry Group. The
Dino data set contains 36 cameras and 127 3D-points. The Oxford data set contains
11 cameras and 737 3D-points. For Gauge freedom, it is removed through fixing the
first 3D point location and assigning the third coordinate of the first camera location
to 1 as a scale of the reconstruction. The problem Qγ running on these data sets is
an optimization over 485 variables and 2240 variables for the Dino and Oxford data
sets respectively. Table 1 and 2 list the compared results on runtime and iterations.
Algorithm 1 saves both runtime and iterations.

Table 1. Running iterations and time on the Dino experiment. The data set contains 36 cameras
and 127 3D-points which are visible in at least 2 images. The total number of measurements is
2667. Under each algorithm, the number of iterations is on the left column and the runtime is on
the right column in seconds. The number in the parentheses indicates the number of times Qγ

was solved.

Residual norm Bisection Dinkelbach II Gugat Alg. 1
L∞ 190(6) 8.22s 91(3) 3.83s 58(2) 2.46s 27 1.09s
L1 354(14) 14.04s 75(3) 3.21s 46(2) 1.82s 28 0.92s
L2 295(10) 62.33s 80(3) 17.32s 56(2) 11.84s 31 1.07s

Table 2. Running iterations and time on the Oxford experiment. The data set contains 11 cameras
and 737 3D-points which are visible in at least 2 images. The total number of measurements is
4035. Under each algorithm, the number of iterations is on the left column and the runtime is on
the right column in seconds. The number in the parentheses indicates the number of times Qγ

was solved. f denotes numerical failure.

Residual norm Bisection Dinkelbach II Gugat Alg. 1
L∞ 164(7) 8.54s 78(4) 4.14s 88(4) 4.38s 31 1.40s
L1 243(10) 13.15s 111(5) 5.68s 96(4) 5.44s 32 1.72s
L2 172(7) 122.93s 172(6) 121.36s f f 33 1.73s

Oxford Data Set. It is very interesting that setting γ from 0.32 to 2.00 for the SOCP
formulation of Qγ , then the minimized w value is always positive and close to zero.
Figure 4 is the curve of minimized w value with varying γ for the problem Qγ running
on the Oxford data set. This makes termination criterion |w| < ε of Gugat’s algorithm
failed. For this data set, the problem Pγ is infeasible for 0.32 < γ < 2.00, but there
exists a solution for Qγ with huge depth of range of camera and structure configuration
and with the objective function w is minimized near to zero. In the original Gugat’s
algorithm, the stop criterion is either |w| < ε2 or the gap between upper bound and
lower bound of γ is less than ε1. Thus the algorithm will stop running on this data set
once it predicates 0.32 < γ < 2.00. We fixed this through changing |w| < ε with an
additional requirement, which is the new estimated γ should not be far away from the
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Fig. 4. The optimized result of w for the Oxford data set in the second-order cone formulation of
Qγ with varying γ from 0 to 2.50

current upper bound of γ. With the new criterion, Gugat’s algorithm gets a solution with
1e-2 precision on γ and stopped due to numerical error of SeDuMi.

6 Conclusions

In this paper, we have demonstrated a fast specific solver for L∞ problems in multiview
geometry. The method is general and applicable to all the different L∞ problems and it
may also be used for generalized fractional programming in other fields.

In future, we will research on using finite termination techniques to get optimal so-
lution of both γ and x when γ and x are advanced enough.
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