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Abstract— Multiple-Input Multiple-Output - Orthogonal Fre-
quency Division Multiplexing (MIMO-OFDM) is adopted to
vehicular networks to increase the capacity, reliability and
speed. In this paper, iterative demodulation and decoding
algorithms are studied to approach the capacity of MIMO-
OFDM vehicular networks. By analysing the drawbacks of the
Gaussian approximation on the interference cancellation, Non-
Gaussian approximation is proposed to enhance the perfor-
mance of interference cancellation based detectors with large
constellations. Simulation results demonstrate that the proposed
non-Gaussian algorithm can achieve a significant performance
gain over existing ones with high order constellations.

I. INTRODUCTION

To make transportation safer, more efficient and less harm-
ful, vehicle-to-infrastructure and vehicle-to-vehicle commu-
nications are currently being intensely investigated and de-
veloped [1]–[8]. Key characteristics of vehicular channels are
shadowing, high Doppler shifts, and inherent nonstationarity.
An international standard, IEEE 802.11p [9], which has
gained considerable importance. For the improvements in
coverage, reliability, scalability and delay, multiple antennas
techniques are recommended to exploit spatial diversity for
increased diversity and reliability.

To meet ambitious target data rates as 1 Gb/s in local
areas and 100 Mb/s in wide areas, MIMO technique [10],
[11]is expected to be deployed which promise a linear
increase of the wireless link capacity. Furthermore, OFDM
has been selected for the downlink due to its robustness
to the multipath as well as its flexibility in the resource
allocation. To exploit the potentials of MIMO-OFDM, one
of the challenges is the complexity of decoding algorithm at
the receiver end.

For uncoded MIMO systems, a low complexity detection
scheme is proposed in [12], which is a nulling and can-
celling scheme. In [13], a technique referred to as “sphere
decoding”(SD) is proposed for lattice code decoding. This
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SD approach is extended to coded MIMO systems in [14],
which iteratively detect and decode any linear space-time
mapper combined with an outer channel code. Computing the
exact log likelihood ratio (LLR) in [14] requires a complexity
exponential in the number of antennas and in the size of the
constellation. A list SD and max-log approximation are used
to approach the optimal performance with low complexity.
However, the complexity of SD based algorithms depends
on signal-to-noise (SNR). Different approach [15]–[20] to
adopt soft information in iterative detection and decoding
is using non-linear interference cancellation followed by a
single input and single output (SISO) iterative detector and
decoder in [21], which has a low complexity.

In this paper, we efficient iterative detection and decoding
for MIMO-OFDM systems. We follow the iterative architec-
ture in [14], where the detector and the decoder exchange
information. Different algorithms such as those in [14]–[20]
differ in the way how the soft information is generated from
the detector. We first review the algorithm using Gaussian
approximation on the interference in the LLR value com-
putation. However, the Gaussian approximation does not
work well for high order modulations such as 64 quadrature
amplitude modulation (QAM). We propose a class of non-
Gaussian approximation for any constellation by writing the
probability mass function (pmf) of the constellation points
into a unified form and relaxing the variable to take real
numbers rather than a discrete set of numbers. By replacing
the Gaussian distribution with the non-Gaussian one and
integrating over the resulting continuous probability density
function (pdf), we obtain closed-form of LLR value. In the
proposed algorithm, the a priori probability is used to update
the list at each stage, where the a priori probability is approx-
imated using Gaussian and non-Gaussian approximations.
Simulation results show that the proposed algorithms achieve
a superior performance over existing ones particularly for
high order modulation.

The rest of the paper is organized as follows. In Section II,
the MIMO-OFDM system model is presented. In Section III,
the iterative receiver structure is outlined. A non-Gaussian
approximation based algorithm is given in Section IV. Sim-
ulation results are given in V and Section VI contains the
conclusions.

II. SYSTEM MODEL

We consider a MIMO OFDM system with M̃ transmit and
N receive antennas. The system has Ns subcarriers in an
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Fig. 1. The diagram of a MIMO-OFDM system.

OFDM block. There are M data streams to be transmitted1.
The constellation Qm is applied on stream m, where Cm is
the number of bits per constellation symbol. The incoming
bits of each stream m of length NsCmRm,m = 1, . . . , M,
is encoded using a channel code (typically a convolutional
or turbo code) of rate Rm, resulting in a bit vector bm. The
encoded bits are converted into symbols using a mapping
function xi,m = Mm(bm((i−1)Cm +1 : iCm)) (e.g., Gray
mapping and set partitioning mapping), i = 0, ..., Ns − 1,
where xi,m is the symbol to be transmitted over subcarrier
i and antenna m and we have used Matlab notation. The
Inverse Discrete Fourier Transform (IDFT) of the data block
x0,m, . . . , xNs−1,m yields the time domain sequence, i.e.,

Xj,m =
1√
Ns

Ns−1∑

i=0

xi,mej2πij/Ns , j = 0, . . . , Ns − 1. (1)

The time domain symbol Xj ,m is assumed to obey the
component-wise energy constraint E‖Xj,m‖2 = Es/M . A
cyclic prefix (CP) is added to mitigate for the residual ISI
due to previous OFDM symbol. After parallel-to-serial (P/S)
conversion, signal is transmitted from the corresponding
antenna. The channel between each transmitter/receiver pair
is modelled as multipath channel. The channel between
transmit antenna m and receive antenna n is expressed as

hn,m(t) =
Γn,m−1∑

l=0

αn,m,lδ(t− τn,m,l), (2)

where Γn,m is the number of taps, αn,m,l is the l-th complex
path gain, and τn,m,l is the corresponding path delay. We
assume block fading model in this paper, where the channel
is assumed to be constant in each OFDM data block.

At the receiver side, serial-to-parallel (S/P) conversion is
first performed and the CP is removed. After DFT operation,
the received signal in frequency domain can be expressed as

yi,n =
M∑

m=1

Hi,n,mxi,m + wi,n, (3)

where i = 0, . . . , Ns − 1, n = 1, . . . , N , n denotes the re-
ceiver antenna indexing, wi,n is the additive white Gaussian
noise (AWGN) with zero mean and variance σ2, and

Hi,n,m =
1√
Ns

Γn,m−1∑

l=0

αn,m,le
−j2πdτn,m,l/Tsci/Ns , (4)

1We have M ≤ M̃ due to possible beamforming at the transmitter. In
this case, we consider an equivalent channel with M transmit antennas.

where Ts is the symbol duration. We can write Eq. (3) in
vector form as

yi = Hixi + wi, i = 0, . . . , Ns − 1. (5)

The diagram of a MIMO-OFDM system is given in Fig.
1. We can consider Eq. (5) as a MIMO system on each
subcarrier. In the following parts of this paper, we will
neglect the subscript i in Eq. (5).

III. ITERATIVE DETECTION AND DECODING
ALGORITHMS

The channel code and the MIMO channel can be con-
sidered as a serially concatenated scheme [14] [21]with an
outer channel encoder and inner constellation mapping with
block encoding matrix Hi at each subcarrier. To decode
b1, . . . ,bM , the optimal joint detector and decoder should
compute the likelihood of each bit given all the received
signals y1, . . . ,yNs−1 on all subcarriers. However, this is
computationally infeasible in practice. Several algorithms
[14], [17]–[19], [21] solve this problem approximately using
the “turbo principle”, where information is exchanged be-
tween the detector and decoder in an iterative fashion. In this
section, we focus on how to generate extrinsic information at
each subcarrier using the received signals on this subcarrier
using the a priori information on each bits from the channel
decoder. The generated extrinsic information on all subcarrier
is then put into the soft in and soft out channel decoder (e.g.,
Bahl-Cocke-Jelinek-Raviv (BJCR) algorithm) for the next
iteration decoding and detection. Different joint detection and
decoding algorithms share the same outer channel decoder.
Their difference lies in how the extrinsic information from
the inner mapping. The diagram of iterative decoding and
demodulation for MIMO-OFDM is given in Fig. 2.

-

-
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LLR

EXT

Demodulator Deinterleaver
Turbo

Decoder

Interleaver

+

+

Fig. 2. The diagram of iterative decoding and demodulation for MIMO-
OFDM.

A. iterative MAP Detection and Decoding

The a priori probability (APP) is usually expressed as a
log-likelihood ratio (LLR) value. In the rest of this paper,
the logical zero for a bit is represented by amplitude level
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bi = −1 and logical one by bi = +1, respectively. After
obtaining the APP from the channel decoder (initially the
APP is set to be zero), the a posteriori LLR value of the
bit bi, i = 0, ...,

∑M
m=1 Cm − 1 conditioned on the received

vector y is

L(bi|y) = log
Pr(bi = +1|y)
Pr(bi = −1|y)

. (6)

If we assume that the interleaver at the encoder is ideal such
that the bits in each modulation symbol are approximately
statistically independent of one another, we can rewrite Eq.
(6) using Bayes’ theorem as Eq. (7) on next page, where
Xi,+1 and Xi,−1 are the set of 2

∑M
m=1 Cm−1 symbols vectors

such that the i-th bit is +1 or −1, respectively, i.e., Xi,±1 =
{x|M(b) = x, bi = ±1},b = B(x) is the inverse mapping
of x = M(b) and Bj(x) is the j-th bit of B(x).

In the case of Gaussian channel as in Eq. (5), we can
further write L(bi|y) as Eq. (8) on next page. In [14],
instead of using Eq. (8) directly, max-log approximation
is adopted to compute LE(bi|y) as Eq. (9). However, the
simplification Eq. (9) still has a complexity exponential in
the total number of bits or

∑M
m=1 Cm. In [14], a list sphere

decoder (LSD) is used to resolve this issue by searching
only over a list L containing Ncand elements, i.e., Eq. (10).
The list is generated by checking only points within the
hypersphere of radius r, i.e., ‖y −Hx‖2 ≤ r2, where r is
chosen according to the noise variance such that the number
of points within the hypersphere is not far away from y. The
performance of the LSD base algorithm depends on the size
of the list. Clearly, when the list size is equal to the number
of all possible constellation points, i.e., 2

∑M
m=1 Cm , Eq. (10)

reduces to (9).

B. Iterative MAP Detection and Decoding with Gaussian
Approximation

The complexity of computing the LLR value from Eq.
(7) is high. Note that we can rewrite (7) as Eq. (11),
where xm denotes the symbol that bi belongs to, i.e.,∑m−1

m′=1 Cm′ ≤ i <
∑m

m′=1 Cm′ , x−m denotes the vectors
contains all entries of x except the m-th entry, and and
Xm

i,+1 and Xm
i,−1 are the set of 2Cm−1 symbols such that

bi is +1 or −1, respectively. From Eq. (11), we need to
compute

∑
x−m

Pr(x−m, xm) Pr(x−m) for any given xm.
A suboptimal approach is to replace the summation over
x−m with an integration over a continuous distribution. One
typical assumption is to use the Gaussian distribution. We
assume the entries of x−m are independent Gaussian random
variables with mean

µm′ = E{xm′} =
∑
x

m
′

Pr(xm′ )xm′ (12)

and variance

ν2
m′ = E{|xm′ |2} − E2{xm′}

=
∑

x
m
′∈C

m
′

Pr(xm′ )|xm′ |2 − |µm′ |2, (13)

m′ = 1, . . . , M, m′ 6= m. When Gaussian channel model
Eq. (5) is used, we have

Pr(y|xm) =
∑
x−m

Pr(y|x−m, xm) Pr(x−m)

≈
∫ +∞

−∞
Pr(y|x−m, xm)f(x−m)dx−m

=
∫ +∞

−∞

1
(πσ2)N

exp
(
−‖y −H−mx−m − hmxm‖2

σ2

)
×

1

πN
∏M

m′=1,m′ 6=m ν2
m′
×

exp


−

M∑

m′=1,m′ 6=m

|xm′ − µm′ |2
ν2

m′


 dx−m

∝ (−(y −H−mµ−m − hmxm)HR−1
m

(y −H−mµ−m − hmxm)) ,
(14)

where the integral is from −∞ to ∞ in each dimen-
sion, H−m contains the columns of H except the m-
th column, hm is the m-th column of H, µ−m =
[µ1, . . . , µm−1, µm+1, . . . , µM ],

Rm =H−mdiag{ν2
1 , . . . , ν2

m−1, ν
2
m+1, . . . , ν

2
M}HH

−m

+ σ2IN ,
(15)

and IN is an N by N identity matrix. Substituting (14)
into (11), we obtain the LLR value under Gaussian approx-
imation. The complexity of computing LLR reduces from
2

∑M
m=1 Cm to 2Cm .

IV. PROPOSED ITERATIVE DETECTION AND
DECODING ALGOTITHMS

A. Motivation

There are several issues with the existing algorithms.
• Many practical wireless communications standards now

adopt high order constellations such as 64QAM. The
max-log approximation in (9) may not work well with
high order constellations as the number of terms in the
summation in (8) is large in this case. Moreover, the
LSD may be hard to implement in hardware directly
due to its sequential nature.

• The Gaussian approximation based algorithms avoid the
max-log approximation but the Gaussian assumption
incurs some performance loss. It is commented in
[19] that the performance of Gaussian approximation
algorithms is not good for higher order modulations.

We wonder whether we could combine these two strategies
and take the advantage of both. The main contribution in
this section is summarized as follows: We propose an non-
Gaussian approximations for LLR computation. As practi-
cal constellations have a finite alphabet structure, the non-
Gaussian distribution is integrated over a bounded set instead
of from −∞ to +∞.

In this section, we assume squared-QAM is used at
all transmit antennas, which is the case in many wireless
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L(bi|y) = log

∑
x∈Xi,+1

Pr(x|y)∑
x∈Xi,−1

Pr(x|y)
= log

∑
x∈Xi,+1

Pr(y|x)
∏∑M

m=1 Cm−1
j=0,j 6=i Pr(bi = Bj(x))

∑
x∈Xi,−1

Pr(y|x)
∏∑M

m=1 Cm−1
j=0,j 6=i Pr(bi = Bj(x))

︸ ︷︷ ︸
LE(bi|y)

+ log
Pr(bi = +1)
Pr(bi = −1)︸ ︷︷ ︸

LA(bi)

(7)

L(bi|y) = log

∑
x∈Xi,+1

exp
(
−‖y−Hx‖2

σ2

)∏∑M
m=1 Cm−1

j=0,j 6=i Pr(bi = Bj(x))
∑

x∈Xi,−1
exp

(
−‖y−Hx‖2

σ2

) ∏∑M
m=1 Cm−1

j=0,j 6=i Pr(bi = Bj(x))
+ LA(bi)

= log

∑
x∈Xi,+1

exp
(
−‖y−Hx‖2

σ2 +
∑∑M

m=1 Cm−1
j=0,j 6=i,bi=1 LA(bj)

)

∑
x∈Xi,−1

exp
(
−‖y−Hx‖2

σ2 +
∑∑M

m=1 Cm−1
j=0,j 6=i,bi=−1 LA(bj)

) + LA(bi)

(8)

LE(bi|y) ≈ max
x∈Xi,+1



−

‖y −Hx‖2
σ2

+

∑M
m=1 Cm−1∑

j=0,j 6=i,bi=1

LA(bj)



− max

x∈Xi,−1



−

‖y −Hx‖2
σ2

+

∑M
m=1 Cm−1∑

j=0,j 6=i,bi=1

LA(bj)



 (9)

LE(bi|y) ≈ max
x∈L∩Xi,+1



−

‖y −Hx‖2
σ2

+

∑M
m=1 Cm−1∑

j=0,j 6=i,bi=1

LA(bj)



− max

x∈L∩Xi,−1



−

‖y −Hx‖2
σ2

+

∑M
m=1 Cm−1∑

j=0,j 6=i,bi=1

LA(bj)




(10)

LE(bi|y) = log

∑
x∈Xi,+1

Pr(y|x) Pr(x)∑
x∈Xi,−1

Pr(y|x) Pr(x)
= log

∑
xm∈Xm

i,+1
Pr(xm)

∑
x−m

Pr(y|x−m, xm) Pr(x−m)
∑

xm∈Xm
i,−1

Pr(xm)
∑

x−m
Pr(y|x−m, xm) Pr(x−m)

, (11)

communications standards. But the proposed algorithm can
be readily extended to other general constellations. With
squared-QAM, we can write (5) as a real system, i.e.,

[
R(yi)
S(yi)

]

︸ ︷︷ ︸
ỹi

=
[

R(Hi) −S(Hi)
S(Hi) R(Hi)

]

︸ ︷︷ ︸
H̃i

[
R(xi)
S(xi)

]

︸ ︷︷ ︸
x̃i

+
[

R(wi)
S(wi)

]

︸ ︷︷ ︸
w̃i

, i = 0, , . . . , Ns − 1,

(16)

where R(x) and S(x) denote the real part and imaginary
part of x, respectively and the entries of x̃i are from PAM
constellations. With a slight abuse of notations, we still use
(5) to represent the real system (16) in this section with the
entries of xi from PAM.

B. Iterative MAP Detection and Decoding with Non-
Gaussian Approximation

To motivate our non-Gaussian approximation, we start
with the BPSK, i.e., X ∈ {+1,−1}. Let Pr(X = +1) = p
and Pr(X = −1) = 1 − p. We can write this probability
mass function (pmf) into a single equation as

Pr(X = x) = p( x+1
2 )

2

(1− p)(
x−1
2 )

2

, x = ±1. (17)

A nature continuous approximation to this pmf is by relaxing
x to be a real number with a scaling factor to keep

∫
Pr(X =

x)dx = 1. Note that there are several choices of the pmf (17).
For example, we can choose Pr(X = x) = p

x+1
2 (1−p)

1−x
2 .

But this function will go to ∞ when x goes to ∞, which

is undesired. We can also choose Pr(X = x) = p
|x+1|

2 (1−
p)

|x−1|
2 . But this function is hard to obtain closed form of

integration.
The idea can be extended to higher modulation. For a

given modulation Q with Pr(X = xi) = pi and
∑

pi = 1,
we can write the pmf into a single equation as

Pr(X = x) =
∏

xi∈Q
p

∏
xj∈Q,xj 6=xi

(x−xj)2

∏
xj∈Q,xj 6=xi

(xi−xj)2

i , x ∈ Q

= exp




2(|Q|−1)∑

l=0

alx
l




(18)

The pdf can be obtained by relaxing x to be a real number.
When |Q| > 2, if we use (18) directly in (14), the integral
involves a polynomial greater than second order in the
exponential function, whose closed form may be hard to
obtain. Therefore, we approximate the pmf (18) with a
second order polynomial in the exponential function for any
Q, i.e.,

Pr(X = x) = exp(−(c + 2rx + ax2)). (19)

Note that the Gaussian distribution is a special case of (19),
which contains only two variables. The coefficients a, r, c are
found by solving

min
a,r,c

∑

i

ωi(exp(−(c + 2rxi + ax2
i ))− pi)2, (20)
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or
min
a,r,c

∑

i

ωi(c + 2rxi + ax2
i + log(pi))2, (21)

where ωi ≥ 0 is a weight for symbol xi. In practical
systems, we may only care about the symbols with the largest
probability. In this case, we can choose ωi = 1 for the
three largest probability symbols and ωi = 0 otherwise. The
solution of (21) can be readily obtained by least squares.

Except that the Gaussian approximation is not good for
some pmf, the integration in (14) is from −∞ to +∞, which
may distort the LLR value. Note that practical constella-
tions typically are usually finite alphabets, e.g., 2D-PAM is
{−2D+1,−2D+3, . . . , 2D−3, 2D−1}. We can integrate
from −U to U instead. Some possible choices of U are 2D or
2D−1+σ. When U = 2D, we approximate Pr(X = d) by
the integral between d−1 and d+1. When U = 2D−1+σ,
Pr(X = d) is approximated similarly as when U = 2D but it
takes into account of the noise variance at the two boundary
points. With (19) and the finite integration, we can write (14)
as

Pr(y|xm) ∝
∫ +U

−U

exp
(
−‖y −H−mx−m − hmxm‖2

σ2

−2rT
−mx−m − xT

−mA−mx−m

)
dx−m

∝ exp
(
−‖y − hmxm‖2

σ2

)

∫ +U

−U

exp



−2

(
rT
−m − 1

σ2
(y − hmxm)T H−m

)

︸ ︷︷ ︸
bT
−m

x−m

−xT
−m

(
A−m +

HT
−mH−m

σ2

)
x−m

)
dx−m

(22)

where r−m = [r1, . . . , rm−1, rm+1, . . . , rM ]T and A−m =
diag{a1, . . . , am−1, am+1, . . . , aM}, rm′ and am′ are ob-
tained from (20) and (21). Comparing with (14), we can see
that there are two main differences. First, r−m and A−m are
not from the matched mean and variance but from matching
the pmf directly. Second, the integral is from −U to U .

To compute the integral in (22), let the singular value
decomposition of Rm be VT ΛV and g(xm) = Vb−m,
where Λ = diag{λ1, . . . , λM−1}. We make a change of
variables by defining z = Vx−m. However, the integration
region of z is M−1 dimensional, this makes the integral hard
to compute. For simplicity, we enlarge the integration region
by setting a bound Zi = U

∑M−1
j=1 |Vi,j | for dimension i. We

can then upperbound (22) as

Pr(y|xm) ∝ exp
(
−‖y − hmxm‖2

σ2

)

M−1∏

i=1

∫ +Zi

−Zi

exp
(−2gi(xm)zi − λiZ

2
i

)
dzi

. (23)

Note that the second product in (23) also depends on xm.
In some cases, λi may be negative, so we cannot write the

integral into Q-function.

V. SIMULATION RESULTS

In this section, we consider a 2 by 2 MIMO-OFDM
system with 1024 subcarriers and 960 subcarriers are
used for data transmission. Perfect knowledge of channel
state information is assumed. Each transmit antenna is
assigned power P . The SNR is defined as P/N0, where
N0 is the noise power. We consider Extended Vehicular
A model (EVA) [22] in this section with delay profile
[0 30 150 310 370 710 1090 1730 2510]ns and power profile
[0 −1.5 −1.4 −3.6 −0.6 −9.1 −7 −12 −16.9] dB. The
channel power profile is normalized to unity. The scheme of
turbo encoder is a Parallel Concatenated Convolutional Code
(PCCC) with two 8-state constituent encoders and one turbo
code internal interleaver. The coding rate of turbo encoder
is 1/3. The transfer function of the PCCC is: G(D) =[
1, g0(D)

g1(D)

]
[23], where g0(D) = 1 + D2 + D3, g1(D) =

1 + D + D3. Eight iterations are performed within the turbo
decoder. 64 QAM and Gray mapping are considered in this
section.

The algorithms using (8), (9), (10), (14) are denoted
as MAP, MLM, LSD and MMSE-Soft SIC, respectively.
MMSE-No SIC denotes using (14) without iterations. In
LSD, we choose the list size L = 512 to be consistent with
[14]. The non-Gaussian approximation algorithm in Section
IV-B is denoted as Non-Gaussian.

A. BER Comparison of Different Algorithms

0 2 4 6 8 10 12

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

MAP
MLM
MMSE−Soft SIC
MMSE−NoSIC
Non−Gaussian
LSD, L=512

Fig. 3. BER comparison of different algorithms in a 2× 2 MIMO-OFDM
system over the EVA channel.

We first consider fixed scheduling, where both data
streams transmit using transport block size (TBS) 1916.
The bit error rates of different algorithms after simulating
20000 subframes are shown in Fig. 3. The channel varies
independently from subframe to subframe. All algorithms
except MMSE-No SIC use 6 iterations. It is clear that all the
iterative algorithms benefit from the information exchange
as compared with MMSE-No SIC. We can see that by using
only the max term in MAP MLM incurs a 0.5 dB loss over
MAP at BER = 10−3. MMSE-Soft SIC only has a 0.1 dB
loss over MLM at BER = 10−3. But the former only needs
to sum over 64 terms while the latter needs to compute
32 × 64 = 2048 terms in the numerator and denominator
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in (9), respectively. LSD with L=512 incurs a 1 dB loss over
MAP at BER = 10−3 but with a higher complexity than
MMSE-Soft SIC. The Non-Gaussian approximation achieves
a 0.22 dB gain over MMSE-Soft SIC.
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Fig. 4. BER comparison of MAP algorithm with different number of
iterations in a 2× 2 MIMO-OFDM system over the EVA channel.

In practice, it is important that the decoding time satisfies
the timeline constraint. It is important to understand the
performance of the iterative decoders in terms of the number
of iterations. Fig. 4 shows the BER performance of the MAP
decoder with different number of iterations. We can see
that marginal performance gain diminishes as the number of
iterations increase. Three to four iterations is good enough
to achieve close to optimal performance.

VI. CONCLUSIONS
There is currently a significant interest in the design of

receiver to meet the increasing requirement on high data rate
of networks. In this paper, we have developed iterative detec-
tion and decoding algorithms for MIMO-OFDM with Non-
Gaussian approximation, which was proposed to enhance the
performance of interference cancellation based detectors with
large constellations. Simulation results demonstrate that the
proposed algorithms can achieve a significant performance
gain over existing ones with high order constellations.
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