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A B S T R A C T

With the deep integration of blockchain and Artificial Intelligence (AI), more and more
blockchain-based AI tasks are accomplished using Smart Contracts (SCs) and create win-win
solutions. That is, blockchain provides a trustworthy and decentralized data infrastructure
for AI, and AI helps blockchain perform tasks requiring intelligence. Since these special SCs
designed for blockchain-based AI tasks have different characteristics from the widely studied
SCs designed for business logic, we name them Intelligent Contracts (ICs) for a focused study.
In this paper, we systematically analyze ICs and propose a constructive framework for their
construction and application. Specifically, we first formulate two construction modes of current
ICs, including encoding AI models and scheduling AI collaboration. Then, we compare the
characteristics of these two modes theoretically and experimentally as a reference for future
mode selection. Finally, to extend the application of ICs and encourage AI-driven blockchain
intelligence, we propose a technical route that helps blockchain autonomously respond to
AI tasks through the dynamic and optimal configuration of ICs. Using typical AI tasks of
classifying IRIS, MNIST, and ImageNet data sets as examples, we implement and thoroughly
evaluate two modes of ICs on Ethereum. Based on the constructed ICs, we illustrate their
optimal configuration and automatic response process. Experimental results demonstrate the
effectiveness and feasibility of the proposed framework.

. Introduction

Blockchain intelligence [1], the convergence of two disruptive technologies, blockchain and artificial intelligence, has attracted
idespread attention recently as blockchain and AI can complement each other to revolutionize the coming digital transforma-

ion [2]. Intuitively, blockchain has the potential to provide AI with a trustworthy and decentralized data infrastructure, while
I can help blockchain extract valuable information and perform tasks that require intelligence, including learning, reasoning,
lanning, and problem solving. Compared to simply applying AI in the context of blockchain (e.g., data analysis on blockchain data),
ccomplishing AI tasks based on blockchain is considered a more profound integration of blockchain and AI, as well as an essential
pproach to facilitate decentralized AI and AI-driven blockchain intelligence [3]. AI-driven blockchain intelligence and AI-aided
lockchain intelligence are two relative concepts, where AI-aided blockchain intelligence concentrates on optimizing blockchain
hrough data analysis. And AI-driven blockchain intelligence expects blockchain to achieve the same intelligence as AI [4].
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Currently, blockchain-based AI tasks have led to many exciting advances. For example, blockchain-based AI marketplaces not only
elp share data and models while retaining ownership and privacy [5,6], but also help outsource or crowdsource learning tasks with
air incentives [7]. And blockchain-based distributed AI computing transforms traditional centralized AI into a semi-decentralized or
ecentralized architecture and helps eliminate single points of failure, incentivize trustless distributed collaboration, and innovate
dge intelligence [8,9]. Moreover, since Smart Contracts (SCs) are the key technology enabling the programmable blockchain and
eveloping SCs is much easier than building a dedicated blockchain from scratch [10], a growing number of proposals for blockchain-
ased AI tasks are implemented with the help of flexible and portable SCs. Examples include specifying collaboration protocols
ith SCs in blockchain-based AI marketplaces [11] and aggregating model weights with SCs in blockchain-based distributed AI

omputing [12]. SCs are gradually becoming the preferred intermediaries to accomplish blockchain-based AI tasks. And accordingly,
Cs designed for blockchain-based AI tasks are becoming vital modules to facilitate decentralized AI and AI-driven blockchain
ntelligence.

However, statistical studies indicate that the existing widely studied SCs are mainly designed for business logic. He et al. [13]
ave analyzed millions of SCs deployed on Ethereum, the most prominent SCs platform, and found that most of these Ethereum SCs
re highly homogeneous and mainly implement simple and similar control logic for tokens, games, Initial Coin Offering (ICO), and
o on. It is clear that SCs designed for blockchain-based AI tasks have different functionalities than conventional SCs designed for
usiness logic, which may lead to other characteristics and require a separate study. To make a distinction, this paper names this
pecial type of SCs designed for blockchain-based AI tasks as Intelligent Contracts (ICs). Although ICs show a bright future, their
urrent attempts are independent and fragmented, lacking systematic analysis. As a result, it remains unclear how to construct ICs
rom SCs, what their characteristics are, and how their applications contribute to AI-driven blockchain intelligence.

To fill this critical gap, we propose a constructive framework to guide the construction and application of ICs and conduct
systematic analysis. Specifically, we first analyze the current progress of ICs to formulate their construction modes. Then, we

omprehensively compare different modes of ICs to show their characteristics. Finally, we elaborate on a novel technical route to
ncourage AI-driven blockchain intelligence through the configuration of the constructed ICs. In summary, our contributions are as
ollows:

(1) We formulate two modes to construct ICs: Mode 1 for encoding AI models and Mode 2 for scheduling AI collaboration. We
xplain their core ideas with representative research.

(2) We analyze the advantages and challenges of these two construction modes from theoretical and experimental perspectives
s a reference for future mode selection. In particular, using typical AI tasks of classifying IRIS, MNIST, and ImageNet data sets as
xamples, we implement two modes of ICs on representative Ethereum blockchain, respectively, and evaluate their performance
horoughly. The experimental results demonstrate the effectiveness of the proposed framework.

(3) We propose maintaining an interaction and verification records-based trusted database in the form of a blockchain-based
ecentralized market for modular and reusable ICs and associated AI collaboration modules. Then, with the help of their dynamic
nd optimal configuration, blockchain can respond to different AI tasks, thus meeting the expectations of AI-driven blockchain
ntelligence. Based on the ICs constructed in experiments, we illustrate their optimal configuration and automatic response process
o show our feasibility.

The rest of this paper is organized as follows: Section 2 reviews related work; Section 3 proposes the constructive framework
nd compares SCs and two modes of ICs; Section 4 demonstrates the effectiveness of the proposed framework; Section 5 concludes
he paper.

. Related work

In this section, we briefly review the basic concepts and recent advances of blockchain and SCs, distributed AI, and the crossover
esearch on blockchain and AI.

.1. Blockchain and smart contracts

As the underlying technology of Bitcoin [14], blockchain is an append-only distributed ledger with chained data blocks
aintained and shared by all nodes in a decentralized system [15]. The concept of Smart Contracts (SCs) is first proposed and
efined by Nick Szabo as ‘‘a set of promises, specified in digital form, including protocols within which the parties perform on these
romises’’ [16]. After Ethereum with a built-in Turing-complete programming language introduces the concept, SCs running on
he blockchain become self-enforce and self-verify computer programs with preset conditional-response rules, that can accurately
ncapsulate and execute complex behaviors of distributed nodes. Benefiting from the decentralization, openness, transparency, and
amper-resistance inherited from blockchain, SCs help participants without mutual trust to trade and collaborate without any trusted
hird-party authority or intermediary, which significantly expands the application of blockchain.

As an emerging technology, SCs still have many key issues that restrict their developments, including security issues [17],
erformance issues [18], privacy issues [19] and legal issues [20]. In particular, the ideal SCs are expected to be on-chain smart
gents for distributed participants. Whereas the current SCs are mainly designed as a series of control logic that can only be executed
assively [21]. This intelligence gap restricts their widespread use, so there is an urgent need for crossover research on blockchain
2

nd AI.
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2.2. Distributed artificial intelligence

The recent advances of AI in machine learning [22], deep learning [23] and reinforcement learning [24] have paved the way for
any exciting applications in the field of robotics, computer vision and natural language processing. Most of these impressive results

dopt centralized architectures that require large-scale collected data and high-performance computing resources. And once these
ata and resources are hacked or limited, they will face great decision-making risks. Thus, distributed AI with better parallelism,
ault tolerance, and openness is increasingly attractive.

Traditionally, distributed AI has two research branches: distributed problem solving and multi-agent systems [25]. Distributed
roblem solving focuses on dividing a specific problem solving task among multiple cooperative and knowledge-sharing modules
r nodes [26], while multi-agent systems focus on the knowledge, goals, skills, and planning of multiple agents, as well as
heir collaboration and competitive mechanisms [27]. Recently, with the popularity of the Internet of Things (IoT) and mobile
omputing, more and more distributed AI computing architectures have been proposed to leverage edge intelligence. Federated
earning (FL) [28] and edge computing [29] are two of the most representative ones. Their core idea is to transfer computing
nd communication resources from the centralized cloud or server to the edge nodes, thus providing edge users with faster service
esponse, better data privacy, and fewer communication costs. Their advances highlight the advantages of distributed AI.

.3. Crossover research on blockchain and artificial intelligence

The convergence of blockchain and AI can be mutually beneficial. Currently, their crossover research has two directions:
lockchain-optimized AI and AI-optimized blockchain. In terms of blockchain-optimized AI, blockchain and SCs can serve as digital
nfrastructures to provide AI with credible and efficient resource sharing [30], data traceability [31] and collaboration incentive
echanisms [32]. On this basis, various distributed AI computing architectures can be architected for multiple AI tasks, thereby
riving the transformation from centralized AI to distributed and decentralized AI. There have been some attempts at blockchain-
ased FL, including BlockFL [33], FLchain [34], and CREAT [35]. For AI-optimized blockchain, the existing work mainly uses
I to analyze blockchain and SCs data and extract valuable information for their benign developments, including the analysis of

ransaction patterns [36], contract codes [37] and cryptocurrencies [38]. Since these data analytics do not improve the intelligence
f blockchain and SCs, some studies refer to them as AI-aided blockchain intelligence and point to the need for AI-driven blockchain
ntelligence. That is, with the help of AI, blockchain and SCs can have the capacity for learning, reasoning, planning, and problem
olving in an autonomous manner [4]. Accordingly, this paper names such a blockchain that can autonomously respond to requests
or accomplishing different AI tasks as an AI-driven blockchain.

To the best of our knowledge, while many researchers have reviewed the state-of-the-art crossover research on blockchain and
I [39], there is a lack of research specifically focused on ICs. For example, Pandl et al. [3] divide blockchain-based distributed AI
omputing into three categories: the computation within the blockchain, the computation in SCs, and the computation outside the
lockchain, where the latter two categories can roughly correspond to our Mode 1’s ICs featuring on-chain computing and Mode
’s ICs featuring off-chain computing. However, they only enumerate related work without in-depth analysis and comparison of
he two modes. At the same time, how to achieve AI-driven blockchain intelligence is still an open problem with little progress.
hus, our constructive framework aims to comprehensively analyze ICs and provide new ideas for encouraging AI-driven blockchain

ntelligence.

. Intelligent contracts

In this section, we explain the motivation of ICs, propose the constructive framework and compare SCs and two modes of ICs
heoretically.

.1. Why do we need intelligent contracts?

To answer this question, first, we examine the main functionalities of the current SCs from the available statistical studies. In
he literature, SCs are mainly classified from the perspective of design patterns and application domains. Table 1 summarizes some
epresentative taxonomies from these two perspectives. As can be seen, the taxonomies of design patterns aim to abstract the essential
evelopment structure of current SCs, while the taxonomies of application domains aim to reflect their high-level usage. All detailed
ategories listed in Table 1 show that the current SCs are mainly designed to implement domain-specific business logic. Oliva et al.
40] and He et al. [13] provide some more intuitive data. Oliva et al. [40] analyze 1.9 million Ethereum SCs deployed from July
015 (inception of Ethereum) to September 2018, and find that 72.9% of the high-activity SCs are token SCs, and 5 of the top-10
Cs with the highest activity are currency exchanges. He et al. [13] analyze nearly 10 million Ethereum SCs deployed from July
015 to December 2018, and find that over 96% of SCs have duplicates, and the most popular clusters of SCs are for tokens, ICOs,
nd Games. All these statistical studies indicate that the main functionalities of SCs at this time are tied to simple control logic.

However, a growing body of research has demonstrated the advantages of accomplishing AI tasks based on blockchain. For
nstance, Zhang et al. [44] propose a blockchain-based FL framework for device failure detection in industrial IoT to ensure client
ata privacy. Zhao et al. [7] propose a blockchain-based AI task outsourcing framework with integrity assurances and fair payments.
nd Sarpatwar et al. [45] propose a blockchain-based AI marketplace to trade data and models with guaranteed privacy and fairness.
3

ore importantly, because it is not easy to build a dedicated blockchain for each personalized AI task from scratch, more researchers
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c

Table 1
The representative taxonomies of the current SCs.

Research Taxonomy Perspective

Bartoletti and Pompianu [41] Financial, Notary, Game, Wallet, Library Application domain
Token, Authorization, Oracle, Randomness, Poll, Termination, Time constraint, Math, Fork check Design pattern

Wöhrer and Zdun [42] Action and control, Authorization, Maintenance, Lifecycle, Security Design pattern
Oliva et al. [40] Games, Exchanges, Gambling, Finance, Property, Wallet, Governance, Media, Storage, Development,

Identity, Social
Application domain

Hu et al. [43] Game, Gambling, Exchange, Finance, High-risk, Social Application domain

Fig. 1. The proposed framework. The left shows the construction of ICs, and the right illustrates the application of ICs. The red borders present Mode 1, the
blue borders present Mode 2, and the dashed lines present that on-chain operations are included.

are choosing to implement their proposals with flexible and portable SCs. In other words, SCs designed for AI tasks will likely be
the primary driver when the blockchain moves from processing automatic business logic to accomplishing autonomous AI tasks
(AI-driven blockchain). Just as SCs designed for business logic have driven the blockchain from simply recording cryptocurrencies
to automatically performing business logic. Obviously, such SCs designed for AI tasks cannot be easily classified into any of the
categories listed in Table 1, and we need to study them separately. Therefore, as a distinction, we refer to them as Intelligent
Contracts (ICs) in this paper and propose a constructive framework to help their systematic analysis and future expansion. As shown
in Fig. 1, the proposed framework consists of two stages: the construction of ICs and the application of ICs.

3.2. The construction: two modes

Considering the limited computing capabilities of current blockchain and SCs [46,47], our framework formulates two modes to
onstruct ICs: encoding AI models and scheduling AI collaboration.
4
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3.2.1. Mode 1: encoding AI models
In this mode, ICs are constructed by directly encoding pre-trained AI models into SCs. AI models are computed and executed on

he blockchain, so the constructed ICs obtain the corresponding perception, reasoning, learning, and decision-making capabilities.
aking the essential classification task in machine learning as an example, encoding pre-trained classifiers into SCs can form ICs
ith the same classification capabilities. When these ICs are further applied to finance, healthcare, IoT, and other fields, they can
ct as autonomous smart agents to classify participants’ identity, behavior, and credit and thus complete multiple AI tasks. There
re some attempts at this mode. For example, Harris and Waggoner [48] propose a framework of decentralized and collaborative
I on blockchain, which directly encodes three AI models supporting online learning, including naive Bayes, Nearest Centroid
lassifier (NC), and single-layer perceptron. Since these models encoded in ICs are publicly shared and freely available for inference,
articipants can collaboratively expand data sets and constantly update models.

.2.2. Mode 2: scheduling AI collaboration
In this mode, AI models computed and executed in the trusted off-chain environment indirectly supplement the functionalities

f ICs. Complex AI computing is still completed off the blockchain based on technologies such as trusted computing, homomorphic
ncryption, and differential privacy. And ICs only verify, evaluate, fuse, and record the returned results on the blockchain, thereby
roviding the required intelligence as a combination. As on-chain computing may be inefficient, Mode 2 inspired by the layer 2
caling solutions [49] that aim to offload complex computing from blockchain has become increasingly attractive. In Mode 2, the
urrent SCs are not required for advanced computing and expression capabilities, but the combination of ICs and AI collaboration
till obtains powerful computational intelligence. Meanwhile, Mode 2 provides new solutions for AI collaboration to effectively
rganize their modules, including distributed computing power providers, distributed AI models, and distributed data sets. And this
elps to break the resource constraints of centralized AI and promote its evolution to distributed and decentralized AI.

ICs schedule AI collaboration at two levels: distributed computing protocols and distributed management mechanisms. In
erms of distributed computing protocols, ICs can be combined with existing distributed AI computing architectures, such as FL
nd edge computing, to encode various transmission, computing, and verification protocols for data and models. For example,
earningChain [12] adopts ICs to aggregate the global gradient for their proposed decentralized stochastic gradient descent. Chain
L [50] adopts ICs to aggregate FL models’ updates. These ICs perform partially distributed computing, so their models can be
ollaboratively tuned on the blockchain. For distributed management mechanisms, ICs can encode diverse mechanisms for identity
uthentication, authority management, and economic incentive, so as to organize distributed participants, crowdsource or outsource
earning tasks, and share trusted data and models. For instance, Kurtulmus and Daniel [11] encode a outsourcing protocol for
achine learning tasks into ICs to support constrained organizers to match competent problem solvers via blockchain. Brune [51]

nd Surya et al. [52] adopt ICs to link Oracle interfaces or service providers and invoke pre-trained AI models encapsulated in
rusted hardware or distributed storage systems.

.3. The application: management and configuration

Our idea to encourage AI-driven blockchain intelligence through the application of ICs requires two important foundations:
anagement and configuration of the constructed ICs.

.3.1. Management
After numerous ICs and associated AI collaboration modules are constructed, it is necessary to manage them efficiently

or subsequent configuration. Inspired by OpenZeppelin [53], a library of modular, reusable, and secure SCs built to facilitate
evelopment and enhance security, we believe that these ICs and AI collaboration modules should also be modular and reusable.
hus, we propose maintaining an interaction and verification records-based trusted database recording key information of computing
ower providers, AI models, data sets, and modular ICs. Fig. 1 gives examples of the key information that the trusted database can
ontain.

In a decentralized and trustless blockchain environment, trustworthiness and liquidity are crucial to ensuring the reusability
f ICs and AI collaboration modules. Therefore, it is more appropriate to implement the trusted database as a blockchain-based
ecentralized market than a traditional centralized database. In this way, capable contributors worldwide can participate in the
onstruction, validation, evaluation, and transaction of ICs and AI collaboration modules regardless of geographic locations and
omputing resources, which gives full play to swarm intelligence and ensures the necessary trustworthiness and liquidity. Our
revious work, Learning Market (LM) [54], is the initial realization of this idea. LM consists of a collaboration market and a sharing
arket whose ICs implement both distributed computing protocols and distributed management mechanisms in Section 3.2.2.
hen distributed participants collaboratively train AI models in the collaboration market, ICs schedule their collaboration and

utomatically record key information of models and participants on the blockchain. Referring to these trusted on-chain collaboration
ecords, distributed participants can further encapsulate, price, and trade their verified models and ICs in the sharing market.
5
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3.3.2. Configuration
Based on the quantitative parameters of ICs and AI collaboration modules recorded in the trusted database, their dynamic and

ptimal configuration problems can be transformed into combinatorial optimization problems, in which the optimal solution is found
rom a set of finite feasible solutions [55]. As an essential branch of optimization problems in operations research, combinatorial
ptimization problems have a solid theoretical and algorithmic foundation. Hence, some classical algorithms, such as genetic and
euristic algorithms, can be applied to the configuration. For more clarity, we illustrate a feasible configuration process based on
he constructed ICs of Mode 1 in Section 4.2

Fig. 1 presents the complete process of applying ICs for AI-driven blockchain intelligence: once we receive a request to accomplish
blockchain-based AI task, we match, develop, and combine ICs and associated AI collaboration modules based on their key

nformation in a distributed problem solving or multi-agent systems approach. After these ICs complete the AI tasks via on-chain
omputing or on-chain scheduling, they respond to the requester, and update and expand the trusted database. When the response
rocess of deployed ICs and associated AI collaboration modules are executed automatically, in the view of the requester, ICs
utonomously generate and execute intelligent decisions, and this meets the expectations of AI-driven blockchain intelligence. We
lso illustrate a feasible auto-response process based on the constructed ICs of Mode 2 in Section 4.3.

.4. The comparisons: smart contracts and two modes of intelligent contracts

Due to the fact that most current blockchain systems and SCs do not support computationally intensive tasks, we should analyze
he costs and limitations of the evolution from SCs to ICs to guide the trade-offs between different modes. We still take Ethereum
s an example, not only because it is the most mature and representative platform for SCs development, but also because its 𝑔𝑎𝑠

mechanism can quantitatively characterize on-chain computational resources consumed to execute SCs and ICs.
(1) Expensive on-chain computational resources limit the complexity of on-chain control logic and on-chain computing, which

affects SCs and two modes of ICs equally.
According to Ethereum yellow paper [56], all programmable computation in Ethereum is subject to fees, and any execution of

given segments triggers a payment specified in units of 𝑔𝑎𝑠. A transaction 𝑇 pays intrinsic 𝑔𝑎𝑠 𝑔0 defined as Formula (1) prior to
execution, and pays 𝐶(𝜎, 𝜇, 𝐴, 𝐼) defined as Formula (2) for every given instruction. As they are defined in detail in yellow paper, we
briefly explain them here. 𝑇𝑖 and 𝑇𝑑 mean the series of bytes of 𝑇 ’s associated data and initialization code, 𝑇𝑡 means 𝑇 ’s receiver and
𝑇𝑡 = 𝜙 for a contract-creation transaction. 𝑇𝐴 is optional and means the list of access entries to warm up, and all 𝐺s are fixed values.
𝐶(𝜎, 𝜇, 𝐴, 𝐼) is the general 𝑔𝑎𝑠 cost function determined by full system state 𝜎, machine state 𝜇, accrued substate 𝐴 and execution
environment 𝐼 . 𝐶𝑚𝑒𝑚(𝜇′

𝑖 ) − 𝐶𝑚𝑒𝑚(𝜇𝑖) and 𝐶𝑤 mean the 𝑔𝑎𝑠 consumed by executing the current operation 𝑤 due to the increase of
memory usage and the computation of 𝑤, respectively. All 𝐶𝑤s are fully defined. Generally, 𝑤 that creates and modifies on-chain
data consumes more 𝑔𝑎𝑠 than 𝑤 that only reads. As shown in Formula (1) and (2), 𝑇 ’s 𝑔𝑎𝑠 costs increase with the size of data and
code it inputs, the number of instructions it contains, the memory it occupies, and the complexity of operation it executes. In other
words, complex on-chain control logic and on-chain computing with these characteristics will easily lead to expensive execution
𝑔𝑎𝑠 costs, and this equally limits the complexity of SCs and two modes of ICs.

𝑔0 ≡
∑

𝑖∈𝑇𝑖 ,𝑇𝑑

{

𝐺𝑡𝑥𝑑𝑎𝑡𝑎𝑧𝑒𝑟𝑜 𝑖 = 0

𝐺𝑡𝑥𝑑𝑎𝑡𝑎𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
+

{

𝐺𝑡𝑥𝑐𝑟𝑒𝑎𝑡𝑒 𝑇𝑡 = 𝜙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

+ 𝐺𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 +
‖𝑇𝐴‖−1
∑

𝑗=0
(𝐺𝑎𝑐𝑐𝑒𝑠𝑠𝑙𝑖𝑠𝑡𝑎𝑑𝑑𝑟𝑒𝑠𝑠 + ‖

‖

𝑇𝐴[𝑗]𝑠‖‖𝐺𝑎𝑐𝑐𝑒𝑠𝑠𝑙𝑖𝑠𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒) (1)

𝐶(𝜎, 𝜇, 𝐴, 𝐼) ≡ 𝐶𝑚𝑒𝑚(𝜇′
𝑖 ) − 𝐶𝑚𝑒𝑚(𝜇𝑖) + 𝐶𝑤 (2)

(2) Mode 1 with on-chain computing has better transparency and security, but will be the first to reach the ceiling. Currently,
Mode 1 can hardly encode popular deep learning models on Ethereum.

As on-chain computing is typically much more complex than on-chain control logic, Mode 1 will be the first to reach the
ceiling. We analyze Mode 1’s boundaries on the current Ethereum, including model size and calculations. For model size, Ethereum
specifies that the resultant byte sequence from the execution of the initialization code is less than 24,576 bytes, i.e., 24 kB. And for
calculations, theoretically, the maximum 𝑔𝑎𝑠 consumed by 𝑇 ’s instruction set can be calculated as Formula (3), where 𝑇𝑔 denotes
𝑇 ’s gasLimit, and its maximum value can be taken as block’s gasLimit 𝐵𝐻𝑙. At present, 𝐵𝐻𝑙𝑚𝑎𝑥 = 30,000,000 𝑔𝑎𝑠 [57], when 𝑇
with no associated data or code, 𝑔0𝑚𝑖𝑛 = 𝐺𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = 21,000 𝑔𝑎𝑠. Then, if we assume that all 𝑤 do not increase memory usage, and
𝐶𝑤 = 4, which is the average 𝑔𝑎𝑠 consumption for operations of ADD, SUB, MUL, and DIV, we can obtain the maximum calculations
𝑁𝑚𝑎𝑥 = 7,494,750. Because 𝐶𝑚𝑒𝑚(𝜇′

𝑖 ) − 𝐶𝑚𝑒𝑚(𝜇𝑖) = 0 is a too ideal assumption, the actual 𝑁 will not reach 7,494,750.
𝑁
∑

𝐶(𝜎, 𝜇, 𝐴, 𝐼)𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑇𝑔 − 𝑚𝑖𝑛 𝑔0 = 𝐵𝐻𝑙 − (
∑

𝑖∈𝑇𝑖 ,𝑇𝑑

{

𝐺𝑡𝑥𝑑𝑎𝑡𝑎𝑧𝑒𝑟𝑜 𝑖𝑓 𝑖 = 0

𝐺𝑡𝑥𝑑𝑎𝑡𝑎𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
+ 𝐺𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛) (3)

Table 2 summarizes the sizes and FLoating-point OPerations (FLOPs) of some popular deep learning models that are pre-trained
for ImageNet data set and packaged in Keras [58], including VGG16 [59], ResNet50 [60], InceptionV3 [61] and MobileNet [62]. It
can be found that their sizes and FLOPs far exceed the limits of 24 kB and 7,494,750 times, which means Mode 1 can hardly encode
6

deep learning models on current Ethereum. Moreover, in practice, Ethereum miners and clients will reject oversized transactions
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Table 2
The size and FLOPs of popular pre-trained deep learning models packaged in Keras.

Model VGG16 ResNet50 InceptionV3 MobileNet

Size 527 MB 98.2 MB 91.8 MB 16.4 MB
FLOPs 30.9 G 7.7 G 11.6 G 1.1 G

to prevent denial of service attacks, leading to a more restricted application of Mode 1. Fortunately, several proposals are under
development to improve the computing capabilities of blockchain and SCs, including sharding protocols, computationally cheap
consensus algorithms, and layer 2 scaling solutions [63]. Their full implementations will help Mode 1 to encode more complex AI
models.

(3) Mode 2 with off-chain computing is more efficient and scalable, but requires additional security and communication costs
ue to collaboration.

Mode 2 that offloads partial or all of the AI computing from blockchain can have comparable execution 𝑔𝑎𝑠 costs to conventional
SCs, making it more efficient and scalable to support complex AI models. However, Mode 2 requires additional consideration of
security and communication costs for off-chain computing, on-chain interactions, and off-chain interactions. We formulate these
general costs of SCs and ICs as Formula (4). 𝐶𝑜𝑠𝑡 can represent payment, time, etc. 𝐶𝑜𝑠𝑡𝑜𝑛−𝑐𝑙, 𝐶𝑜𝑠𝑡𝑜𝑛−𝑐𝑚𝑝 and 𝐶𝑜𝑠𝑡𝑜𝑓𝑓−𝑐𝑚𝑝 represent
the costs of on-chain control logic, on-chain computing and off-chain computing, respectively. 𝐶𝑜𝑠𝑡𝑜𝑓𝑓−𝑖𝑛𝑡 represents the cost of
interacting with off-chain systems that guarantee the security of computing, storage, and communication, such as distributed storage
systems and cryptographic tools. Because Mode 2 involves distributed collaboration, 𝐶𝑜𝑠𝑡𝐼𝐶2 is in the form of a summation. It can
be seen that when Mode 2 requires frequent on-chain control and off-chain interactions for large-scale collaboration, 𝐶𝑜𝑠𝑡𝐼𝐶2 easily
increases sharply, and once 𝐶𝑜𝑠𝑡𝐼𝐶2 > 𝐶𝑜𝑠𝑡𝐼𝐶1, Mode 1 will be a better choice. Hence, there is no one-size-fits-all mode, and we
need to make trade-offs based on the preferences of specific AI tasks.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶𝑜𝑠𝑡𝑆𝐶 = 𝐶𝑜𝑠𝑡𝑜𝑛−𝑐𝑙
𝐶𝑜𝑠𝑡𝐼𝐶1 = 𝐶𝑜𝑠𝑡𝑜𝑛−𝑐𝑚𝑝

𝐶𝑜𝑠𝑡𝐼𝐶2 =
𝑀
∑

𝐶𝑜𝑠𝑡𝑜𝑛−𝑐𝑙 +
𝑃
∑

𝐶𝑜𝑠𝑡𝑜𝑓𝑓−𝑐𝑚𝑝 +
𝐾
∑

𝐶𝑜𝑠𝑡𝑜𝑓𝑓−𝑖𝑛𝑡

(4)

In a word, our comparisons provide theoretical evidence for the intuitive features of SCs and two modes of ICs. As we can see,
ICs are not cost-free while offering many exciting benefits. Even if we execute SCs and ICs on the blockchain without transaction
fees, such as Hyperledger Fabric with docker containers, these execution costs characterize their overall computational burden and
cannot be ignored.

4. Experiments and analysis

Considering that classification is a typical and foundational task in pattern recognition, machine learning and AI [64], we use
it as an example to demonstrate and evaluate the proposed framework in this section. Specifically, for the classification tasks of
IRIS, MNIST and ImageNet data sets, we construct ICs on Ethereum in each of the two modes described in Section 3.2. Then, we
thoroughly evaluate their performance to analyze the advantages and challenges of both modes from an experimental perspective.
Also, we illustrate an optimal configuration process of Mode 1’s ICs, and an automatic response process of Mode 2’s ICs.

4.1. Experimental platform

In this paper, all experiments are conducted on a laptop computer with Windows 10, Intel Core i7–7700HQ CPU @2.80 GHz, and
16 GB RAM. We deploy popular development platforms of SCs and AI models for experiments. Specifically, we simulate a personal
Ethereum blockchain locally based on Ganache (v7.0.3) [65], and develop ICs with Truffle (v5.1.27) framework [66] using Solidity
(v0.8.7) language [67]. Then, all AI models are trained and tested using Python (v3.6.10) language and Keras (v2.3.1) framework,
and all private data files that need to be shared are pre-stored in a distributed storage system, Inter-Planetary File Systems (IPFS,
v0.12.2) [68]. At last, we use Node.js (v12.13.0) and Web3.js (v1.7.3) [69] to interact with ICs, off-chain AI models, and IPFS for
performance testing.

4.2. Experiments for Mode 1

This section demonstrates the construction of Mode 1’s ICs for IRIS flower classification task and MNIST handwritten digits
recognition task. We thoroughly test their classification accuracy and execution costs including 𝑔𝑎𝑠, time, and payment, and illustrate
7

an optimal configuration process of Mode 1’ ICs.
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Table 3
The total number of parameters loaded in different ICs.

Classifiers IRIS’s parameters MNIST’s parameters

DT 3 –
NC 12 7840
SVM 15 7850
NN2 51 7960
NN3 83 8196

Table 4
The classification accuracy of all pre-trained classifiers on IRIS data set and MNIST data set.

Classifiers IRIS MNIST

Train set (120) Test set (𝐼𝑅𝐼𝑆30) Train set (56 000) Test set (14 000) 𝑀𝑁𝐼𝑆𝑇30
DT 98.33% 93.33% – – –
NC 92.50% 93.33% 80.83% 81.12% 83.33%
SVM 98.33% 90.00% 92.70% 91.64% 93.33%
NN2 99.17% 93.33% 94.70% 94.04% 93.33%
NN3 98.33% 96.67% 95.81% 94.76% 96.67%

4.2.1. Experimental setup
(1) Data sets: IRIS flower data set [70] and MNIST handwritten digits data set [71] are two benchmark data sets that are widely

sed for pattern recognition and machine learning research [72,73]. IRIS consists of 50 samples from each of three species of IRIS
lower. Each sample has four centimeters features: the length and width of sepals and petals. MNIST contains 60,000 training samples
nd 10,000 testing samples. Each sample is a 28 × 28 pixel handwritten digit between 0–9. For pre-trained AI models (classifiers),

we randomly split train sets and test sets for IRIS and MNIST in a 4:1 ratio. Considering the memory constraints of the experimental
machine, we take 30 samples from the MNIST test set as the small-scale test sets for ICs, denoted as 𝑀𝑁𝐼𝑆𝑇30. And for fairness of
costs comparisons, we also take 30 samples from the IRIS test sets, denoted as 𝐼𝑅𝐼𝑆30.

(2) Classifiers: Without loss of generality, we pre-train four typical classifiers including Decision Tree (DT), NC, Support Vector
Machine (SVM) and Neural Networks (NN) with scikit-learn [74], and encode them into SCs to construct corresponding ICs. Their
characteristics and transformations are as follows.

• DT: a representative rule-based classifier, which is supervised and nonlinear. We encode its visualized decision paths with
‘‘If-Then’’ statements into a SC.

• NC: a representative clustering algorithm, which is supervised and nonlinear. We store its class centroids in a SC and compute
the closest centroids for prediction.

• SVM (linear kernel): a representative classifier with linear decision functions, which is supervised and linear. We store its
linear decision functions in a SC and compute the maximum function value for prediction.

• NN: a representative classifier with a hierarchical structure, which is supervised and nonlinear. We adopt a two-dense-layer
NN (NN2) and a three-dense-layer NN (NN3). In SCs, we first encode dense layers and activation functions (softmax and relu),
and then flexibly combine them into NNs with different structures.

Since the decision paths of MNIST’s DT can hardly be manually encoded, we construct five ICs of DT, NC, SVM, NN2, and
NN3 for IRIS, and four ICs of NC, SVM, NN2, and NN3 for MNIST. To minimize the impact of development structures, every IC is
developed standardly, which contains two functions of loadParameters and predict. ICs that encode the same classifier differ only
in the variable type size, and Table 3 shows the total number of parameters loaded in different ICs. In particular, for calculating
floating-point numbers and exponential functions, we uniformly expand the data by 104 times and call the ABDKMath64 × 64
library [75].

4.2.2. Evaluations and analysis
(1) Classification accuracy
The classification accuracy of all pre-trained classifiers is shown in Table 4. We examine the classification accuracy of all ICs on

𝐼𝑅𝐼𝑆30 and 𝑀𝑁𝐼𝑆𝑇30, and the results show that they all have the same classification accuracy as the pre-trained classifiers they
encode. In other words, the ICs we constructed effectively obtain the same classification capability as the pre-trained classifiers.
After being deployed on the blockchain, they can act as on-chain smart agents to autonomously classify IRIS flowers or recognize
handwritten digits. Besides, when the encoded classifiers support online learning, these smart agents can even learn and evolve by
themselves on the blockchain. This on-chain autonomy is consistent with Mode 1’s expectations in Section 3.2.1, thus validating its
effectiveness.

(2) Execution costs
To evaluate the 𝑔𝑎𝑠 costs of all ICs, we deploy them on Ethereum, load their parameters twice, and use them to predict 𝐼𝑅𝐼𝑆30

and 𝑀𝑁𝐼𝑆𝑇30. All their deployment and execution 𝑔𝑎𝑠 costs are shown in Fig. 2. And for time costs, we run the experiment of
redicting 𝐼𝑅𝐼𝑆 and 𝑀𝑁𝐼𝑆𝑇 ten times and compare the total prediction time of different ICs in Fig. 3.
8
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Fig. 2. The deployment and execution 𝑔𝑎𝑠 costs of different ICs.

Fig. 3. The total prediction time of different ICs.

As shown in Fig. 2(a) and (b), ICs encoded with the same classifiers have similar deployment 𝑔𝑎𝑠 costs, which indicates that
they are standardly developed as designed and their difference of 𝑔𝑎𝑠 and time costs have excluded the influence of development
structures. Since Ethereum yellow paper sets a higher 𝑔𝑎𝑠 cost for creating new parameters than for modifying them, the 𝑔𝑎𝑠 costs
to load parameters for the first time are much higher than for the second. As can be seen from Figs. 2(a) and 3(a), when ICs process
simple IRIS data set, the complexity of classifiers is the main factor affecting 𝑔𝑎𝑠 and time costs. Classifiers with more parameters
have higher 𝑔𝑎𝑠 costs for loading parameters and predicting new samples, as well as longer prediction time. As can be seen from
Figs. 2(b) and 3(b), when ICs process more complex MNIST data set, the complexity of data set gradually becomes an influential
factor. At this time, the 𝑔𝑎𝑠 costs of MNIST’s ICs to load parameters and predict new samples far surpass that of deployments. And
although the average prediction 𝑔𝑎𝑠 costs still satisfy 𝑁𝐶 < 𝑆𝑉𝑀 < 𝑁𝑁2 < 𝑁𝑁3, there is a computationally complex sample for

C, which makes its maximum prediction 𝑔𝑎𝑠 costs and total prediction time increase sharply, and are even higher than others.
hese results suggest that both the complexity of AI models and data sets are constrained in Mode 1.

The execution payment in 𝑈𝑆𝐷 and Ethereum’s cryptocurrency 𝐸𝑡ℎ is calculated as Formula (5). 𝐸𝑡ℎ𝑃 𝑟𝑖𝑐𝑒 is the exchange rate
between 𝐸𝑡ℎ and 𝑈𝑆𝐷, and 𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒 is the exchange rate between 𝐸𝑡ℎ and 𝑔𝑎𝑠. 𝐸𝑡ℎ𝑃 𝑟𝑖𝑐𝑒 is influenced by supply and demand, and
ransaction senders freely set 𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒. The higher the 𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒, the more likely the transaction will be packaged by miners. Because
𝑎𝑠𝑃 𝑟𝑖𝑐𝑒 and 𝐸𝑡ℎ𝑃 𝑟𝑖𝑐𝑒 have similar effects on 𝐶𝑜𝑠𝑡𝑈𝑆𝐷, and 𝐸𝑡ℎ𝑃 𝑟𝑖𝑐𝑒 fluctuates much more dramatically, we discuss 𝐸𝑡ℎ𝑃 𝑟𝑖𝑐𝑒’s
mpact as an example. Taking 𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒 = 2 × 1010 𝑤𝑒𝑖, Fig. 4 shows the total prediction 𝐶𝑜𝑠𝑡𝑈𝑆𝐷 of IRIS’s ICs at 1 𝐸𝑡ℎ = $4864.06
nd 1 𝐸𝑡ℎ = $1707.24, which are Eth’s highest and lowest price in the past year ending May 20, 2022 [76]. It can be found that
9

he fluctuation of 𝐸𝑡ℎ𝑃 𝑟𝑖𝑐𝑒 greatly affects the 𝐶𝑜𝑠𝑡𝑈𝑆𝐷 and determine whether an IC will be adopted in practical applications.
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Fig. 4. The total prediction 𝐶𝑜𝑠𝑡𝑈𝑆𝐷 of IRIS’s ICs on 𝐼𝑅𝐼𝑆30 at 𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒 = 2 × 1010 𝑤𝑒𝑖, 1 𝐸𝑡ℎ = $4864.06 and 1 𝐸𝑡ℎ = $1707.24.

For instance, the total prediction 𝐶𝑜𝑠𝑡𝑈𝑆𝐷 ranges from $31.85 to $860.04, and $31.85 may be considered but $860.04 is obviously
unacceptable.

𝐶𝑜𝑠𝑡𝑈𝑆𝐷 = 𝐸𝑡ℎ𝑃 𝑟𝑖𝑐𝑒 × 𝐶𝑜𝑠𝑡𝐸𝑡ℎ = 𝐸𝑡ℎ𝑃 𝑟𝑖𝑐𝑒 × 𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒 × 𝑔𝑎𝑠 (5)

Taking the obtained classification accuracy and execution costs as quantitative features of the constructed ICs, their optimal
configuration problem can be modeled as a combinatorial optimization problem. For example, when an IC with the highest
classification accuracy for MNIST is required, the problem is modeled as Formula (6), and then NN3 is matched. Similarly, different
features and weights can be added to the objective function 𝐹 (𝑥), and it can be solved with the existing algorithms.

𝑚𝑖𝑛 𝐹 (𝑥) = 1
𝑥
, 𝑥 ∈ {𝐴𝑐𝑐𝑁𝐶 , 𝐴𝑐𝑐𝑆𝑉𝑀 , 𝐴𝑐𝑐𝑁𝑁2, 𝐴𝑐𝑐𝑁𝑁3}. (6)

4.3. Experiments for Mode 2

This section demonstrates the construction of Mode 2’s ICs for MNIST handwritten digits recognition task and ImageNet
classification task. We design a basic AI collaboration scenario and thoroughly test their execution costs, including 𝑔𝑎𝑠 and time.

e also illustrate an automatic response process of Mode 2’s ICs.

.3.1. Experimental setup
(1) Data sets and AI models: ImageNet data set is a large hand-annotated image database designed for visual object recognition

esearch [77]. The Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) is a subset of ImageNet containing 1,281,166
raining samples and 50,000 validation samples depicting 1000 categories [78]. To ensure the fairness of comparison between
ode 1 and Mode 2, we use the same two test sets and NN3 classifier as in Section 4.2.1 for MNIST, denoting them as 𝑀𝑁𝐼𝑆𝑇30

nd 𝑀𝑁𝐼𝑆𝑇14000. Accordingly, we randomly selected 30 and 150 samples from ILSVRC2012’s validation set to form 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡30
nd 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡150. The pre-trained ResNet50 packaged in Keras is adopted to classify ImageNet, which has 74.9% top-1 accuracy,
2.1% top-5 accuracy, and 25,636,712 parameters.

(2) Collaboration scenario and IC design: we take the scenario of ‘‘AI model as an IC’’ to demonstrate a basic implementation
f Mode 2 and analyze its general characteristics. Specifically, we assume that there is an approved requester with test sets and a
rusted responder with AI models. After an AI model is verified and encapsulated, the responder deploys its dedicated IC on the
lockchain and monitors IC’s events. Once the IC receives a model request from the requester, it triggers the responder to complete
he off-chain computing and return the results to the requester. As we encode the responder’s monitoring and responding operations
nto one program and execute it automatically and continuously, it appears that ‘‘AI model as an IC’’ provides an automatic AI service.
ccordingly, our dedicated ICs (Model-ICs) contain three functions of setModel, requestModel and returnRes, and each function

riggers an corresponding event, namely, ‘‘modelSet’’, ‘‘modelRequest’’ and ‘‘resReturn’’.
To save on-chain storage and preserve data confidentiality, we store private files containing AI models, test sets, and result files

n IPFS and only record and share their content identifiers (CIDs) on the blockchain. Thus, when requesting AI models and returning
esults, we first encrypt and sign 𝐶𝐼𝐷𝑡𝑒𝑠𝑡 and 𝐶𝐼𝐷𝑟𝑒𝑠 as Formula (7), and then invoke requstModel and returnRes to transmit the
btained 𝑀𝑠𝑔𝑓𝑟𝑜𝑚→𝑡𝑜. In Fig. 5, we take a unified modeling language sequence diagram to show the complete collaboration process.

𝑀𝑠𝑔𝑓𝑟𝑜𝑚→𝑡𝑜 = {𝐸𝑛𝑐{𝐶𝐼𝐷𝑓𝑖𝑙𝑒}𝑝𝑘𝑡𝑜 , 𝑠𝑖𝑔{𝐸𝑛𝑐{𝐶𝐼𝐷𝑓𝑖𝑙𝑒}𝑝𝑘𝑡𝑜}𝑠𝑘𝑓𝑟𝑜𝑚} (7)
10
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Fig. 5. The complete process of completing classification tasks by invoking Model-ICs in Mode 2.

Table 5
The deployment and execution 𝑔𝑎𝑠 costs of Model-ICs for different data sets.

Data sets Deployment setModel requestModel returnRes

𝑀𝑁𝐼𝑆𝑇30 643,628 141,610 37,293 37,222
𝑀𝑁𝐼𝑆𝑇14 000 643,628 141,610 37,293 37,222
𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡30 643,628 141,610 37,293 37,222
𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡150 643,628 141,610 37,293 37,222

4.3.2. Evaluations and analysis
Due to off-chain computing and off-chain storage, our Model-ICs can support both ImageNet and MNIST classification tasks

ithout modification. To evaluate the execution costs of 𝑔𝑎𝑠 and time, we deploy one Model-IC for each task, set up NN3 and
esNet50 separately, and run ten times the full experiment shown in Fig. 5 for each data set. Table 5 summarizes all deployment
nd execution 𝑔𝑎𝑠 costs. And Fig. 6 shows the total time 𝑇𝑡𝑜𝑡𝑎𝑙 (step 1 to step 11), off-chain computing time 𝑇𝑜𝑓𝑓−𝑐𝑚𝑝 (step 6),

on-chain control time 𝑇𝑜𝑛−𝑐𝑙 (step 3 + step 9), off-chain interaction time with IPFS 𝑇𝑜𝑓𝑓−𝐼𝑃𝐹𝑆 (step 1 + step 5 + step 7 + step 11),
nd other off-chain interaction time 𝑇𝑜𝑓𝑓−𝑜𝑡ℎ𝑒𝑟𝑖𝑛𝑡 (step 2 + step 4 + step 8 + step 10), where the steps correspond to Fig. 5.

First, compared to Mode 1’s IC that encodes NN3 classifier for MNIST, Model-IC costs significantly less 𝑔𝑎𝑠 and time to predict the
ame 𝑀𝑁𝐼𝑆𝑇30, suggesting that on-chain computing is still inefficient at this stage, and Mode 2 successfully reduces the on-chain
omputational burden. Then, it can be seen that Model-ICs for different data sets have the same development and execution 𝑔𝑎𝑠
osts. Although the most complex task of classifying 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡150 with ResNet50 has the maximum 𝑇𝑡𝑜𝑡𝑎𝑙, this is mainly consumed
y off-chain computing, with little difference in on-chain control times 𝑇𝑜𝑛−𝑐𝑙. These results indicate that Mode2’s ICs can support
omplex data sets and AI models with almost constant on-chain computational burden. Therefore, Mode2 is highly reusable and
calable. At last, as shown in Fig. 6(b), 𝑇𝑜𝑓𝑓−𝐼𝑃𝐹𝑆 increases remarkably with the size of data set. For the largest 𝑀𝑁𝐼𝑆𝑇14000,
𝑜𝑓𝑓−𝐼𝑃𝐹𝑆 has far surpassed 𝑇𝑜𝑛−𝑐𝑙 and 𝑇𝑜𝑓𝑓−𝑜𝑡ℎ𝑒𝑟𝑖𝑛𝑡, and become the most influential factor affecting 𝑇𝑡𝑜𝑡𝑎𝑙 other than 𝑇𝑜𝑓𝑓−𝑐𝑚𝑝. And
he more frequent the interaction with IPFS, the more obvious the impact of 𝑇𝑜𝑓𝑓−𝐼𝑃𝐹𝑆 , which is consistent with our analysis of
𝑜𝑠𝑡𝑜𝑓𝑓−𝑖𝑛𝑡 in Section 3.4. That is, although Mode 2 with off-chain computing is usually more efficient than Mode 1 with on-chain
omputing, Mode 1 is always worth considering when 𝐶𝑜𝑠𝑡𝑜𝑓𝑓−𝑐𝑚𝑝 and 𝐶𝑜𝑠𝑡𝑜𝑓𝑓−𝑖𝑛𝑡 increase dramatically due to massive collaboration,
requent interactions, and expensive trusted execution environments. Note that our Model-ICs can be applied to larger ImageNet
11
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Fig. 6. The time costs of classification tasks for different data sets, where 𝑀𝑁𝐼𝑆𝑇30, 𝑀𝑁𝐼𝑆𝑇14000, 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡30 and 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡150 are 182 kB, 81.3 MB, 3.7 MB
and 18.9 MB in size.

data sets, but their 𝑇𝑜𝑓𝑓−𝑐𝑚𝑝 and 𝑇𝑜𝑓𝑓−𝐼𝑃𝐹𝑆 will be much larger than 𝑇𝑜𝑛−𝑐𝑙 and 𝑇𝑜𝑓𝑓−𝑜𝑡ℎ𝑒𝑟𝑖𝑛𝑡. For the clarity of comparison in Fig. 6,
𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡30 and 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡150 are selected.

In summary, the experiments in Section 4 not only demonstrate the construction of ICs in two modes, but also validate and
supplement the theoretical analysis in Section 3.4. Aldweesh et al. [79] and Nelaturu et al. [80] collect two benchmark databases
of deployed Ethereum SCs, whose publicly available deployment 𝑔𝑎𝑠 are in the range of [90, 543, 3, 544, 767] and execution 𝑔𝑎𝑠 are
in the range of [22, 643, 646, 727]. In comparison, the 𝑔𝑎𝑠 costs of Mode 2’s Model-ICs are relatively lower than most current SCs,
the 𝑔𝑎𝑠 costs of Mode 1’s ICs for IRIS are comparable to current SCs, and the 𝑔𝑎𝑠 costs of Mode 1’s ICs for MNIST has far exceeded
current SCs. These experimental data suggest that the computation of four basic classifiers on MNIST is sufficiently complex for the
current Ethereum. In practice, we recommend Mode 1 not encode more complex AI models or data sets on Ethereum. Comparatively,
Mode2 can break through these computational limitations to efficiently support complex AI models and data sets, but additional
security and communication costs must be considered and optimized.

5. Conclusion

In this paper, we focus on an important type of Smart Contracts (SCs) designed to accomplish blockchain-based AI tasks,
i.e., Intelligent Contracts (ICs), and propose a constructive framework for their construction and application. Specifically, our
framework formulates two modes to construct ICs: encoding AI models of Mode 1 and scheduling AI collaboration of Mode 2.
And we propose to help blockchain respond to different AI tasks through the dynamic and optimal configuration of the constructed
ICs, thus encouraging AI-driven blockchain intelligence. For typical AI tasks of classifying IRIS, MNIST, and ImageNet data sets, we
implement and evaluate two modes of ICs on Ethereum, respectively. Then, we illustrate an optimal configuration process of Mode 1’s
ICs, and an automatic response process of Mode 2’s ICs. All experimental results demonstrate the effectiveness and feasibility of our
framework. Moreover, parallel comparisons of the two modes are conducted from theoretical and experimental perspectives to guide
mode selection. They indicate that Mode 1 with on-chain computing outperforms on-chain autonomy, transparency, and security,
but is constrained by the computing capabilities of current blockchain systems. Whereas Mode 2 with off-chain computing excels
in supporting complex AI models and data sets, but has additional security and communication costs. We estimate the theoretical
boundaries of Ethereum SCs in Mode 1. Also, our experimental data show that Mode 1’s on-chain computing on MNIST data set is
sufficiently complex for the current Ethereum.
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