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Abstract—Revealing underlying causal structure in social 
media is critical to understanding how users interact, on which 
a lot of security intelligence applications can be built. Existing 
causal inference methods for social media usually rely on 
limited explicit causal context, pre-assume certain user 
interaction model, or neglect the nonlinear nature of social 
interaction, which could lead to bias estimations of causality. 
Inspired from recent advance in causality detection in complex 
ecosystems, we propose to take advantage of a novel nonlinear 
state space reconstruction based approach, namely Convergent 
Cross Mapping, to perform causal inference in social media. 
Experimental results on real world social media datasets show 
the effectiveness of the proposed method in causal inference 
and user behavior prediction in social media.
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I. INTRODUCTION

Recent years have witnessed an explosive growth of 
various social media sites such as online social networks, 
blogs, microblogs, social news websites and virtual social 
worlds. This gives researchers a great opportunity to study 
social interactions on an unprecedented scale [1]. Since
individual behavior have influence on the decisions of 
friends in a social network, the knowledge of who-
influences-whom and most-influential-person has enormous 
implications in security informatics [2]. For example, if we 
know the causal structure of people, we are able to predict 
people’s action based on actions of her friends. 
Unfortunately, the causal structure among users is usually 
unknown and unobserved. For instance, it is very common 
that we only observe the times when particular users adopted 
a new emerging meme but we do not observe who infected 
them. 

Although some methods were proposed to uncover the 
hidden causal structure in observational data among users by 
taking advantage of both user dynamical behavior data [3]–
[5] and structural features [6], they perform causal inference 
based on either pre-assumption of certain particular user 
interaction model, a linear view of social interaction, or a 
purely stochastic view of social system. However, the pre-
assumption of particular user interaction model usually fails 
to capture the complexity of human behavior. Besides, 
nonlinearity is ubiquitous in nature [7], [8] and user 
interaction may have nonlinear property. This means that 
interaction between two users is state-dependent, which is a 
defining signal of complex nonlinear systems [7]. In addition, 

recent studies on online social interactions show that user’s 
interaction sequences have strong deterministic components
[9], which support the nonlinear dynamical system view of 
social system instead of a purely stochastic view.

Recently, a new causality detection method, called 
Convergent Cross Mapping (CCM), is developed by 
Sugihara et al. [8] for detecting causal relations in time series 
data from weakly interacting nonlinear dynamical systems.
This method can deal with the mentioned observations and 
they have successfully applied this method to complex 
ecological systems for causality detection. Inspired from this 
advance in ecology research, we propose to adopt CCM to 
perform causal inference in social media in this paper. CCM 
is based on nonlinear state space reconstruction. Its key idea 
is that two time series variables have causal relationship if 
they belong to the same nonlinear dynamic system and then 
we can extract the “signature” left by influencers embedded 
in user activity level time series data using CCM. To the best 
of our knowledge, we are the first to take advantage of the 
nonlinear dynamic system based approach to tackle the 
causal inference problem in social media. 

The rest of this paper is organized as follows. Section II
surveys the related work on causal inference in social media. 
The problem definition is given in Section III. Section IV
introduces the background definitions, basic idea and 
algorithm of CCM. Experimental results on real world 
datasets will be presented in Section V. Finally, we will give 
a summary in Section VI. 

II. RELATED WORK

Traditional approaches concerning influence 
measurement mainly focus on different topological structure 
measures such as in/out-degree [10], PageRank [11] and 
other centrality based measures [12]. Recent work has 
highlighted that it is not sufficient to use structural measures 
alone to measure user influence. For instance, researchers 
found that the ranking of the most influential users differ 
depending on the influence measures used [6], [13]. Besides, 
edges in social networks may reveal little information about 
the actual social dynamics. What’s worse, the structural 
measures need to be recomputed from scratch when the 
social network changes.

To improve the topological structure based influence 
measurement, more recent work tried to involve dynamic 
information into influence model. For example, Romero et al. 
[3] proposed a heuristic which measure influence taking into 
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account the fact that many users are passive and will not 
retweet under any circumstances. The limitation inherent in 
these approaches is that they often require explicit causal 
knowledge such as who responded whom, which is usually 
not available in many scenarios. Our proposed method 
differs from them in that it does not need any explicit causal 
knowledge.

To infer the underlying causal structure, current studies 
[4], [5] are built on the a priori assumptions of certain 
information diffusion model to describe the user interaction 
mechanism such as Independent Cascade Model and Linear 
Threshold model [14], [15]. However, these models may fail 
to capture the complexity of user interaction. More recently, 
some researchers start to take advantage of information 
theory measures [16], such as Granger Causality [17] or its 
variants like Transfer Entropy [18], [19], to infer the causal 
structure among users. The drawback of such work is that 
they usually adopt a linear view of social interaction and a
purely stochastic view of social system, which does not fit 
for the real world. The presented CCM differs from them in 
that it can deal with the nonlinear interaction between users 
based on the nonlinear dynamic system perspective.

III. PROBLEM DEFINITION

We formulate the causal inference problem in social 
media as follows. Given a set of users U={u1, u2, …, un}, for 
each user u we have the historical activity level time series 
{X} = [X(1), X(2), …, X(t), …, X(L)], meaning that the 
activity level (i.e., the number of posts) of user u at time t is 
X(t). The hypothesis here is that users interacted in an 
underlying influence network. The goal of causal inference 
problem is to infer the underlying causal structure among 
users, which is represented as a weighted directed graph G.
The directed edge (ui, uj) indicates that user ui has influence 
on user uj, and the weight of this edge wij indicates the 
strength of this causal effect.

IV. PROPOSED APPROACH

CCM is built on nonlinear state space reconstruction. In 
this section, we first introduce some background definitions 
in nonlinear dynamic systems and then demonstrate the basic 
idea and algorithm of the CCM method introduced in [8]. 

A. Background Definitions
Consider a dynamic process � describing the temporal 

evolution of points in an E-dimensional state space (e.g., the 
activity level of E users during time). Its trajectories 
converge to some d-dimensional (�� �� �) manifold M such 
that �: ���. That is, if m(t) is a point on M then m(t+1) =
�(m(t)). Let X be an observation function of � such that X:
���. Here, X is a Cartesian coordinate (e.g., a certain user 
among the E users) of the actual E-dimensional state space 
containing M. For each X, there is a corresponding time 
series of length L, {X} = [X(1), X(2), …, X(L)], that tracks 
the trajectory of points in M mapped to a sequence of real 
numbers (e.g., the activity level time series of user X).

A lagged-coordinate embedding uses E time-lagged 
values of {X} as coordinate axes or dimensions to 
reconstruct a shadow attractor manifold MX as shown in Fig 
1. The points in this manifold, denoted by x(t), consist of the 
set of E-dimensional vectors x(t) = <X(t), X(t-�), X(t-2�), …, 
X(t-(E-1)�)> where the time lag � is positive. According to 
Takens’ theorem [20], points x(t) on MX map 1:1 to points 
m(t) on M so that MX is a diffeomorphic reconstruction of the 
original attractor manifold M.

Figure 1. Construction of a shadow manifold MX. 

In dynamical systems theory, time-series variables (i.e. X
and Y) are causally linked if they belong to the same 
dynamic system [8], [20]. In other words, they share a 
common attractor manifold M. 

B. Basic Idea of Convergent Cross Mapping
A general property of lagged-coordinate embedding is 

that points x(t) on MX map 1:1 to points m(t) on M and local 
neighborhoods on MX map to local neighborhoods on M [20].
As a result, for two variables X and Y that are dynamically 
coupled, local neighborhoods on their respective lagged 
reconstructions, MX and MY, will map to each other since X
and Y are essentially alternative observations of the common 
attractor manifold M. 

Convergent cross mapping determines how well local 
neighborhoods on MX correspond to local neighborhoods on 
MY. To do so, a manifold MX is constructed from lags of 
variable X and used to estimate contemporaneous values of Y.
Because MX is diffeomorphic to M, estimates of Y converge 
as L goes to infinity. In practical application, MX is an 
approximation that will display convergence up to the level 
set by observational error and process noise. CCM is 
therefore demonstrated by estimation precision (or 
correlation) that rises with L and reaches a plateau.

C. Algorithm of Convergent Cross Mapping
We will follow the presentation of Sugihara et al. [8] to 

introduce the algorithm of CCM. Let the two time series {X}
= [X(1), X(2), …, X(L)] and {Y} = [Y(1), Y(2), …, Y(L)] be 
activity level of user X and Y over time. For r = S to r = L
(S< L), we get the partial time series [X(1), X(2), …, X(LP)]
and [Y(1), Y(2), …, Y(LP)]. Initially, both partial time series 
are normalized to zero mean and unit variance. The shadow 
manifold MX is reconstructed from {X}, which is the set of 
lagged-coordinate vectors x(t) = <X(t), X(t-�), X(t-2�), …, 
X(t-(E-1)�)> for t = 1+(E-1) � to t = r. To generate a cross-
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mapped estimate of Y(t), denoted by 	(t)|MX, we begin by 
locating the contemporaneous lagged-coordinate vector on 
MX, x(t), and find its E+1 nearest neighbors. Note that E+1 is 
the minimum number of points needed for a bounding 
simplex in an E-dimensional space [7]. Next, denote the time 
indices (from closest to farthest) of the E+1 nearest 
neighbors of x(t) by t1, t2, …, tE+1. These time indices are 
used to identify neighbor points in Y (a putative 
neighborhood) to estimate Y(t) from a locally weighted mean 
of the E+1 Y(ti) values, as shown in Equation 1.

��(�)|�� = 	 
��(��)
�
�

���
(1)

In Equation 1, wi is a weighting based on the distance 
between x(t) and its ith nearest neighbor on MX and Y(ti) are 
the contemporaneous values of Y. The weights are 
determined as shown in Equation 2.


� = �� 	 ��
�
�

���
� (2)

In Equation 2, �� = �����(�),�(��)� ���(�),�(��)�� . And d[x(t), 
x(ti)] is the Euclidean distance between two vectors. This 
kind of estimation is called simplex projection [7]. The 
estimation process is shown in Fig. 2.

Figure 2. Estimating Y(t) from the shadow manifold MX. The 
red circle on MY is the estimate result, which the green 
triangle is the actual value.

If X is influenced by Y, the nearest neighbors of MX
should identify the time indices of corresponding nearest 
neighbors on MY. As r increases, the attractor manifold fills 
in and the distances among the E+1 nearest neighbors 
shrinks. As a result, 	(t)|MX should converge to Y(t).

For each r = S to r = L, we calculate the correlation 
coefficient 
r between the estimated and actual value of Y(t*)
for t* = 1+(E-1) ��to t* = r. If the series 
S, 
S+1, …, 
L has an 
increasing tendency (i.e., the slope of the linear regression 
line is positive), the influence from Y to X is

������ = �!"{#$, #$
�, … , #%} (3)

Otherwise, CCM��� = 0.

V. EXPERIMENT

We evaluate the validity of CCM by predicting user 
behavior based on the inferred causal strength in real-work 
datasets on three different social media websites, including 
Twitter, Sina Weibo (a popular microblog website in China) 

and Digg. For Twitter, we use the 15M dataset [21], in which 
Twitter messages were collected in the period April-May 
2011, related to the political events (15M movement) 
occurred at that time in Spain.  The action in 15M dataset is 
defined as a user posts a tweet which contains a hashtag 
related to 15M movement at a certain timestamp. For Sina 
Weibo, we use the Diffusion dataset analyzed in [22], in 
which 300,000 popular microblog diffusion episodes were 
collected. The action in Diffusion dataset is defined as a user 
posts or reposts a microblog at a certain timestamp. For 
Digg, we user the Voting dataset studied in [23], in which 
the voting records for 3553 stories promoted to the front 
page over a period of a month in 2009 were collected. The 
action in Voting dataset is defined as a user digs a story at a 
certain timestamp. In order to focus on the active users, we 
further filter our datasets according to the action number and 
active time threshold conditions. For each dataset, we also 
have the given social network represented as a directed 
graph, in which if user u follows v, there is a directed edge 
from v to u. The filtering threshold and filtered dataset size 
are shown in Table I. 

TABLE I. Dataset filtering threshold and size.

Action 
Number 

Threshold

Active 
Time 

Threshold

User 
Number

Time 
Series 

Length
Twitter 0 80% 115 20
Weibo 150 80% 716 35
Digg 1000 0 162 36

    We take a linear threshold classifier for user behavior 
prediction in social media. Intuitively, the more friends of a 
user perform a behavior, the larger probability the user will 
also perform it. Specifically, for a user-behavior pair (u, b), 
we calculate a score P(u, b) as shown in Equation 4, in which 
I(u) is the set of users who have influence on u, wvu is the 
influence of user v on u. If user v performed behavior b, then 

(v, b) = 1, else 
(v, b) = 0. We predict user u will perform 
behavior b if P(u, b) > p0. The value of threshold p0 = 0.1 is 
chosen to maximize the precision prediction.

&(�,  ') = * 
+- . /(0,  ')+12(-)
* 
+-+12(-)

(4) 

    In order to calculate the value of parameter wvu, we have 
three influence measures in total. The first one is Influence-
Oblivious, meaning that if there is an edge from v to u in the 
given social network, then wvu = 1, otherwise wvu = 0. The 
second one is GC influence based on Granger Causality [17]. 
The third one is CCM influence based on our proposed 
approach. According to the adopted influence measurements, 
we have three kinds of classifiers to predict user behavior.

We select all the user-behavior tuples containing the 100 
most popular hashtags or microblogs from Twitter 15M 
dataset and Weibo Diffusion dataset, and all the user-
behavior tuples from Digg Vote dataset as testing samples. 
Each tuple represents that a user adopts a hashtag, or reposts 
a microblog, or digs a story. Fig. 3 shows the precision of 
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user behavior prediction in three datasets. The results 
demonstrate that influence inferred by CCM can 
significantly improve the user behavior prediction precision 
on three datasets. In addition, CCM based influence 
outperforms GC based influence in terms of the precision 
improvement.

Figure 3. Precision of user behavior prediction in three 
datasets with three kinds of influence measurement. 

VI. CONCLUSIONS

In this paper, we have presented Convergent Cross 
Mapping, a novel causal inference approach in online social 
networks, from a nonlinear dynamic system perspective. The 
approach allows us to infer the causal relationship for any 
pair of users based on the user activity level time series data 
alone. This approach for measuring strength of causal effect
does not require any explicit causal knowledge like 
retweeting or other content information. Furthermore, it is a 
model free approach which does not require the pre-
assumption of any particular user activity model. We 
evaluated the proposed approach with real-world social 
media datasets. The experimental results show that this 
approach can successfully uncover the underlying causal 
structure among users and the causal effect strength inferred 
by CCM can benefit the user behavior prediction in social 
media greatly.
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