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Abstract: Digital audio watermarking is a promising technology for copyright protection, yet its
low embedding capacity remains a challenge for widespread applications. In this paper, the spread-
spectrum watermarking algorithm is viewed as a communication channel, and the embedding
capacity is analyzed and modeled with information theory. Following this embedding capacity
model, we propose the extended-codebook spread-spectrum (ECSS) watermarking algorithm to
heighten the embedding capacity. In addition, the diversity reception (DR) mechanism is adopted to
optimize the proposed algorithm to obtain both high embedding capacity and strong robustness while
the imperceptibility is guaranteed. We experimentally verify the effectiveness of the ECSS algorithm
and the DR mechanism, evaluate the performance of the proposed algorithm against common
signal processing attacks, and compare the performance with existing high-capacity algorithms. The
experiments demonstrate that the proposed algorithm achieves a high embedding capacity with
applicable imperceptibility and robustness.

Keywords: digital audio watermarking; embedding capacity; spread spectrum; diversity reception

1. Introduction

With the booming development of the mobile Internet, information dissemination
has changed. Internet firms such as Netflix, YouTube, and Apple have replaced those
outdated CD stores—fewer and fewer music is traded via CDs and tapes. This much easier
dissemination has led to a prosperous music market. However, beneath the appearance of
prosperity, copyright concerns have been getting worse—a piece of music can be copied
and distributed too quickly on the Internet. According to the IFPI (International Federation
of the Phonographic Industry) report [1], almost a third (29%) of respondents admitted
using unlicensed or illegal sources to listen to or download music. There are laws in place
to protect music copyrights, but determining infringement remains a challenge.

Engineers and researchers have also come up with several technologies, among which
digital audio watermarking is quite representative [2], as a technology that can be used
to protect the copyright of music or conference recordings. Digital audio watermarking
embeds the copyright identifier, also known as a watermark, imperceptibly into the host
audio. When a copyright conflict occurs, it can be verified by extracting the watermark
from the watermarked audio.

The performance of a watermarking algorithm is measured by three main criteria:
imperceptibility, robustness and embedding capacity. The imperceptibility refers to the
data fidelity of the watermarked audio, indicating that the embedded watermarks can only
introduce perceptually indistinguishable distortion to the host audio; the robustness refers
to the reliability of the watermark that can be effectively extracted when watermarked audio
has undergone some attacks, evaluated by the accuracy of the watermark extraction; the
embedding capacity refers to the amount of watermark information that can be extracted
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from the watermarked audio [3,4]. The embedding capacity actually describes the ability
of watermarking algorithm to transmit watermark information, which is associated with
the two stages of embedding and extraction. Even some attacks that damage the robustness
will reduce the capacity of the algorithm.

As copyright content becomes diverse, copyright owners want to embed the licensed
object, the class of license and the start and end date into the host data, leading to the
embedding capacity or payload gradually becoming a bottleneck for the watermarking
system. Several studies have been conducted on the embedding capacity of audio water-
marking algorithms, and they use the number of watermark bits embedded per second
(bps) as a metric for the embedding capacity. Nevertheless, it relates to the sample rate or
the channels of the host audio and does not fully reflect the performance of watermarking
algorithms. Moreover, the imperceptibility and robustness have substantial effects on the
embedding capacity due to the embedding strength, a crucial parameter in watermarking
algorithms, controlling different performance criteria. Intuitively, the relaxed impercep-
tibility and strong robustness can lead to a high embedding capacity. However, existing
studies lack the theoretical analysis of the embedding capacity and its dependency on
other performance criteria. Therefore, improving the embedding capacity of watermarking
algorithms still remains an open problem.

In communication systems and watermarking systems, there are numerous paired
concepts, such as the transmitter versus the embedding stage and the receiver versus the
extraction stage. Actually, communication systems are a significant influence on many
watermarking systems [5–8]. The embedding capacity and channel capacity in commu-
nications are also such paired concepts, which both measure the amount of information
flowing through their systems. Indeed, we examine the embedding capacity from the
communication perspective in this paper.

The spread-spectrum (SS)-based watermarking system [5,9,10], the most represen-
tative watermarking algorithms, are directly derived from communications. Analyzing
the embedding capacity of the SS-based watermarking algorithm from an information-
theoretic perspective, we discover that increasing the embedding codebook size and the
watermark extraction precision results in a higher embedding capacity. Therefore, we
propose an extended-codebook spread-spectrum (ECSS) watermarking algorithm using
diversity reception (DR) [11]. The contributions of this paper can be summarized as follows.

1. We construct the capacity model of the SS-based watermarking algorithm, which
reveals how the embedding capacity is dependent on codebook size and robustness.

2. We propose the ECSS algorithm and analyze its embedding capacity and the accu-
racy of the watermark extraction. By extending the codebook, each sequence can
carry more than one watermark bit, which improves the embedding capacity with
applicable watermark robustness.

3. We adopt a diversity reception mechanism for optimizing the ECSS. This mecha-
nism repeatedly embeds the watermark into different regions of the host audio and
aggregates the HSI from all repeated regions when extracting the watermark, re-
ducing the randomness of the HSI and achieving a higher embedding capacity and
stronger robustness.

The remainder of this paper is organized as follows. Section 2 describes the works
related to embedding capacity on watermarking and information hiding. Section 3 intro-
duces the communication model of SS-based algorithms and formulates the embedding
capacity. Section 4 proposes the ECSS algorithm and analyzes the embedding capacity and
the accuracy of the watermark extraction. Section 5 introduces the DR mechanism and
Section 6 presents the specific watermarking system (In this paper, two terms, watermark-
ing algorithm and system, are used. The former is concerned with the mathematical model
of the embedding and extraction stages, while the latter is the concrete implementation,
which also contains modules such as the embedding location selection and the domain
transformation.) flow. Section 7 is devoted to experiments and related discussions. The
work of this paper is summarized in Section 8.
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2. Related Works

Researchers have proposed numerous algorithms to heighten the embedding capacity
of audio watermarking, which focus on proposing novel multibit embedding approaches.
These algorithms can be roughly categorized into QIM-based (quantization index modula-
tion), and SS-based embedding approaches. QIM-based embedding approaches achieve
the effectiveness of multibit embedding by delicately constructing the quantized features
or using more quantization levels. SVD-A-QIM [12] converted audio clips into feature
matrices and embedded the watermark into the singular values of matrices; Wang [13]
observed that the phase of an audio frame distributed uniformly in [0, 2π] and applied the
phase shifting for watermarking. SS-based watermarking algorithms construct an ensemble
of pseudorandom sequences to express multibit watermarks or choose shorter sequences to
heighten the embedding capacity. Xiang adopted circularly shifted pseudonoise codes [14]
or orthogonal pseudorandom sequences [15] to implement multibit embedding approaches.
Zhang [16] used a correlation-and-bit-aware embedding approach to shorten the vector
length required for each bit. All these efforts to improve the embedding capacity have been
successful from the technical level, but there is a lack of theoretical analysis of the concept of
embedding capacity. Since the SS-based algorithms are more similar to the communication
system in detail, this paper employs information theory to analyze the SS algorithm.

Information theory, which provides several theoretical foundations, is widely used in
the design of watermarking algorithms [6,17–19]. These watermarking algorithms model
the HSI and attacks as a communication channel whose output can be characterized by a
conditional probability. The distribution of the host data in the transform domain is often
assumed to be a generalized Gaussian distribution [20] or a Weibull distribution [21]. One
of the most influential works on embedding capacity [6] treated the embedding stage as
encoding processing, while the attacks that audio undergoes were treated as a communica-
tion channel A(ŷ|y). If the attacks could be explicitly described as a conditional probability
distribution, this would provide theoretical guidance for designing a suitable encoding (or
embedding) processing. However, researchers often know little about the attacks, or the
attacks are too complex to be modeled statistically. In addition, information theory is also
broadly applied in the design of information hiding, and some entropy encodings are often
used to improve the performance of information-hiding algorithms [22–24]. Meanwhile,
communication channels have also been applied to model embedding and extraction ap-
proaches to analyze the information-hiding capacity. Fridrich [25] presented a capacity
model for information hiding for a given embedding distortion and transmission distor-
tion, which established three channels for embedding, extraction and transmission and
derived the steganographic capacity as the difference of the mutual information between
the codebook and the cover data. Due to the difficulty of calculating mutual information for
data with a complex distribution, Fridrich’s model finally provided only an approximate
result, which made it hard for inspiring the design of an information-hiding algorithm.
Moreover, several works investigated information-hiding algorithms and their capacity,
and these works commonly used Gaussian distribution [26,27], quantized Gaussian dis-
tribution [28], generalized Gaussian model [29], Gaussian Markov field [30] or Gibbs
distribution [31] to model the host data. These works focused on the probability of stegano-
graphic messages being discovered by the warden and ignored the effect of the accuracy of
the extraction, thus making the conclusions of their analysis challenging to generalize to
audio watermarking systems.

In this paper, the embedding capacity of the SS-based watermarking algorithm is ana-
lyzed using information theory. Based on the analysis, we propose an extended-codebook
spread-spectrum watermarking (ECSS) algorithm which enhances the embedding capacity,
and finally, we adopt a diversity reception mechanism to further optimize the embedding
capacity and robustness of ECSS.
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3. Embedding Capacity of SS-Based Algorithms

As the first work to apply spread spectrum to digital watermarking, vanilla spread
spectrum (VSS) has had a significant influence thanks to the anti-interference capability
of the spread spectrum [32]. It is assuming x, y and p are three equal-length row vectors.
Among of them, x is the signal vector of the host audio in a particular domain, y is its
corresponding signal vector of watermarked audio, and p is a pseudorandom sequence
independent of x. Throughout this paper, the length of signal vector x is used to denote the
length of these three vectors. The VSS embeds a sign ω ∈ {−1,+1} into the host signal x as

y = x + αωp (1)

where α, named embedding strength, is a small positive constant controlling the embedding
distortion. Notice that the watermark bits usually consists of 0’s and 1’s. Typically, the 0’s
are replaced with −1’s and then the embedding in Equation (1) is performed.

In the watermark extraction stage, according to the watermarked signal y and the
pseudorandom sequence p, we can calculate

R =
ypT

ppT

=
(x + αωp)pT

ppT

=αω +
xpT

ppT

(2)

where the superscript T denotes the transpose operator. Equation (2) can be rewritten as

R =


α +

xpT

ppT , ω = +1

− α +
xpT

ppT , ω = −1
(3)

where
xpT

ppT is referred to as the host signal interference (HSI) since it affects the extraction

results and is related to the host signal. If p is long enough to have
xpT

ppT ≈ 0, or if the

embedding strength is large enough to have | xpT

ppT | � α, then R has the same sign as ω.

Therefore, the embedded watermark bits can be extracted from R by

ω̂ = sign(R) (4)

Channel Model and Embedding Capacity

As defined by information theory [33], a communication channel is a system consisting
of an input codebook I = {Ii}, output codebook O = {Oi} and a probability transition
matrix T = {pij}, where an element pij expresses the probability of observing the output
Oj given the input Ii. The Figure 1a gives a schematic of a general communication channel
with an input codebook size |I| of m, an output codebook |O| of n and a transition matrix T.

The channel capacity is the highest rate in bits that can be transmitted per channel
use and the maximum mutual information between input and output for different input
distributions. It can be expressed formulaically as [33],

C = max
p(I)

I(I; O) (5)
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Specifically, if the channel in Figure 1a is weakly symmetric and the input codebook fit a
uniform distribution, then its channel capacity is,

C = log|O| − H(pi1, pi2, · · · , pin) (6)

and H(pi1, pi2, · · · , pin) is the Shannon entropy of any row in transition matrix T,

H(pi1, pi2, · · · , pin) = −
n

∑
j=1

pij log pij (7)

the logarithmic function is set to a base of 2.

I1

I2

I3

Im

...

O1

O2

On

...

(a) General communication channel

+1

-1

+1

-1

Pe

Pe

1-Pe

1-Pe

(b) Binary symmetric channel

Figure 1. Schematic of two types of channel.

According to the above introduction, the VSS watermarking algorithm can be consid-
ered a binary symmetric channel, as shown in Figure 1b, in which the input symbols are
complemented with probability Pe, and its channel capacity is

Cvss = 1− H(Pe, 1− Pe) (8)

It can be seen that the size of the output codebook corresponding to the VSS algorithm is
2, which is a limitation on the channel capacity. In addition, the error probability of the
watermark extraction also dramatically influences the channel capacity. At the extreme,
the channel capacity is 0 if the error probability is 0.5; the channel can deliver the message
“accurately” if the error probability is dramatically equal to 1.

However, there is a slight difference between channel capacity and embedded capacity.
It can be seen from Equation (1) that embedding a symbol (watermark bit) requires a signal
vector of length lx. Therefore, the watermarking embedding capacity also needs to take the
length of the host signal into account. We define the embedding capacity Ec as the bits that
can be embedded per sample point, measured in bits/sample . It can be calculated from the
channel capacity C,

Ec =c · C
lx

=c · log|O| − H(pi1, pi2, · · · , pin)

lx

(9)

where c is a constant factor representing the loss of capacity in the watermarking system.
In Equation (9), it can be found that the embedding capacity Ec of the watermark is

affected by several factors:

• The output codebook size |O|; in a watermarking system, the input and output
codebooks are generally the same in size;

• The entropy of transition probability H(pi1, pi2, · · · , pin), which is relevant to water-
mark robustness;
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• The length of the signal vector employed to embed a symbol lx;
• The domain transformation and location selection modules contained in the water-

marking system. Parameter c in Equation (9) has varied values for different systems.

However, these factors may be mutually constraining, e.g., a short signal vector
may heighten the embedding capacity and increase the transition probability’s entropy.
Some factors may also conflict with other performance criteria; for instance, a sufficiently
large embedding strength reduces the transition probability’s entropy, but it also destroys
the imperceptibility of the watermark. The remainder of this paper does not involve
the embedding location selection and domain transformation, so the constant factor c in
Equation (9) is ignored.

In the next two sections, we present ECSS and DR to improve the two terms corre-
sponding to the numerator in Equation (9), respectively.

4. Extended-Codebook Spread-Spectrum Watermarking Algorithm

The VSS watermarking algorithm adds the pseudorandom sequence p to the signal
vector x with different signs according to the watermark bit ω. It has a codebook size of
just 2. Hence, increasing the codebook size of the SS-based algorithm is a viable option.

There are m mutually orthogonal sequences {pi}m−1
i=0 and the sequences’ norm are 1,

i.e.,

pipT
j =

{
1, i = j

0, i 6= j
(10)

Here, the length of sequence pi is equal to the signal vector as lx and lx ≥ m. Each sequence
can represent two symbols of the channel input (refer to Equation (1), a pseudorandom
sequence has two signs), then the size of the codebook is extended to |O| = 2m. In
this section, we propose an extended-codebook spread-spectrum audio watermarking
algorithm using the mentioned sequences {pi}m−1

i=0 and analyze its error probability and
embedding capacity.

4.1. Embedding Approach

When using the sequences {pi}m−1
i=0 as the extended codebook to embed the watermark,

we can embed M = log|2m| bits of the watermark once rather than embedding 1 bit in the
VSS algorithm, where m is assumed to be an integer power of 2. First, the former M− 1
bits in the M-bit watermark are converted to decimal,

k =
M−2

∑
i=0

bi × 2i (11)

where bi is the ith bit in the M-bit watermark. There are 0 ≤ k ≤ m− 1, so each M-bit can
correspond to a sequence pk. Then, the last bit of the M-bit watermark bM−1 is employed
to modulate the sign of the sequence pk. The embedding approach is as follows,

y = x− (−1)bM−1 αpk (12)

The embedded M-bit watermark can be expressed as (bM−1, k).

4.2. Extraction Approach and Error Probability

For watermark extraction, similar to Equation (2), a pre-extraction is performed on all
sequences,
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Ri =ypT
i

=xpT
i − (−1)bM−1 αpkpT

i

=


xpT

i , i 6= k

xpT
k − α, i = k & bM−1 = 0

xpT
k + α, i = k & bM−1 = 1

(13)

The HSI term also exists in Equation (13). When the distribution of the HSI is studied,
a Gaussian distribution [9] with mean 0 is usually assumed, and we use Q-Q (quantile–
quantile) plot and K-S (Kolmogorov–Smirnov) tests [34] to test this hypothesis on the
distribution of the HSI. In the experiments, 5000 samples of the HSI were collected for
each length of signal vectors of the VSS watermarking algorithm, and the corresponding
assumption was verified using the Q-Q plot and p-values of the K-S test.

Figure 2 shows a Q-Q plot and the results of the K-S tests. In Figure 2a, the points are
evenly distributed around the reference line, indicating that their distribution is similar
to the hypothetical distribution. Due to size limitation, the result is shown here only for
the length of the signal vector of 32. In Figure 2b, it is shown that the K-S tests performed
on different lengths of signal vector have p-values greater than 0.05, which means that we
cannot reject the hypothesis that these sample points fit the Gaussian distribution.

We also estimated the HSI’s mean and standard deviation, as shown in Figure 3. The
mean of the HSI can also be considered as 0. The standard deviation σ is insignificantly
related to the length of the signal vector.

2 1 0 1 2

theoretical quantiles
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(a) Q-Q plot
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p-value of k-s test
reference line 0.05

(b) p-value of K-S test

Figure 2. Distribution test of HSI for ECSS. (a) Q-Q plot at signal length of 32, with most points near
the red line; (b) p-values of K-S test, with p-values greater than 0.05 at all signal lengths.
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Figure 3. Estimation of the mean and standard deviation of the HSI of the ECSS. (a) Mean of HSI,
close to 0; (b) standard deviation of HSI. The longer the signal vector is, the smaller the standard
deviation of HSI is, but this relationship is insignificant.
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When the length of pi is appropriate, or the embedding strength is large, the k cor-
responding to the watermark can be obtained by comparing the magnitudes of the pre-
extraction, i.e.,

k̂ = argmax
i∈{0,1,··· ,2M−1}

|Ri| (14)

bM−1 is obtained from the sign of Rk̂,

b̂M−1 =

{
0, Rk̂ < 0

1, Rk̂ ≥ 0
(15)

Thus, the M-bit watermark is extracted as (b̂M−1, k̂). However, the extracted watermark
may still be incorrect due to the HSI.

Generally, the embedded watermark of (1, k0) is analyzed here as an example. The
error occurs in two cases, i.e., k̂ 6= k0 in Equation (14), or k̂ = k0, but bM−1 6= 1 in
Equation (15).

When k̂ 6= k0, there is at least one pre-extraction Rm greater in magnitude than Rk0 . It
can be described as,

|Rm| ≥ |Rk0 | (16)

Equation (16) can be analyzed in two scenarios. The first scenario is

Rm ≥ xpT
k0
+ α (17)

In this case, Rm = max(R0, · · · , Rk0−1, Rk0+1, · · · , Rm−1), and all the pre-extractions are
independent and identically distributed. Then, the cumulative density function (CDF) of
Rm is,

Fm(x; σ) = Φm−1(x; σ) (18)

where Φ(x; σ) is the CDF of the HSI.
The right side of Equation (17) is a rather tricky variable to analyze, and since the

expectation of the HSI xpT
k0

is 0, Equation (17) is simplified here as follows,

max(R0, · · · , Rk0−1, Rk0+1, · · · , Rm−1) ≥ α (19)

The probability that Equation (19) holds is

pe1 = 1−Φm−1(α; σ) (20)

Similarly, the second scenario of Equation (16) is,

Rm ≤ xpT
k0
− α (21)

The corresponding error probability is

pe2 = 1− (1−Φ(−α; σ))m−1 (22)

Since the probability density function (PDF) of the HSI in Equation (3) is even, we
have pe1 = pe2. Therefore, the probability of the first case of error (Equation (16)) is

pe =1− (1− pe1)(1− pe2)

=1− (1− pe1)
2

=1−Φ2m−2(α; σ)

(23)

When k̂ = k0 but b̂M−1 6= 1, there is
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xpT
k0
≤ −2α (24)

It is noted that Equation (16) does not hold at this point, so the corresponding probability is

pe3 =(1− pe)Φ(−2α; σ)

=(1− pe1)
2Φ(−2α; σ)

=Φ2m−2(α; σ)Φ(−2α; σ)

(25)

In a nutshell, the probability that Equations (14) and (15) can extract the correct
watermark is

pc =1− pe − pe3

=Φ2m−2(α; σ)−Φ2m−2(α; σ)Φ(−2α; σ)

=Φ2m−2(α; σ)Φ(2α; σ)

(26)

Since the distribution of the HSI is symmetric, the mentioned probabilities still hold at
bM−1 = 0, and they are all functions of the length of the signal vector lx, the number of
sequences m and the embedding strength α.

4.3. Embedding Capacity

Two error cases were analyzed in Section 4.2, where the error probability pe was
uniformly distributed to 2m− 2 corresponding symbols, while pe3 only corresponded to
one symbol. Therefore, one row of the transition probability matrix can be written as,

r =
(

pe

2m− 2
,

pe

2m− 2
, · · · , pe3, pc

)
(27)

where there are a total of (2m− 2) terms
pe

2m− 2
.

The embedding capacity of the ECSS algorithm can be calculated according to
Equation (9),

Ec =
log 2m− H(r)

lx
(28)

where the constant factor c is ignored here. Equation (28) shows that Ec becomes lower
when the signal vector becomes longer.

Since lx ≥ m, the maximum embedding capacity for a given m is obtained when

lx = m (29)

Thus, the embedding capacity is simplified to a function of the number of sequences
(the length of the signal vector) m and the embedding strength α.

5. Diversity Reception

It can be seen in Equation (28) that the transition probability of the channel, especially
the accuracy of the watermark extraction, pc, has a significant influence on the embedding
capacity Ec. Improving the watermark extraction accuracy is also an effective way to
heighten the embedding capacity. Moreover, a high accuracy is also beneficial for the
implementation of a watermarking system.

There are three strategies to improve the accuracy of the watermark extraction shown
in Equation (26).

(1) Reducing the number of sequences m;
(2) Increasing the embedding strength α;
(3) Modifying the distribution of the HSI.
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Both strategies (1) and (2) involve a parameter selection, and in the next section, we
experiment with different parameters.

In this section, we adopt the diversity reception (DR) mechanism to modify the
HSI distribution, a method commonly used in signal detection. The DR mechanism can
effectively improve the accuracy of the watermark extraction. In brief, the M-bit watermark
(bM−1, k) is repeatedly embedded into different signal vectors xγ, where γ is an integer in
the interval [0, Γ), where Γ is the number of repetitions in DR. In the extraction phase, all
the watermarked signal vectors are referenced. Equation (13) can be rewritten as,

Ri =
1
Γ

(
Γ−1

∑
γ=0

yγ

)
pT

i

=
1
Γ

(
Γ−1

∑
γ=0

(
xγ − (−1)bM−1 αpk

))
pT

i

=



1
Γ

(
Γ−1

∑
γ=0

xγpT
i

)
, i 6= k

1
Γ

(
Γ−1

∑
γ=0

xγpT
k

)
+ α, i = k & bM−1 = 1

1
Γ

(
Γ−1

∑
γ=0

xγpT
k

)
− α, i = k & bM−1 = 0

(30)

By substituting the pre-extractions of Equation (30) into Equations (14) and (15),
the corresponding embedded watermark can be extracted. Since xγpT

i or xγpT
k are Γ

independent and identically distributed random variables with variance σ2, the variance
of 1

Γ

(
∑Γ−1

γ=0 xγpT
i

)
or 1

Γ

(
∑Γ−1

γ=0 xγpT
k

)
is σ2

Γ . Hence, in the DR mechanism, the distribution
of the HSI is modified, and the variance is smaller than that in the ECSS algorithm. It
is indicated from Equation (26) that the smaller the standard deviation of the HSI is, the
higher the accuracy of the watermark extraction is.

This method of repeatedly embedding the watermark and averaging the HSI in
different watermarked signal vectors to reduce the randomness of the HSI is referred to as
DR in this paper. Although DR improves the accuracy of the watermark extraction, on the
other hand, DR may also reduce the embedding capacity because more signal vectors are
used for embedding the watermark.

It seems that DR is a trade-off to balance the embedding capacity with the robustness.
However, it is not the case. Even if the number of repetitions is small (e.g., Γ = 2), DR
can still significantly improve the accuracy of the watermark extraction (in Section 7.3). In
this case, the gain of an accuracy improvement on the embedding capacity outweighs the
capacity cost of repeated embeddings.

6. Our Audio Watermarking System

An audio-watermarking-system-based ECSS and DR is provided here. It can be
divided into two stages, the watermark embedding stage and the extraction stage, as
shown in Figure 4.
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Figure 4. Sketch of our audio watermarking system.

6.1. The Embedding Stage

The watermark embedding stage is shown as Figure 4a and can be summarized as
three steps.

Step 1: framing, DCT and selection of embedding regions
The host audio is split into consecutive nonoverlapping frames and DCT is applied on

each frame; the medium frequency components of the DCT coefficients are selected as the
embedding regions and grouped as vectors xγ.

Step 2: watermarking modulation and embedding
The sequences {pi}m−1

i=0 is an ensemble of standard orthogonal vectors satisfying
Equation (10) and of length m. The M-bit watermark is represented in the form of (bM−1, k)
and repeatedly embedded into multiple signal vectors xγ according to Equation (12),
resulting in watermarked vectors yγ. The detail of this step is described in Section 4.1.

Step 3: audio reconstruction
Replace xγ correspondingly by the watermarked vector yγ. The DCT coefficients are

reorganized, and then an inverse DCT is performed on the coefficients to obtain the audio
frames. These audio frames are concatenated to yield the watermarked audio.

6.2. The Extraction Stage

The watermark extraction stage is shown in Figure 4b and can also be summarized as
three steps.

Step 1: framing, DCT and the selection of embedding regions
The received audio is split into consecutive nonoverlapping frames and DCT is applied

on each frame; the medium frequency components of the DCT coefficients are selected as
the embedding regions and grouped as vectors yγ.

Step 2: averaging and pre-extraction
Average the ygammas yielding ȳ, whose correlation with each sequence pi is the

pre-extraction results Ri’s, as Equation (30) in Section 5.
Step 3: extraction
The watermark (b̂M−1, k̂) can be obtained from the magnitude and sign of the pre-

extraction results, as shown in Equations (14) and (15) of Section 4.2.

The ECSS and DR correspond to Step 2 in the embedding stage and Steps 2 and 3
in the extraction stage of our watermarking system. Framing, DCT, and the selection of
embedding regions can be replaced by any embedding regions’ strategy. The watermarking
system presented in this section is only used as an example to evaluate the performances of
the ECSS and DR.
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7. Experiments and Discussion

This section uses a series of experiments to validate the proposed algorithm.
The accuracy of the watermark extraction of the ECSS/+DR algorithm was measured

at different embedding strengths and lengths of signal vectors. The embedding capacity
was calculated according to the accuracy. The performance of the ECSS/+DR algorithm
was also compared with that of the VSS algorithm to validate the effectiveness of the ECSS
algorithm.

The influence of the DR mechanism with different repetitions Γ on the performance
of the audio watermarking system was also evaluated. This part of the experiment also
verified the effectiveness of the DR mechanism.

In addition, we evaluated the robustness of the proposed algorithm against common
signal processing attacks and discuss the influence of these attacks on the embedding capacity.

Finally, the performance of our algorithm was also compared with that of other existing
watermarking algorithms.

7.1. Experimental Settings and Metrics

Our watermarking algorithm contains three settable parameters, namely the embed-
ding strength α, the length of signal vectors m (equal to the number of sequences, as in
Equation (29)) and the number of repetitions Γ. We chose different α, m and Γ for the
experiments, evaluated the influence of attacks on the performance of the algorithm and
compared the performance with other existing algorithms on suitable parameters.

We selected 1000 stereo audio tracks with a sample rate of 44.1 kHz and a duration
of 30 s from the FMA dataset [35] for the experiments. In the selection of embedding
regions, the framed audio segment had 2048 samples and we used the 256th to 511th
DCT coefficients as the embedding region, which corresponded to the frequency interval
[2756, 5512] Hz. All or part of these 256 DCT coefficients were divided into several signal
vectors.

The embedding distortion SWR (signal-to-watermark ratio) was employed to evaluate
the watermark imperceptibility. The SWR is calculated as,

SWR = 10 lg

(
∑n

i=1 x2(i)

∑n
i=1(y(i)− x(i))2

)
(31)

where x(i) and y(i) denote the ith sample of the host audio and the watermarked audio.
SWR reflects the amount of change to the host audio by the watermark embedding. Al-
though SWR does not reflect the perceptual quality of audio locally, it is still an important
metric of imperceptibility.

In this paper, the robustness of the watermarking algorithm was evaluated using the
watermark group extraction precision (GEP). A watermark group consists of the watermark
bits corresponding to a sequence, e.g., an M-bit watermark in the ECSS algorithm, while a
watermark group is a single bit in the VSS algorithm. The GEP is calculated as follows,

GEP =
# o f groups extracted

# o f total groups
× 100% (32)

where GEP = 1 means that the watermark can be extracted entirely and correctly. The
higher the GEP is, the more robust the watermarking algorithm is.

When evaluating the robustness, we also used another metric similar to the GEP, the
watermark bit detection rate (BDR). The BDR compares the embedded watermark bits with
the extracted bits, and it is defined as,

BDR =
# o f bits extracted

# o f total bits
× 100% (33)

where BDR = 1 means that the watermark can be extracted entirely and correctly. The
higher the BDR is, the more robust the watermarking algorithm is.
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We used two different metrics to evaluate robustness, because

(1) The BDR does not reflect the actual robustness of the algorithms if there is a use of
multibit embedding, and in the case of the ECSS algorithm, e.g., when the four-bit
watermark (1, 7) is incorrectly extracted as (1, 6), the BDR is 75%, while the GEP is 0%.
The GEP reflects the fact more accurately.

(2) However, not all algorithms embed the same quantity of bits once. For those algo-
rithms that have small watermark groups, the GEP typically yields better results.
The actual performance of the algorithms with various embedding bits is somewhat
reflected in the BDR.

We used the GEP to evaluate the robustness of the ECSS algorithm and DR, and then
used the BDR, which is more common in the literature, to evaluate various attacks and
compare them with existing algorithms.

7.2. Effectiveness of the ECSS Algorithm

In this subsection, we statistically measure the GEPs of the ECSS algorithm and
calculate the corresponding embedding capacity Ec based on the GEPs. The relevant
performance of the VSS algorithm is also evaluated as a comparison.

The GEP can only estimate the probability of correctly extracting the watermark group,
but the complete probability transition matrix is required to calculate the embedding
capacity. For this reason, we assigned the error probabilities uniformly to the other symbols
to calculate the infimum of the embedding capacity. Figures 5–8 show the results of these
experiments, where Figure 5 shows the GEP versus embedding strength α at different
lengths of the signal vector; Figure 6 shows the embedding capacity versus embedding
strength α at different lengths of the signal vector; Figure 7 shows the GEP versus the
length of the signal vector at different embedding strengths; Figure 8 shows the embedding
capacity versus the length of the signal vector at different embedding strengths.

As shown in Figure 5, the GEP of the VSS algorithm varies flatly and significantly
outperforms that of the ECSS algorithm. As the GEP favors the single-bit embedding
approaches, the performance difference between the proposed algorithm and the VSS
algorithm is not as significant as shown in Figure 5. As the embedding strength increases,
the GEP of ECSS gradually increases and finally saturates. In Figure 6, the embedding
capacity of VSS is greater than that of the ECSS algorithm when the embedding strength is
low. As the embedding strength becomes larger, the embedding capacity of both algorithms
increases, but the increase is faster for the ECSS algorithm. It can also be seen that the
embedding capacity of VSS is low when the embedding strength is greater than 0.3.

In Figure 7, it can be seen that the GEP of VSS is almost independent of the length of the
signal vector. The GEP of VSS increases with the lengthening of the signal vector for a given
embedding strength. However, the factor

√
m was divided by the embedding strength

to ensure that the SWR of the VSS and ECSS algorithms were equal. (Although α in both
Equations (1) and (12) denotes the embedding strength, the influence on the embedding
distortion is different since the norm of the pseudorandom sequence in Equation (1) is
lx, while it is one in Equation (12). Thus, there is a factor

√
lx difference between the

embedding strengths corresponding to the same embedding distortion.) At the embedding
strength α = 0.2 or α = 0.3, the GEPs of the ECSS algorithm do not reach saturation, and
there is no obvious pattern indicating that the GEP is related to the length of the signal
vector, which is similar to the standard deviation of the HSI in Figure 3b.

On the other hand, it is shown in Figure 8 that the embedding capacity decreases as the
length of the signal vector grows, which can be concluded accordingly from Equation (28).
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Figure 8. The embedding capacity versus length of signal vector at different embedding strengths.

7.3. Effectiveness of the DR mechanism

In the above subsection, the GEP and embedding capacity of VSS and ECSS were
analyzed. However, the role of the DR mechanism is not yet clear. In this subsection, the
performance of ECSS is analyzed with different repetitions of the DR mechanism combined.
The relevant experimental results are shown in Figures 9–12. Figures 9 and 10 show the
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curves of GEPs and embedding capacity versus the embedding strength at different lengths
of the signal vector, where “w/o DR” means Γ = 1. In this paper, the length of the signal
vector in the DR mechanism refers to the sum of the length of multiple repeated signal
vectors, e.g., the length of 64 for the ECSS+DR algorithm in Figure 9 means that two signal
vectors with length 32 were used to embed the same M-bit watermark. The DR mechanism
with repetition Γ = 3 in Figures 9 and 10 actually used signal vectors with lengths 33, 63,
129, 255, which are somewhat different from the subplot titles. Figures 11 and 12 show the
curves of GEPs and embedding capacity versus the length of the signal vector at different
embedding strengths.

As the embedding strength α increase, the GEP gradually increases and eventually
saturates, as shown in Figure 9. Furthermore, the smaller the embedding strength is re-
quired to saturate the GEP when there are more repetitions. As in Figure 10, the embedding
capacity of the watermark is improved with the embedding strength. However, unlike the
GEP, DR with different number of repetitions has different embedding capacities when it
finally reaches saturation, and the embedding capacity at saturation is lower when there
are more repetitions. At low embedding strength, the ECSS+DR algorithm achieves a better
imperceptibility, robustness, and embedding capacity than the ECSS algorithm. Moreover,
as the signal vector lengthens, the embedding capacity with different repetitions gets closer
when saturated, which indicates that repeated embedding is less costly.

There is no clear relationship between the GEP and the length of the signal vector, as
shown in Figure 11. Nevertheless, it can be seen in Figure 12 that the embedding capacity
gradually decreases as the length of the vector gets longer. If the chosen embedding
strength saturates the GEP, the embedding capacity is inversely proportional to the square
root of the length of the signal vector.

In summary, the DR mechanism effectively improves the embedding capacity and
the GEP at low embedding strength, balancing the proposed watermarking algorithm’s
imperceptibility, robustness and embedding capacity.
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Figure 9. The GEP versus embedding strength at different lengths of signal vector.
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Figure 12. The embedding capacity versus length of signal vector at different embedding strengths.

7.4. Robustness and Embedding Capacity against Attacks

In this subsection, we evaluate the BDR and embedding capacity of the proposed
ECSS and ECSS+DR algorithms for some common data processing attacks. The attacks are
described in Table 1.

Table 1. The attacks used to evaluate robustness and embedding capacity.

Abbrev. Attacks Description

CLP Closed loop Watermarked audio is in fact not attacked.
WGN Adding white Gaussian noise Gaussian noise with SNR of 15 dB or 10 dB is added.

MP3 MP3 compression MPEG-1 Layer-III compression is applied to water-
marked audio with a bitrate of 96 kbps.

RSP Resampling Watermarked audio downsampled to 22.05 kHz,
then upsampled to 44.1 kHz.

LPF Lowpass filter Watermarked audio is filtered by a Butterworth
filter, with an 8 kHz cutoff frequency.

ASC Amplitude scaling The amplitude of watermarked audio is diminished
by 0.7 times.

RQZ Requantization The 16-bit watermarked audio is requantized down
to 8 bits/sample and back to 16 bits/sample.

DLY Short delay A 50 ms delayed copy of watermarked audio is
added with an intensity of 0.3

In order to demonstrate the influence of the attacks on the performance of the water-
marking algorithm, the parameters α = 0.3 and Γ = 2 for which the GEP did not reach
saturation were deliberately chosen. The evaluation was also performed using signal vec-
tors of different lengths. The experimental results are shown in Figure 13, the top subplot is
the BDR and the bottom half is the corresponding embedding capacity.
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Figure 13. The BDR (top) and the embedding capacity (bottom) of the algorithm against attacks, The
horizontal coordinates indicate the different lengths of the signal vector. Red: ECSS, blue:ECSS+DR.

The effect of the signal processing attacks can be equivalent to adding a certain amount
of noise to the audio, and the power of that noise is much lower than the power of the audio
itself. The ECSS algorithm proposed in this paper resisted most of these attacks, where
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there was almost no influence in RQZ, ASC, RSP, LPF, and MP3 attacks, which reduced the
average BDR of the ECSS algorithm by 0.1% to 0.5% and had negligible influence on the
ECSS+DR algorithm. However, in the WGN attack, the BDR of the ECSS algorithm showed
a substantial decline, where a 15 dB Gaussian noise would decrease the BDR of the ECSS
algorithm by 4.1%, corresponding to a 1.0% decrease for the ECSS+DR algorithm, and a 10
dB noise would decrease the BDR of the ECSS algorithm by 11.5%, corresponding to a 5.5%
decrease for the ECSS+DR algorithm.

The decrease of the BDR also reduced the embedding capacity of algorithms. Among
these attacks, the influence of RQZ, ASC, RSP, LPF, and MP3 attacks on the embedding
capacity of the watermarking algorithms was less than 3× 10−5 bits/sample, which is
negligible. The WGN attack decreased the embedding capacity of the ECSS and ECSS+DR
algorithms by 5× 10−4 bits/sample and 3× 10−4 bits/sample, respectively, at an SNR of 15
dB; 10dB noise decreases the embedding capacity by 1.2× 10−3 bits/sample and 1.5× 10−3

bits/sample correspondingly.
We also evaluated the performance of the ECSS/+DR algorithm against a short delay

attack (DLY). The BDR was reduced by 8.11% for the ECSS algorithm and by 2.51% for the
ECSS+DR algorithm. Due to the change in robustness, the embedding capacity was reduced
by 9.1× 10−4 and 7.5× 10−4, respectively. Algorithm DLY is not a signal processing attack,
although adding other parts from the same audio is still equivalent to adding noise. Indeed,
the ECSS+DR algorithm provided an anti-interference property.

The influence of various attacks on the performance and the equivalent noise inten-
sity are summarized in Table 2, where the equivalent SNR indicates the intensity of the
equivalent noise corresponding to the attack.

Table 2. The average influence of attacks on the watermarking algorithm.

Attacks
Avg. Degraded BDR (%) Avg. Degraded Ec (Bits/Sample) Equivalent SNR (dB)

ECSS ECSS+DR ECSS ECSS+DR

CLP 0 0 0 0 -
WGN 10 dB 11.5 5.5 1.2× 10−3 1.5× 10−3 10
WGN 15 dB 4.1 1.0 5× 10−4 3× 10−4 15

MP3 0.3 0.1 3.5× 10−5 1.7× 10−5 30
RSP 0.1 0.05 1.1× 10−5 5.5× 10−6 35
LPF 0.1 0.01 1.7× 10−5 8.3× 10−6 33
RQZ 0 0 0 0 45
ASC 0 0 0 0 55
DLY 8.11 2.51 9.1× 10−4 7.5× 10−4 13

In addition to signal processing attacks, advanced attacks such as crop, framing errors
and playback scaling are also possible with watermarked audio. It is difficult to resist these
attacks by considering only the embedding and extraction algorithms. Various strategies for
selecting embedding regions have been proposed in the literature, among which RASE [36]
and RFPS [37] can resist crop and framing errors, A WSOLA-based strategy [38] can resist
playback. These strategies can replace Step 1 in Section 6 to resist the corresponding attacks.
However, there is no watermarking algorithm that can resist all audio attacks.

7.5. Comparison with Other Existing Algorithms

The proposed ECSS+DR algorithm was also compared with existing high-embedding-
capacity algorithms [12,13,15,16]. These algorithms all have relatively high embedding
capacity which have been presented as related works in Section 2, and the parameter
settings of each comparison algorithm are referred to in the relevant papers. Here, the BDR
was used to evaluate the robustness of these algorithms against various attacks.

It is still evident from the experimental results in Table 3 that our algorithm obtained
outstanding performance. “Ours” represents the ECSS+DR algorithm, where the embed-
ding strength was α = 0.35, the repetitions Γ = 2, and the length of the signal vector
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m = 16 (due to repeated embeddings, each M-bit watermark group actually used signal
vectors with a total length of 32). These parameters provide a balanced performance for the
ECSS+DR algorithm according to Sections 7.2 and 7.3.

The ECSS+DR algorithm had similar embedding distortion SWR as the algorithm
in [12] and also had a comparable BDR in CLP, LPF, and RSP attacks. However, the
embedding capacity of our algorithm was significantly higher, and our algorithm was also
more robust against WGN and MP3 attacks. Compared with the algorithm in [15], the
robustness of our algorithm was close to that of the latter, but our embedding capacity was
better, and notably, there was a slighter SWR in our algorithm. Compared with the methods
in [13,16], our embedding distortion was near to theirs, but our algorithm performed much
better in both robustness and embedding capacity.

Table 3. The performance of ECSS+DR and existing algorithms.

Metrics
Algorithm Hwang [12] Wang [13] Xiang [15] Zhang [16] Ours

Ec (bits/sample) 0.0039 0.0011 0.0019 0.0015 0.0189

SWR (dB) 25 28.42 22.74 25.63 24.55

CLP 99.67 99.64 100 80.59 99.38
WGN 10dB 55.42 84.72 99.3 74.83 95.10

LPF 98.16 88.63 100 60.08 99.37
MP3 70.29 89.52 99.8 65.01 99.36
RSP 99.36 97.66 97.7 - 99.37

In a nutshell, our algorithm achieved a significant advantage in embedding capac-
ity, without any disadvantage in robustness and imperceptibility compared to other
existing algorithms.

8. Summary

In this paper, we analyzed the spread-spectrum watermarking algorithm from the
perspective of the communication channel and formularized its watermark embedding ca-
pacity. According to this analysis, we proposed a watermarking algorithm using extended-
codebook ECSS and optimized it by adopting the diversity reception (DR) mechanism, so
that the ECSS+DR watermarking algorithm achieved a higher embedding capacity and
stronger robustness while given a limited embedding strength.

However, the embedding capacity formulation in this paper was only limited to the
spread-spectrum watermarking algorithm, and the derived formula did not take into
account the various attacks that could be encountered with the watermarked audio. Due to
the excellent anti-interference performance of the spread-spectrum approach, our algorithm
still resisted common signal processing attacks. Our team will subsequently try to build
a more generalized embedding capacity model that takes into account watermarking
algorithms from other paradigms such as QIM and deep learning, as well as considering
attacks.

In this paper, a Gaussian distribution was used to model the HSI, which is a heuristic
method lacking a rigorous theoretical support. Although the Gaussian distribution passed
the K-S test, we note that the sample points in the Q-Q plots formed an S-like curve.
Therefore, there may exist a more suitable distribution for modeling the HSI.

Our algorithms are not resistant to white-box attacks in which the attackers knows
this algorithm. Although the embedder and the extractor of the watermarking system are
the same, the security of this algorithm still needs to be improved in future work.
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Abbreviations
The following abbreviations are used in this manuscript:

ECSS The extended codebook spread spectrum
DR Diversity reception
IFPI International Federation of the Phonographic Industry
SS Spread spectrum
VSS The vanilla spread spectrum
HSI The host signal interference
QIM Quantization index modulation
DCT Discrete cosine transformation
Q-Q Quantile–quantile
K-S Kolmogorov–Smirnov
SWR Signal-to-watermark ratio
GEP Watermark group extraction precision
BDR Watermark bit detection rate
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