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Abstract—Reinforcement learning algorithms rely on carefully
engineering environment rewards that are extrinsic to agents.
However, environments with dense rewards are rare, motivating
the need for developing reward functions that are intrinsic to
agents. Curiosity is a type of successful intrinsic reward function
which uses prediction error as reward signal. In prior work,
the prediction problem used to generate intrinsic rewards is
optimized in the pixel space rather than a learnable feature
space to avoid randomness caused by feature changes. However,
these methods ignore small but important elements of the states
that are often associated with locations of the character, which
makes it impossible to generate accurate internal rewards for
efficient exploration. In this paper, we firstly demonstrate the
effectiveness of introducing prior learned features for existing
prediction based exploration methods. Then an attention map
mechanism is designed to discretize learned features, thereby
updating the learned feature and meanwhile reducing the impact
of randomness on intrinsic rewards caused by the learning
process of features. We verify our method on some video games
from the standard reinforcement learning Atari benchmark,
achieving clear improvements over random network distillation,
which is one of the most advanced exploration methods, in almost
all Atari games.

Index Terms—Exploration, reinforcment learning, deep learn-
ing, video game.

I. INTRODUCTION

REINFORCEMENT learning (RL) has emerged as a pop-
ular method for training agents to perform complex tasks.

In RL, the agent policy is trained by maximizing extrinsic
rewards provided by the environment. Most of the success
in RL has been achieved when this reward function is dense
and well-shaped, e.g. the running score in an Atari game [1],
or the distance between a robot arm. However, in many
environments, rewards extrinsic to the agent are extremely
sparse. In environments with dense rewards, the agent can
easily find rewards by taking random sequences of actions.
But hoping to get rewards by random exploration is likely to
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be futile when the extrinsic rewards are sparse and hard to find.
In these environments, the ability to efficiently and effectively
explore is necessary.

One possible solution to provide exploration ability for
agents is to supplement sparse extrinsic rewards with dense
intrinsic rewards (so called exploration bonuses), that is,
rewards that are generated by the agent itself. Curiosity-
based exploration methods provide an example of such explo-
ration bonuses. These methods generate an intrinsic reward
signal based on how hard it is for the agent to predict
the consequences of its own actions. More precisely, they
define intrinsic rewards as prediction errors for a problem that
predicts the next state given the current state and the executed
action (forward dynamics). Since making predictions in the
high-dimensional state space (e.g. images) is hard, several
works [2], [3] try to predict the forward dynamics in the feature
space. However, as pointed out by many authors [4], [5],
agents that maximize such prediction errors tend to seek out
stochastic transitions, like those involving outcomes of random
events such as coin tosses. This is because the prediction
error (i.e. intrinsic reward) produced by forward dynamics
prediction is non-stationary due to stochastic transitions. To re-
duce this undesirable stochasticity, [5] proposes an alternative
prediction problem named random network distillation (RND)
that predicts the output of a fixed randomly initialized neural
network on the current state. The intrinsic rewards generated
by the new prediction problem show a good stationarity.
However, since the target network is not learnable, it will
produce similar low-dimensional vectors for states that look
similar but are far away in the feature space. This makes RND
generate lower intrinsic rewards for states that should be novel.

In this paper, we propose a method that combines learnable
features to generate part-aware exploration bonuses. In order
to ensure the stability of the bonus, we do not directly use
the learned features, but use the discrete code obtained from
the attention map corresponding to the features. We compare
the performance of an agent with and without the part-aware
exploration bonuses on multiple Atari games. Experiment
results show the strength of our method.

We summarize our contributions as follows:

• We demonstrate the importance of introducing learn-
able features for the existing prediction-based exploration
methods.

• We develop a novel approach that enables prediction-
based exploration methods to benefit from learnable
features to generate more accurate estimates of novelty
without hurting the stability of intrinsic reward.
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• Our method achieves competitive performance in multiple
Atari games.

II. RELATED WORK

A. Exploration

Exploration is a well studied topic in the reinforcement
learning. In tabular settings, count-based exploration methods
which use visit counts to guide an agent’s behaviour have
already shown good performance and pleasant theoretical
guarantees. However, it is not straightforward to produce
counts in non-tabular settings, as most states will be visited
at most once. Recently, several studies have studied how to
tractably generalize count bonuses to large state spaces [6],
[7], [8]. One notable work for generalization of counts to non-
tabular settings is pseudo-counts [6] which uses changes in
state density estimates as an exploration bonus. In this way
the counts derived from the density model can be positive
even for states that have not been visited in the past, provided
they are similar to previously visited states.

Another class of exploration methods rely on prediction
errors for a problem related to the agent’s transitions. Forward
dynamics [9], [10], [2], [4] is the most commonly used
prediction problem. However, predicting future state in a
high dimensional state space (e.g., images) is a challenging
problem [10]. One possible solution to overcome these dif-
ficulties is to make predictions in a feature space. In [10],
they first use an autoencoder to extract features and then learn
a forward model based on these features. [2] finds that the
inverse dynamics features can achieve better performance. [4]
investigates the effect of using different feature spaces for
calculating prediction error and proposes that random features
are sufficient for many popular RL game benchmarks. Other
prediction problems can also be used if specialized information
about the environment is available, like predicting physical
properties of objects the agent interacts with [11].

Other methods of exploration are designed to work in
combination with maximizing a reward function, such as those
utilizing uncertainty about value function estimates [12], or
those using perturbations of the policy for exploration [13],
[14]. Alternative methods of exploration include [15] where
they utilize an adversarial game between two agents for explo-
ration. In [16], they optimize a quantity called empowerment
which is a measure of the control an agent has over the
state. [17] proposes a hierarchical reinforcement learning al-
gorithm combined with an exploration bonus based on feature
control [18].

B. Attention in Reinforcement Learning

The introduction of attention mechanism in reinforcement
learning is not a new idea. In [19], the authors present a way
of integrating soft and hard attention mechanisms into the
deep recurrent Q-network and they are able to outperform the
standard structure of Deep Q-Network in a subset of the Atari
games. [20] proposes an imitation learning framework that
introduces an attention mechanism. They first train a network
to predict human visual attention by supervised learning. Then,
the estimation of visual attention is used to enhance the input

state of the agent. Recent work [21] uses a self-attention
model to incorporate a strong relational inductive bias to
augment model-free deep reinforcement learning agents. In
six out of seven StarCraft II Learning Environment mini-
games, their agents achieve competitive performance. In [22],
a soft, top-down attention mechanism is used to force the
agent to focus on task-relevant information by sequentially
querying its view of the environment. While their agents
achieve high performance, these agents are more interpretable.
Most recently, [23] proposes a method that allows agents to
learn to focus most of their attention on visual cues that
are critical to the task by combining neuroevolution and
attention mechanisms. Their agents are able to generalize to
environments where task irrelevant elements are modified,
while agents trained by conventional methods fail. Our work is
similar to [24], which uses an attention mechanism to discover
controllable elements of the states and calculate count-based
bonuses based on these elements to encourage the agent to
explore. The purpose of introducing attention mechanism in
our method is to control the variation range of features,
so that existing methods can benefit from learnable features
to generate more accurate estimates of novelty. This is a
completely different philosophy from the calculation of bonus
directly based on the attention map.

III. BACKGROUND

A. Reinforcement Learning

We consider the standard reinforcement learning setting
where an agent interacts with an environment E over a number
of discrete time steps. At each time step t, the agent receives
a state st and selects an action at from some set of possible
actions A according to its policy π, where π is a mapping
from states st to actions at. In return, the agent receives the
next state st+1 and receives a scalar reward rt. The process
continues until the agent reaches a terminal state after which
the process restarts.

The agent seeks to maximize the expected discounted return,
where the discounted return is defined as Rt =

∑∞
k=0 γ

krt+k.
In this formulation, γ ∈ (0, 1] is a discount factor that trades-
off the importance of immediate and future rewards.

For an agent behaving according to a stochastic policy π,
the value of the state-action pair (s, a) and the state s are
defined as follows,

Qπ(st, at) = Est+1:∞,at+1:∞ [Rt|st, at] (1)

where st+1:∞ denotes a state trajectory starting at time t+ 1
and at+1:∞ denotes an action sequence. The value of state s
under policy π is defined as,

V π(st) = Ea∼π(st)[Q
π(st, a)]. (2)

The advantage function, relating the state value function and
state-action value function is defined as:

Aπ = Qπ(s, a)− V π(s). (3)

The advantage function measures a relative importance of
each action by subtracting the value of the state from the Q
function.
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Fig. 1. A frame of the Seaquest environment: the agent can be rewarded by
destroying enemies or bringing divers to the surface. When the agent collides
with any enemy, consumes all the oxygen or emerges without rescuing any
diver, the agent will lose a life. The episode is terminated when the agent loses
all lives. The agent can replenish oxygen by bringing divers to the surface.
We use this environment as an example to show our motivation.

The parameters θ of the differentiable policy πθ(at|st) can
be updated using the discounted approximation to the policy
gradient [25], which is defined as:

∇θ = Es0:∞,a0:∞

[ ∞∑
t=0

Aπ(st, at)∇θlogπθ(at|st)

]
(4)

Our method is built on PPO [26], which is based on policy
gradient, but introduces more techniques to stabilize training.

B. Bonus-based Exploration

This section provides background for exploration bonus
methods. Exploration bonus is a class of methods that encour-
age an agent to explore environment when the environment’s
reward is sparse. Compared with standard reinforcement learn-
ing setting, these methods add an exploration bonus item
to the optimization objective, which encourages the agent to
maximize,

Rt =

∞∑
k=0

γk1 rt+k + γk2 bt+k

where rt+k is the environemnt’s reward and bt+k is the explo-
ration bonus. Although the method of calculating exploration
bonus varies with different environmental settings, the core
idea is that it should be proportional to the novelty of the
state. In a tabular setting with a finite number of states, one
can define b to be a decreasing function of state visitation
counts [6]. To extend state visitation counts to non-tabular
settings, pseudo-counts [6] uses changes in state density esti-
mates as an exploration bonus. In order to pay attention to the
part of the environment affected by actions of the agent, [2]
proposes an intrinsic curiosity module and computes the bonus
from the prediction error of a predictive forward model. More
recently, RND [5] introduces the random network distillation
to produce stable exploration bonus.

Random network distillation (RND) is a method which
encourage an agent to explore environment by prediction
errors. The key point of these methods is to choose a suitable

prediction problem. RND proposes a randomly generated
prediction problem which predicts the output of a fixed neural
network. More particularly, RND introduces two neural net-
works: a randomly initialized and fixed target network qtarget,
and a trainable predictor network qpred. The target network
encodes a state st to a low-dimensional feature vector and the
predictor network is trained to predict the feature encoding.
The predictor network is optimized by minimizing the loss
function Lrnd:

Lrnd = ‖qtarget(st+1)− qpred(st+1)‖22 (5)

The exploration bonus bt at time t is computed as,

bt = Lrnd (6)

The agent is trained to maximize the sum of exploration
bonuses and environment rewards.

The idea behind RND is that the prediction error is expected
to be higher for novel states which have not been seen by the
predictor and lower for familiar states. Compared with forward
dynamic, RND simplifies the prediction problem in two ways.
First, RND predicts a feature vector given the next state, rather
than predicting next state given the current state and an action.
In fact, forward dynamic tries to predict state transitions which
is very difficult. In the worst case, forward dynamic will
make agents seek stochastic transitions [4]. Second, RND
reconstructs state in low-dimensional feature space rather than
high-dimensional state space to avoid prediction errors caused
by limited model capacity. If we reconstructs state in the state
space, RND is identical with autoencoder.

Although RND has several advantages, its shortcomings are
also obvious. Since the target network is fixed during the
whole training phase, the important information in states may
only have a minor impact on the embedding generated by
the target network. The situation is more likely to happen
when the most valuable information only accounts for a
small portion of the state. For example, in a maze problem,
the location of the agent is the most important information.
Accordingly, there should be a higher exploration bonus for
location where the agent has never been reached. However,
since the pixels representing the agent only occupy a small
part of the entire image, even if the agent arrives at a new
location, the embedding generated by the target network has
only a small change. This will cause the exploration bonus
generated by RND for the novel location is not high as we
expected and finally results in inefficient exploration.

IV. METHOD

A. A Motivating Example

We first give an example to show that the existing
prediction-based exploration methods, such as RND, can
benefit from features learned by optimizing a proxy task,
to generate more accurate intrinsic rewards or bonuses. The
Seaquest environment in the Arcade Learning Environment
(ALE) was selected for the experiment. As shown in Figure 1,
the agent needs to control a ship to move and attack the
enemies in Seaquest, so the location information of the ship
is very important. We believe that the bonus generated by
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Fig. 2. Comparing the performance of the ’fixed-feature’ agent (red) against
the ’RND’ agent (blue). We first use the data collected by a pre-trained agent
to train an encoder network. The features extracted by the encoder contain
the location information of the agent. Then, the parameters of the encoder are
fixed, and the output of the encoder is used as the additional input of RND.
This enhanced version of RND is used to train the ’fixed-feature’ agent. The
experimental results show that combining the learned features is beneficial.
The x-axis represents total environment steps and the y-axis the mean episode
reward averaged over 100 recent episodes.

the prediction-based exploration methods operating in the
state space (e.g. pixels) cannot be sensitive to the location
information of the ship, because the pixels representing the
ship only occupy a small part of the entire image. Therefore,
we assume that using location information as an additional
input to the prediction problem can generate more accurate
bonuses, thereby improving the efficiency of exploration.

In order to verify our hypothesis, we first train an encoder
network by optimizing a proxy task, so that the output feature
vector contains the location information of the agent. Then, we
fix the parameters of the encoder network and use its output
feature vector as the additional input of the RND network to
train an agent from scratch. Figure 2 shows that additional
input can effectively improve the learning speed of the agent.
Of course, pre-training the encoder network first and then
freezing its parameters is not a suitable method. The reason is
that there is a pre-training stage, so the total training time will
increase, and the encoder network may encounter states that
have not been seen in the pre-training stage. These problems
motivate us to seek an approach to improve the method of
prediction-based exploration by introducing learnable features.

B. Discretization by Attention Map

Our goal is to make prediction-based exploration methods
that can use learnable features to generate more accurate
intrinsic rewards. A straightforward idea is to take the learned
features as an additional input to the prediction problem.
However, this only works if the parameters of the embedding
function used to map state s to features φ(s) are fixed
throughout the training period. If the embedding function G
keeps changing, the feature φ(s) corresponding to the same
state s is different at different times. This leads to prediction-
based exploration methods that cannot give low bonus to a
familiar state s, because the φ(s) corresponding to this s
is novel. This goes against the basic idea of bonus-based
methods: give low bonuses to familiar states and high bonuses
to novel states.

Our core idea is to control the variation range of features.
We do this by mapping the feature φ(s) in the continuous
space to the discrete space. We argue that discretization can
alleviate the impact of feature changes on the bonus-based
method. We propose that such discrete codes can be generated
by introducing a spatial attention mechanism. Specifically, we
train a network to generate an attention map. The value of the
map represents the importance of each part of the state s to the
proxy task. Then take one for the top n elements in the map
and zero for the others to get the discrete code corresponding
to φ(s).

We choose inverse dynamic prediction as the proxy task.
The standard inverse dynamic model (IDM) includes an en-
coder which maps state s to a feature vector φ(s), and a
classifier takes as inputs the features φ(st), φ(st+1) of two
consequent states and predicts the action at taken by the agent
to move from state st to st+1. Formally, the inverse dynamic
model is defined as follows:

ât = hcls(φ(st), φ(st+1)) (7)

where, ât is the predicted estimate of the action at. In order
to add attention mechanism to the inverse dynamic model,
we modify the standard model. First, the encoder outputs a
convolution feature map f ∈ Rh×w×c instead of a feature
vector,

ft = he(st) (8)

Then convolution features ft+1 and feature differences ft+1−
ft are fed into a classifier which outputs a convolution feature
e ∈ Rh×w×|A|,

et+1 = hcls([ft+1, ft+1 − ft]) (9)

we train an attention network ha that takes ft+1 as input and
generates an attention map mt+1 ∈ Rh×w×1,

mt+1 = ha([ft+1]) (10)

Then, we get weights α for the feature et+1 by applying
softmax opertaion to mt+1,

αt+1 = softmax(mt+1) (11)

Note that
∑H
i=0

∑W
j=0 αi,j = 1. We predict action at based

on the weighted feature,

ât = softmax(

H∑
i=0

W∑
j=0

αi,jt+1 · e
i,j
t+1) (12)

The task of the model which contains an encoder he, a
classifier hcls and an attention network ha is inverse dynamic
prediction. That is, the model can be optimized with the stan-
dard cross-entropy loss function Linv(ât, at) which measures
the discrepancy between the estimated and actual action that
the agent actually has taken.

After getting the map m, the discrete code z corresponding
to the map will be calculated according to the following
equation 13. Only when mi,j is not less than the nth largest
element in m, the corresponding code zi,j is 1, otherwise it
is 0.

zi,j =

{
1, mi,j ≥ mn

0, otherwise
(13)
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Fig. 3. A diagram for the proposed method. In order to allow the existing RND framework to benefit from learnable features to generate more accurate
intrinsic rewards, we use the attention map generated by the attention network as an additional input. This special design is because using the output generated
by the encoder network directly as the input of RND introduces additional randomness, which leads to the instability of intrinsic rewards. Compared with the
features of the encoder network, the attention map is more stable during the training process. It should be noted that the attention network is trained by the
data collected by the agent.

(a) Qbert (b) Zaxxon (c) Hero (d) Solaris (e) Montezuma

Fig. 4. Frames from atari environments which agent takes as input. According to the different exploration levels required by the environment, we selected
Seaquest and the five environments shown in the figure as the test environment from Atari, which is the standard test environment for reinforcement learning.

where mn is the nth largest element in m. The discrete code
will be used as an additional input to a prediction-based
exploration method to generate more accurate bonus. If we
build our method based on RND, the bonus is computed as,

bt = ‖qtarget(st+1, zt+1)− qpred(st+1, zt+1)‖22 (14)

For clarity, we describe the entire training process in Algo-
rithm 1.

V. EXPERIMENTAL SETUP

To evaluate the proposed method on its ability to improve
exploration, we test our method on six games from the Atari
2600 environment in OpenAI Gym [27]. Atari games serve as
an informative benchmark due to their high-dimensional pixel
input and complex control dynamics; each game also requires
different levels of exploration to solve. This section describes
the details of the environments and the experimental setup.

A. Environments

According to [6], atari games are divided into two cate-
gories: easy exploration group and hard exploration group.
Hard exploration games are further divided into dense reward
environments and sparse reward environments. We choose
Zaxxon, Hero, Qbert from the hard exploration with dense
rewards, and Solaris and Montezuma’s Revenge from the
hard exploration environment with sparse rewards as our
test environments. In addition, although Seaquest is classified
into the easy exploration group, we also add it to the test
set considering that the policy-based reinforcement learning
methods do not work well in this environment. Figure 12
shows snapshots of these environments.

B. Attention Module

The attention module includes three parts: an encoder, a
classifier and an attention network. The encoder takes a state as
input and consists of four convolutional layers. The classifier
takes the output of the encoder as input and consists of three
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Algorithm 1 The proposed algorithm
Require: Initialize policy πθ(s), attention module hψ(s),

intrinsic bonus module RND qφ(s, z)
N ← number of rollouts
Nopt ← number of optimization steps
K ← length of rollouts
t = 0
Sample state s0 ∼ p0(s0)
for i = 1 to N do

for j = 1 to K do
sample at ∼ πθ(at|st)
sample st+1, rt ∼ p(st+1, rt|st, at)
Generate attention map mt+1 = hψ(st+1)
Construct zt+1 based on mt+1

Compute intrinsic bonus bt = qφ(st+1, zt+1)
add st, at, rt, bt, st+1, zt+1 to optimization batch Bi
t += 1

end for
for j = 1 to Nopt do

optimize πθ wrt PPO loss on batch Bi
optimize qφ and hψ on batch Bi

end for
end for

1×1 convolutional layers. It should be noted that the classifier
only changes the number of channels, not the size of the input.
The attention network also takes the output of the encoder as
input, and outputs a feature map with the same size as the
input but the number of channels is 1. The detailed network
structure is shown in Figure 5.
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Fig. 5. Deep neural network architecture for the attention module. The
attention module consists of three parts: an encoder network, a classifier and
an attention network. The input of encoder is a state, and its output is used
as the input of the classifier and the attention network.

C. Exploration Bonus

The network architecture of RND is same as [5]. There
are 3 convolutional layers followed by a fully-connected layer
in the target network. The first convolutional layer has 32 8
× 8 filters with stride 4, the second 64 4 × 4 filters with
stride 2, and the third convolutional layer consists 64 3 × 3

filters with stride 1. The last fully-connected layer has 512
units. The predictor network has a similar structure to the
target network, except that there are 2 more fully-connected
layers with 512 units after the last convolutional layer. The
architecture is shown in Figure 6.

������������

�����������
�����	�

�����������
�����	�

�����������
�����	�

!!"#

"!$%&'!($!"#)

������������

�����������
�����	�

�����������
�����	�

�����������
�����	�

!!"#

"(%')($!"#)

������������

������������

�
���������� ���������������

&!"#

&!"#

Fig. 6. Deep neural network architecture for RND. The prediction network
has 2 more fully-connected layers than the target network. This architecture
is used in both our method and the baseline.

D. Baseline Method

Across different experiments, we use the official implemen-
tation of RND as our baseline. It is worth noting that the
hyperparameter settings discussed in the above section are
used in both our method and the baseline. The only difference
is that our method considers the learnable features when
calculating the exploration bonus. This means we implement
an apples-to-apples comparison.

E. Training Details

All experiments are run with 128 parallel environments. All
parameters of agent network are updated by Adam optimiza-
tion after every 128 steps. Closely following [1], [28], we use
action repeat of four during training time. We also use the
sticky action setting that repeats the action with a probability
of 0.25. All agents in this work are trained using visual inputs.
The input RGB images are converted into gray-scale and re-
sized to 84 × 84. The state st is constructed by concatenating
the current frame with the three previous frames. We also
follow the processing in [5], where the intrinsic reward is
normalized by dividing it by a running estimate of the standard
deviations of the intrinsic returns. We also normalize states
and clip the normalized states to be between -5 and 5. The
parameters for state normalization are initialized by stepping a
random agent in the environment for a small number of steps
before beginning optimization. For experiments in Zaxxon,
Hero, Qbert and Seaquest, the discount factors γI and γE
are set to 0.99 and the entropy regularization coefficient is set
to 0.01. For Solaris and Montezuma’s Revenge, we fix the
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(a) (b) (c) (d)

Fig. 7. (a) A frame from Seaquest environment. (b) An attention map for the frame. The map is generated by our attention module. (c) Discretized attention
map for the frame. This discretized map is obtained when n takes 1 according to Equation 13. (d) Comparing the performance of the agent (orange) which
uses the discrete code against the agent (red) which uses the attention map. Using attention map can get better performance than the baseline agent, and the
discretized attention map (i.e. discrete code) can further improve performance.

discount factors γI to 0.99, but set γE to 0.999 and set the
entropy regularization coefficient to 0.001. This is the same as
the hyperparameter setting in [5]. We use the 10−4 learning
rate for the whole training process. The input of the inverse
dynamic model is a 160×160 RGB image. All agents use the
policy network architecture from [5].

VI. EXPERIMENTS

In this section, we first compare the effects of different
settings on the performance of the agent, and provide more
details and possible insights. Then, we analyze the results of
the experiments on Atari.

A. Ablation Study

We conduct ablation experiments in the Seaquest
environment. Although Seaquest is classified into the
easy exploration category [6], policy-based algorithms such
as PPO perform poorly on this task [24]. The low baseline
allows us to clearly observe the impact of different settings.

Without Attention Map. We first test whether using the
feature vector output by the encoder as an additional input
to RND can bring positive effects. As shown in Figure 8,
compared with ’RND’ agents that calculate bonuses based
only on states, agents that calculate bonuses based on states
and learnable features get significantly lower scores. It should
be noted that the ‘fix-feature’ agents (see Figure 2) can
achieve better performance than ’RND’ agents. This is in line
with our hypothesis: using feature vectors as input introduces
additional randomness, which prevents bonus-based methods
from providing stable intrinsic rewards for the agent.

Without Discrete Code. After obtaining the attention
map m corresponding to the feature f , we compute α
through the softmax operation according to Equation 11,
and then discretize it to get the binary code z according
to Equation 13. In order to understand the benefits of
discretization, we compare the performance of the agent
when α is used as an additional input to bonus-based methods
and when z is used as an additional input. Figure 7(d) clearly
shows that the performance of using α as the input of RND

Fig. 8. Comparing the performance of the agent (red) which calculate bonuses
based on states and learnable features against the ’RND’ agent (blue) which is
based only on states. From the results, we can see that introducing learnable
features hurts performance. This validates our motivation: the introduction of
learnable features makes the intrinsic reward unstable.

is much better than using feature f as input directly. This
supports our basic idea: limiting the variation of additional
inputs can improve the stability of bonuses. It is worth noting
that replacing α with z can further improve performance.
This implies that although the value of α is limited between
0 and 1, the changes it produces during the learning process
still hurt the stability of intrinsic rewards.

Varying the Degree of Discrete Code Sparsity. Sometimes,
more than one action satisfies the transition from st to st+1.
Therefore, when the IDM gives a reasonable but different
â from the data we collected, we cannot give the IDM a
correct evaluation. This will cause the IDM’s predictions to
become conservative, and the area that the attention network
focuses on will be more divergent. For example, as shown in
Figure 7(b), the attention map also focuses on fish and the
bullet. Based on the above discussion, z will contain some
information that we don’t expect when n in Equation 13 is
greater than 1. Next, we compare the effect of taking different
n on the performance. We train agents when n takes 1, 3,
5 and 20, respectively. As shown in the Figure 9, although
the value of n has a slight impact on performance, all of our
agents can steadily outperform the baseline agent.

Learning Rate. We fix the learning rate of agent and RND
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Fig. 9. Comparing the performance of agents under different n in Equation 13.
Our method can also obtain good performance when n is greater than 1.

module to 10−4 and train the agents when the learning rate
of the inverse dynamic model is 10−4, 2 × 10−4, 10−3

and 3 × 10−3 respectively. As shown in Figure 10, when
the learning rate of the inverse dynamic model is twice the
learning rate of the agent, the performance of the agent is
slightly improved. More interestingly, when we set the learning
rate of the inverse dynamic model to 10−3, the performance
can be further improved. However, when we increase the
learning rate to 3× 10−3, the performance of the agent drops
instead. We make two observations. First, in general, it is
beneficial to assign a learning rate higher than the agent
to the the inverse dynamic model. One explanation for this
phenomenon is that the higher the learning rate, the faster
the inverse dynamic model learns, and the more accurate the
additional input received by the RND module. Second, we
observe that the performance of using 3× 10−3 learning rate
is lower than that using 10−3 learning rate, which means that
it is important to choose a suitable learning rate for the inverse
dynamic model.

Fig. 10. Comparing the performance of agents under different rate learning
of inverse dynamic model. In general, it is beneficial to assign a learning rate
higher than the agent to the the inverse dynamic model. It should be noted
that we only change the learning rate of the inverse dynamic model, while
the learning rate of the agent is fixed.

Size of Input of IDM. Inspired by the research on small object
detection [29], [30] in the computer vision, we next consider
the impact of two different sizes of inputs of the inverse
dynamic model on the performance. We train the agents when
the input of the inverse dynamic model is 84×84×1 grayscale
image and 160 × 160 × 3 RGB image respectively. Under
different settings, the parameters of the classifier and attention
network are exactly the same. In order to ensure that the size

of the feature map output by the encoder is the same size
under different inputs, our encoder under the setting of using
84× 84× 1 grayscale image has 3 convolutional layers. For a
fairer comparison, we also conduct experiments with exactly
the same network architecture by setting the padding mode
of the first convolutional layer of encoder network show in
Fig 5 to ‘same’. It should be noted that no matter what the
input of the proxy task is, the size of the input of the agent
is always 84 × 84 × 4. Figure 11 shows that compared with
small-size grayscale images, using large-size RGB images as
input can improve performance. This phenomenon that large-
scale input is beneficial to network learning is consistent with
many studies [31], [32] in the field of computer vision.

Fig. 11. Studying the effect of different input sizes of the inverse dynamic
model on the performance of the agent. From the experimental results, larger
input size can get better performance. This may be because the large input size
can help the inverse dynamic model learn faster, resulting in more accurate
intrinsic rewards.

We next study the relationship between the performance
of the network on the proxy task and the performance of
the agent on the game. We compare the networks trained
under 2 different settings: 84 × 84 grayscale image with
10−3 learning rate and 160 × 160 RGB image with 10−3

learning rate. In order to evaluate the performance of the
network on the proxy task, we additionally train an agent
to collect test data. Specifically, we ran 10 episodes using
the test agent and collected about 40,000 triples (ot, at, ot+1).
We randomly select 2500 from these triples as the test data.
Results are summarized in Table I. For each setting, we report
the agent’s game performance and the prediction accuracy
of the inverse dynamic model after training 50 millions, 100
millions, and 200 millions. As expected, the performance of
the agent and the accuracy of prediction are increasing with the
training process. In general, a larger input size can improve
the prediction accuracy of the network, and it can also get
better game performance.

TABLE I
SUMMARY OF GAME PERFORMANCE AND PREDICTION ACCURACY IN

SEAQUEST. THE NUMBER IN BRACKETS IS THE PREDICTION ACCURACY.

50M 100M 200M
84 gray-scale 10−3 2.53k

(15.1%)
12.4k
(29.8%)

25.9k
(39.2%)

160 rgb 10−3 2.51k
(25.9%)

13.1k
(30.1%)

30.3k
(41.7%)
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(a) Seaquest (b) Qbert (c) Zaxxon

(d) Hero (e) Solaris (f) Montezuma’s Revenge

Fig. 12. Learning curves on several Atari games: the proposed method and RND. The x-axis represents total environment steps and the y-axis the mean
episode reward averaged over 100 recent episodes. The mean curve is obtained by averaging over 3 random seeds.

TABLE II
SUMMARY OF ATARI RESULTS. EACH NUMBER IS THE FINAL SCORE THROUGHOUT TRAINING, CALCULATED AS THE MEAN OF THE LAST 100 EPISODE

REWARDS AVERAGED OVER EXACTLY THREE AGENTS TRAINED WITH DIFFERENT RANDOM SEEDS.

Method Zaxxon Hero Qbert Seaquest Solaris Montezuma
Rainbow+ε-greedy [33] 15,101 43,671 17,606 16,044 1,792 780

Rainbow+CTS [6] 10,559 41,244 17,247 27,027 1,622 5,028
Rainbow+PixelCNN [7] 12,248 44,286 17,293 11,185 1,252 4,652

Rainbow+ICM [13] 8,451 45,974 18,603 15,469 1,470 2,795
PPO+RND [5] 23,489 32,271 17,037 23,245 1,172 6,733

Ours 26,572 (+13.1%) 36,243 (+12.3%) 22,081 (+29.6%) 30,331 (+30.3%) 2,128 (+81.5%) 6,927 (+2.8%)

(a) (b)

Fig. 13. (a) Our agent (yellow arrow) learns a different behavior policy
from ’RND’ agent (blue arrow) in Montezuma’s Revenge environment. (b) In
Seaquest environment, the RND agent tends to move in the lower three areas,
while our agent has no obvious preference for the four areas.

B. Comparison to Baselines

In this section, we compare the proposed method with RND
on 6 atari games. RND is an important method in exploration
in recent years. Most advanced exploration algorithms [34],
[35] are based on RND. We divide these 6 games into 2

groups, one group is the games with dense rewards: Hero,
QBert, Seaquest and Zaxxon. The other group of games with
sparse rewards includes: Solaris and Montezuma’s Revenge.
We first analyze the performance of each method in dense
reward environments, and discuss the policies learned by
agents in sparse reward environments. Finally, we use the
Seaquest environment as an example to conduct a qualitative
analysis.

Dense Reward Games. Figure 12 shows the learning curves
of the proposed method and baseline on 6 Atari games.
The performance of our method and other exploration are
summarized in Table II. Our method significantly surpasses
baseline in Seaquest and Qbert, and slightly better than
baseline in Zaxxon and Hero. More interestingly, we find that
in Seaquest and Qbert, our method is better than baseline
on all seeds. In Zaxxon baseline method performed poorly
under some seeds, while under other seeds, it performs as
well as our method. One possible explanation is that images
in Zaxxon are relatively simple. By normalizing state, the
original RND under certain seeds is sensitive to the position
of the agent. And the position information is contained in
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the features output by the inverse dynamic model. In general,
experiments in dense reward environments demonstrate the
strength of our approach.

Sparse Reward Games. We now turn our attention to the set
of games categorized as hard exploration games with sparse
rewards. Specifically, we focus on Solaris and Montezuma’s
Revenge. Although our method achieves similar performance
compared with baseline, our agent learns a different behavior
policy in Montezuma’s Revenge. As shown in Figure 13(a),
our agents learn how to avoid obstacles and get the key under
all seeds, while ’RND’ agents prefer to give up the key and
enter the next room. The reason behind this difference is
that our method provides more refined bonus signals, so the
agent can get enough incentives to explore different areas in
the same room. On the contrary, the RND method actually
encourages agents to visit different rooms because the images
corresponding to each room are different, and this difference
is enough to cause an increase in the bonus. The behavioral
differences between agents once again support our motivation:
introducing learnable features helps generate accurate bonus.

Qualitative analysis on Seaquest. In order to collect as many
rewards as possible in the game Seaquest, an agent should
learn three skills: shooting fish, collecting divers and bring
divers to the surface. However, since the latter two skills
do not directly reward agents, policy gradient methods (e.g.
PPO) tend to get trapped in in a local optimum policy, which
corresponds to a behavior of the agent descending to the
bottom, shooting fish, never surfacing and never shooting fish
in other areas.

By observing the behavior of the ‘RND’ agent, we find
that the ‘RND’ agent can finally learn how and when to
surface, but prefers to move and attack fish in the lower three
areas. In contrast, our agent learns to move back and forth
between the 4 areas and attack fish. This could be because
RND can not provide enough incentives to make the agent
give up the rewards of the current areas to explore new areas,
and our method provides more refined bonuses for the agent.
Figure 14(a) and Figure 14(b) show the activity areas of RND
agents and our agents, respectively.

(a) (b)

Fig. 14. (a) The activity areas of the ’RND’ agent. (b) The activity areas of
the our agent.

VII. CONCLUSION

In this paper, we have proposed a method to generate part-
aware exploration bonuses by the combination of prediction-
based exploration methods and learnable features. Since the
features corresponding to a certain state are changing during
the learning process, a naive combination will lead to the
instability of intrinsic rewards. To alleviate this problem,
we use an attention map to discretize the learned features
to obtain the discrete code, and then calculate the intrinsic
rewards based on the discrete code and states. Compared
with the feature corresponding to a certain state, the discrete
code is more stable in the learning process. This makes the
intrinsic reward calculated based on the discrete code more
stable. Experiments on Atari show that our method can bring
performance improvements. More importantly, by observing
the behavior of the agent, we find that our method can help
the agent learn strategies different from the baseline method.
Although the method proposed in this paper is only applicable
to 2D environments, we hope to extend it to 3D environments
in the future. In addition, we are also interested in the stability
of random mapping which used in RND under different seeds.
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