
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 4, DECEMBER 2022 1691

Motion Learning and Rapid Generalization for
Musculoskeletal Systems Based on Recurrent
Neural Network Modulated by Initial States

Xiaona Wang, Jiahao Chen , Member, IEEE, and Hong Qiao , Fellow, IEEE

Abstract—Musculoskeletal robot with high precision and
robustness is a promising direction for the next generation of
robots. However, motion learning and rapid generalization of
complex musculoskeletal systems are still challenging. Therefore,
inspired by the movement preparation mechanism of the motor
cortex, this article proposes a motion learning framework based
on the recurrent neural network (RNN) modulated by initial
states. First, two RNNs are introduced as a preparation network
and an execution network to generate initial states of the execu-
tion network and time-varying motor commands of movement,
respectively. The preparation network is trained by a reward-
modulated learning rule, and the execution network is fixed. With
the modulation of initial states, initial states can be explicitly
expressed as knowledge of movements. By dividing the prepa-
ration and execution of movements into two RNNs, the motion
learning is accelerated to converge under the application of the
node-perturbation method. Second, with the utilization of learned
initial states, a rapid generalization method for new movement
targets is proposed. Initial states of unlearned movements can be
computed by searching for low-dimensional ones in latent space
constructed by learned initial states and then transforming them
into the whole neural space. The proposed framework is verified
in simulation with a musculoskeletal model. The results indi-
cate that the proposed motion learning framework can realize
goal-oriented movements of the musculoskeletal system with high
precision and significantly improve the generalization efficiency
for new movements.

Manuscript received 23 August 2021; revised 16 November 2021; accepted
11 December 2021. Date of publication 21 December 2021; date of cur-
rent version 9 December 2022. This work was supported in part by
the National Key Research and Development Program of China under
Grant 2017YFB1300203; in part by the National Natural Science Foundation
of China under Grant 91648205, Grant 61627808, and Grant 91948303; and
in part by the Strategic Priority Research Program of Chinese Academy of
Science under Grant XDB32050100. (Corresponding authors: Jiahao Chen;
Hong Qiao.)

Xiaona Wang and Jiahao Chen are with the State Key Laboratory of
Management and Control for Complex Systems and Beijing Key Laboratory
of Research and Application for Robotic Intelligence of “Hand-Eye-
Brain” Interaction, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China, and also with the School of Artificial Intelligence,
University of Chinese Academy of Sciences, Beijing 100049, China (e-mail:
jiahao.chen@ia.ac.cn).

Hong Qiao is with the State Key Laboratory of Management and
Control for Complex Systems and Beijing Key Laboratory of Research
and Application for Robotic Intelligence of “Hand-Eye-Brain” Interaction,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China, also with the School of Artificial Intelligence, University of Chinese
Academy of Sciences, Beijing 100049, China, and also with the Center for
Excellence in Brain Science and Intelligence Technology, Chinese Academy
of Sciences, Shanghai 200031, China (e-mail: hong.qiao@ia.ac.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCDS.2021.3136854.

Digital Object Identifier 10.1109/TCDS.2021.3136854

Index Terms—Biologically inspired control, motor cortex,
movement preparation, musculoskeletal system, recurrent neural
network (RNN).

I. INTRODUCTION

MANY application scenarios require robots to achieve
high-precision and dexterous movements in fluctuating

and unstructured environments. The human-like musculoskele-
tal robot is a promising way to satisfy these requirements
and has received extensive attention. Compared with tradi-
tional rigid robots, the biological musculoskeletal system has
obvious advantages. First, due to the redundancy of joints
and muscles, it can achieve movements with high flexibility
and robustness, even if a part of the actuators is fatigued or
dysfunctional. Second, the stiffness can be modulated by coor-
dinating the activation of agonist and antagonist muscles to
adapt to different environments [1], [2]. Therefore, in order to
demonstrate similar advantages, many musculoskeletal robots
are designed with the imitation of the human musculoskele-
tal system in terms of muscular arrangement and driving
mode [3]–[7]. Typical examples are the robots “Kengoro” built
by the University of Tokyo and “ECCEROBOT” funded by
the European Union’s Human Brain Project, these robots with
human-like features, such as compliant, tendon-driven actu-
ators, and complex joints exhibit high anatomical fidelity to
the human musculoskeletal structure [7], [8]. In addition, some
prosthetic limbs and exoskeleton robots inspired by the muscu-
loskeletal system have also been developed, they have similar
design principles and control strategies to musculoskeletal
robots [9]–[12]. Dabiri et al. [9] have built an artificial pros-
thetic limb with antagonist artificial muscle structure, and it
is driven by one kind of McKibben pneumatic muscle named
Festo artificial muscle. Chen et al. [10] have implemented a
4-degree-of-freedom upper limb exoskeleton robot, which is
actuated by pneumatic muscle actuators via steel cables.

Although the structure and driving mode of musculoskele-
tal robots offer some benefits, they also bring some challenges
to motion control. On the one hand, owing to the interaction
between muscles, such as entanglement or friction [13] and the
coupling among muscles and joints [14], it is difficult to com-
pute the control signal of each muscle independently. On the
other hand, high nonlinearity of muscle dynamics and complex
muscular arrangement make it difficult to acquire an explicit
mathematic representation of the robot. To solve the motion

2379-8920 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0044-8887
https://orcid.org/0000-0001-6384-3687

1692 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 4, DECEMBER 2022

control problem of musculoskeletal robots, many model-based
methods and model-free methods have been proposed.

In model-based methods, a mathematical relationship
between the muscle space and task space is required to
be established. Based on this relationship, various con-
trollers are designed to calculate muscle activation or force
to achieve the given task. Particularly, static or dynamic
optimization [15], computed muscle control [16], inverse-
model-based method [14], iterative learning control [17], [18],
and adaptive-optimal-critic-based neuro-fuzzy control [19] are
applied in the model-based methods. However, for sophisti-
cated robots with intertwined muscular arrangement or highly
nonlinear muscles, the requirement of building accurate mod-
els is difficult to fulfill, so model-based methods are not
suitable for them. These methods are mainly used in the mus-
culoskeletal robots with relatively simple structures or the
simulated musculoskeletal systems.

In contrast to model-based methods, the model-free meth-
ods do not require establishing the explicit mathematical
model. With the development of machine learning technol-
ogy [20], some model-free methods involving state-of-the-art
deep reinforcement learning (DRL) algorithms are proposed.
They learn the mapping from motion targets to muscle exci-
tations by training deep neural networks or recurrent neural
networks (RNNs) through actor–critic [21], proximal policy
optimization [22], and so on [23]–[25]. Specifically, the core
idea of them is to evaluate the motion performance under cur-
rent strategy by a designed reward function, and continuously
update the control strategy through trial-and-error learning
until the intended motion is achieved. Besides, the model-free
methods based on muscle synergy [26] are proposed, in which
the activation pattern of each muscle is defined as linear super-
position of several synergies, which are modulated indepen-
dently in amplitude and time [27]–[30]. Chen and Qiao [28]
adopted the evolutionary algorithm to optimize the parameter
related to synergies based on movement errors, which could
generate appropriate time-varying muscle excitations to drive
the musculoskeletal system to achieve movements on the sagit-
tal plane. In addition, an iterative learning controller has been
designed for modulating muscle synergies to make a mus-
culoskeletal system to realize human-like manipulation [29].
However, these model-free methods need extensive trials to
update the control strategy or synergy parameters and take a
considerable training time. Additionally, these methods pay lit-
tle attention to motion generalization for new motion targets.
Although the synergy-based method [28] attempts to promote
generalization ability for new motion targets, it can only be
generalized to similar targets.

The research in neuroscience suggests that motor cortex
plays a key role in motion learning and control of biological
musculoskeletal systems. First, it is found that motor cortex
strongly affects muscle contraction and relaxation with direct
projection to interneurons and motorneurons in the spinal
cord [31]. Furthermore, Churchland et al. [32]–[34] have
proposed a dynamical system hypothesis to explain how neural
population responses generate and affect the movements. They
assume that the neuronal activities in motor cortex follow a
general dynamical system, which can produce a sequence of

temporal and spatial patterns as motor commands to the down-
stream circuit. Moreover, neuroscientists have found sufficient
evidence to support a process of movement preparation prior
to the movement execution process in motor cortex [35]–[37].
An interpretation about movement preparation is the optimal
subspace hypothesis proposed by Churchland et al. [36], [37].
Specifically, the result of preparatory activity during movement
preparation could act as the initial state of a dynamical system,
which evolves in the motor cortex during movement exe-
cution. To reach each intended movement target accurately,
the neurons need to reach a corresponding optimal subspace
of initial states when movement preparation is over, which
is a subset of appropriate initial neural population firing
rates of the movement execution process. In other words, the
network dynamics that is responsible for movement execu-
tion must be seeded with a suitable initial state before the
onset of movement, which determines subsequent evolution
of both activities of neurons and actual behavior to a large
extent [38]. Multiple RNNs have been proposed to simu-
late complex cortical dynamics of monkeys or humans during
movements [39], [40].

In this article, inspired by the dynamical system hypothe-
sis on the motor cortex and optimal subspace hypothesis on
movement preparation, a motion learning framework based on
RNN modulated by initial states is proposed to achieve the
motion learning and rapid generalization of a sophisticated
musculoskeletal robotic system. The main task is to control
the musculoskeletal system to reach random targets within
the workspace by motion learning, and to reach other new
targets in the same environment by generalization. Specific
contributions are summarized as follows.

1) First, the proposed framework adopts two RNNs as a
preparation network and a execution network to generate
initial states of the execution network and time-varying
motor commands of movements, respectively. During
motion learning, only the weights of the preparation
network are optimized by a reward-modulated learning
rule and the ones of the execution network are fixed. By
dividing the preparation and execution of movements
into two RNNs, initial states can be explicitly expressed
as knowledge of movements, and the motion learning
is accelerated to converge under the application of the
node-perturbation method.

2) Second, with the utilization of learned initial states, a
rapid generalization method for new movement targets
is proposed. Initial states of unlearned movements can
be computed by searching for low-dimensional ones in
latent space constructed by learned initial states and then
transforming them into the whole neural space. Based on
the method, the rapid generalization for new movement
targets could be performed.

In the experiments, the effectiveness of the proposed
framework is verified with a highly redundant and cou-
pled musculoskeletal system. The results indicate that
the proposed motion learning framework can realize
goal-oriented movements with high precision and sig-
nificantly improve the generalization efficiency for new
movements.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MOTION LEARNING AND RAPID GENERALIZATION FOR MUSCULOSKELETAL SYSTEMS 1693

The remainder of this article is organized as follows.
Section II introduces the dynamics of musculoskeletal robotic
system. Section III illustrates the proposed motion learning
framework in detail. Section IV describes the experimental
setup and results. Sections V and VI present the discussion
and conclusion, respectively.

II. MUSCULOSKELETAL MODEL

In the musculoskeletal system, muscles are attached to
skeletons and exert forces to drive the skeletons to achieve
motion. As for a single muscle, it is composed of tendon
and muscle fiber. The activation dynamics of muscle fiber can
be expressed as follows according to the classical Hill-type
model [16], [41]:

da

dt
=

{
u−a

τact(0.5+1.5a)
u > a

u−a
τdeact/(0.5+1.5a)

u ≤ a
(1)

where scalar u which ranges between 0 and 1 is the input of
each muscle fiber and it is called muscle excitation signal, a
is the muscle activation signal, and τact and τdeact are time
constants related to activation and deactivation, respectively.

After activation, muscle fiber will contract to produce active
and passive force. The active force is related to muscle acti-
vation signal a, the length of the muscle fiber lm, and the
contraction speed of the muscle fiber l̇m. The passive force
depends on lm. Thus, the resultant force generated by the
muscle fiber can be computed by

FM = FAE
(
a, lm, l̇m

) + FPE(lm)

= afl(lm)fv
(
l̇m

) + fpe(lm) (2)

where fl(∗) and fpe(∗) are nonlinear force-length functions,
fv(∗) is a force-velocity function, and they were defined in
detail in the previous work of Thelen [41].

Based on the Hill-type muscle equilibrium model, the rela-
tionship between forces of the tendon and muscle fiber for one
muscle can be expressed as follows:

FT = FM cos(α) (3)

where FT represents the force generated by the tendon, and α

is the pennation angle that indicates the geometric relationship
between the tendon and muscle fiber. The tendon connects
the muscle fiber and skeleton, which delivers the force to
the attached skeleton to generate joint torque. Meanwhile, the
same joint is attached by multiple muscles.

Based on the musculoskeletal geometry, the relationship
between the muscle contractile velocities and the joint angular
velocities can be calculated by the following equation:

L̇mt = Wθ̇ (4)

where Lmt ∈ R
m is the muscle length vector, W ∈ R

m×n

denotes the Jacobian matrix for muscle space with respect to
joint space, and θ ∈ R

n is the joint angular vector. The joint
torques generated by tendon forces can be described according
to the principle of virtual work as follows:

T = WTF (5)

(a) (b) (c)

Fig. 1. Musculoskeletal model with nine muscles. Nine muscles include
DELT1, DELT3, TMIN, PECM2, TRIlong, TRIlat, BIClong, BRA, and BRD.
(a) Musculoskeletal model showing all muscles. (b) and (c) Musculoskeletal
models showing part of the muscles.

where T ∈ R
n is the input torque vector to the joints, and

F ∈ R
m is a vector composed of the tendon forces of different

muscles. The dynamics of the arm musculoskeletal model can
be obtained by applying the Lagrange equation of motion as
follows:

M(θ)θ̈ + C
(
θ, θ̇

)
θ̇ + G(θ) = T (6)

where M(θ), C(θ, θ̇), and G(θ) illustrate the mass matrix,
Coriolis and centrifugal forces, and the gravitational force,
respectively.

In the remainder of this article, a human upper limb muscu-
loskeletal model with two degrees of freedom at the shoulder
and elbow joints is adopted, which is obtained by simplifying
degrees of freedom and muscles in the previous model [42]. As
shown in Fig. 1, it is driven by nine Hill-type muscles attached
to skeletons, and it moves in the sagittal plane with the limita-
tion of two degrees of freedom. The models are implemented
on the Opensim which is an opensource platform used for
simulation of human movement.

III. METHOD

A. Network Architecture Based on Movement Preparation
and Execution

Sufficient observations in neuroscience [32]–[34], [43] sup-
port that the motor cortex integrates sensory input or stimuli
and exhibits the characteristics of a smooth dynamical system
to embed muscle-like commands during movements. In reach-
ing tasks, a population of neurons located in the primary
motor cortex and the premotor cortex engages in two processes
that fall into movement preparation and execution stage. The
same population of neurons acts as two separate circuits
with fundamentally distinct properties during two consecutive
phases [44].

In this work, RNNs as classical tools of producing rich
spatiotemporal patterns [45] are applied to mimic the motor
cortical activity. Two RNNs which are referred to as the
preparation network and the execution network, respectively,
are adopted. At the stage of movement preparation, only the
preparation network evolves, the purpose of which is to gen-
erate a proper movement-specific initial state of the execution
network. When the stage is over, the movement execution
stage begins, and the preparation network no longer evolves.
During movement execution, only the execution network
evolves. The network architecture is shown in Fig. 2(a).

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

1694 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 4, DECEMBER 2022

(a)

(b)

Fig. 2. Schematic of motion learning and rapid generalization for the control of musculoskeletal systems based on RNN modulated by initial states. (a) Motion
learning of the preparation network and the execution network. (b) Rapid generalization for a novel movement by searching for corresponding low-dimensional
initial state of the execution network in latent space constructed by the learned initial states.

The dynamic equations of the preparation network are con-
sistent with discrete form of the classical RNN equations given
by Sussilo [46]

xp
t =

(
1 − �t

τ

)
xp

t−1 + �t

τ

(
Jprp

t−1 + Bpup
t + bp) (7)

rp
t = tanh

(
xp

t
)
. (8)

The dynamic equations of the execution network are
expressed as follows:

xe
t =

(
1 − �t

τ

)
xe

t−1 + �t

τ

(
Jere

t−1 + be) (9)

re
t = tanh

(
xe

t
)

(10)

ze
t = Vere

t (11)

where the superscripts “p” and “e” of the variable represen-
tations, respectively, indicate whether the variable is related
to the preparation network or the execution network, τ is a
time constant, the hidden layer of the preparation network and
execution network both consist of N neurons, xp ∈ R

Nand
xe ∈ R

Nare the membrane potential vectors of hidden neu-
rons, rp ∈ R

Nand re ∈ R
Nare the firing rate vectors of hidden

neurons, bp ∈ R
Nand be ∈ R

Nare biases, Jp ∈ R
N×Nand

Je ∈ R
N×Nare the recurrent weight matrices between hid-

den neurons of the preparation network or the execution
network, respectively, Bp ∈ R

N×Mis the connection weight
matrix of the preparation network from the external input
up ∈ R

M to hidden neurons,Ve ∈ R
d×N is the output matrix

of the execution network, ze ∈ R
d is the output vector

of the execution network, and the value of each element
of ze is clipped to 0 from below and clipped to 1 from
above.

In (7)–(11), �t is a time step interval. The period
of time [0, t1] consists of (t1/�t) + 1 time steps,
which is called the movement preparation stage. Then, the
time period [t1, t1 + t2] belongs to movement execution
stage.

The execution network directly controls the musculoskeletal
system to generate various movements, and its weights will
not be changed after being initialized. During the phase of
movement execution, the execution network evolves from a
specific initial state corresponding to the movement target,
and no external input is provided to it. At each time step,
the output of the execution network, which can be regarded
as muscle excitations, is transmitted to the musculoskele-
tal system to realize desired movements. The initial state
of the execution network prior to each movement is gener-
ated by the preparation network, which simulates movement
preparation. The preparation network receives the input which
represents the position of movement target and transfers the
potential of the hidden layer neurons at the last moment of
the movement preparation stage, namely the vector xp

t1 , as the
initial state to the execution network. It is noteworthy that
the number of hidden neurons of the preparation network
is the same as that of the execution network. Therefore,
the transmission of the membrane potential vector between
the hidden layers of two networks can be realized. In other
words, the execution network receives the initial state deliv-
ered from the preparation network as initial potential of its
hidden neurons, namely xe

t1 = xp
t1 , and it evolves without

the external input according to (9)–(11) to generate control
signals for the musculoskeletal system from time t = t1 to
t = t1 + t2.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MOTION LEARNING AND RAPID GENERALIZATION FOR MUSCULOSKELETAL SYSTEMS 1695

B. Motion Learning of the Preparation Network and the
Execution Network

Once parameters related to the execution network including
matrices Je, Ve, and vector be are initialized, they remain fixed.
As a result, the output of the execution network only depends
on its initial state xe

t1 . In order to generate the appropriate ini-
tial state xe

t1 of the execution network to achieve the desired
movement, the weights of the preparation network need to be
learned. Therefore, a reward-modulated learning rule based
on the node-perturbation method is adopted to modify the
weights of the preparation network. The rule is similar to the
REINFORCE algorithm that modifies weights along the gradi-
ent direction of expected reinforcement. Here, the gradients of
the reward function with respect to the weight parameters are
estimated based on the node-perturbation method by imposing
exploratory perturbations to the neuron activities and comput-
ing the fluctuation of the reward function. If the perturbations
lead to a better value of the reward function, the parameters
are updated along the direction that enables reproducing the
perturbations; otherwise, the parameters are updated in the
opposite direction.

We apply the Gaussian noise to the potential of hidden
neurons of the preparation network at each time step during
movement preparation stage to produce exploratory variation
in the network as follows:

xp
t =

(
1 − �t

τ

)
xp

t−1 + �t

τ

(
Jprp

t−1 + Bpup
t + bp) + γt (12)

where γt ∈ R
N , γt = [γ (1)

t , γ
(2)
t , . . . , γ

(N)
t] represents the

noise vector applied to hidden neurons of the preparation
network, in which γ

(i)
t is the noise applied to the ith neu-

ron at the tth time step. γ
(i)
t is subject to a zero-mean normal

distribution with variance σ 2. Here, an episode is a movement.
According to the node-perturbation algorithm [40], [47], [48],
the modification of each element of weight matrix Jp for each
episode could be calculated as follows:

�Jp
ij = β ∗ (R − R0) ∗ eij

= β ∗ (R − R0) ∗
t1∑

t=0

γ
(i)
t

∂xp(i)
t

∂Jp
ij

= β ∗ (R − R0) ∗
t1∑

t=0

γ
(i)
t

�t

τ
rp(j)

t−1

= η ∗ (R − R0) ∗
t1∑

t=0

γ
(i)
t rp(j)

t−1 (13)

where Jp
ij is the weight from hidden neuron j to hidden neuron i

of the preparation network, �Jp
ij is the increment of the weight

Jp
ij after an episode, η is the learning rate, R denotes the reward

that reflects performance of the initial state generated by the
preparation network, and eij is the eligibility trace of synapse
formed by neuron j and neuron i in the hidden layer of the
preparation network, which is obtained by accumulating the
product of noise and presynaptic input at each moment. R0
is the expected reward without noise perturbations, which can
be approximated by the running average of the rewards within

recent episodes. So, in the nth episode

R0(n) = αtrace ∗ R0(n − 1) + (1 − αtrace) ∗ R(n). (14)

In (13), a reward prediction error signal in the current
episode is reckoned by subtracting R0 from R, which indi-
cates whether the initial state generated by a noisy preparation
network is better or worse than the initial state generated by the
noiseless preparation network. �Jp

ij can be obtained by multi-
plying the learning rate η, the fluctuation of the reward (R−R0)

which is caused by applying noise perturbations, and the accu-
mulated eligibility trace eij. By updating weights according to
the above equation, if the accumulated exploratory noise per-
turbations in one episode are beneficial to final reward, for the
same input, the output of preparation network without noise
perturbations will be similar to the output before updating
the weights when the same accumulated noise perturbations
are applied; on the contrary, if the exploratory perturbation
reduces the final reward, the effect of updating the weights
is equivalent to making the output of preparation network
without noise far away from the just-experienced perturbed
output. According to (12), the intuitive mechanism of (13) is
that (Jp

ij + γ
(i)
t rp(j)

t−1)r
p(j)
t−1 makes xp(i)

t move along the direction

of γ
(i)
t for the same rp(j)

t−1, which reproduces perturbed xp(i)
t to

some extent.
Equation (13) can be further expressed as follows:

�Jp = η ∗ (R − R0) ∗
t1∑

t=0

γtr
p
t−1. (15)

In the same way, after each episode, the input weight matrix
Bp and the bias vector bp are updated iteratively by

�Bp = η ∗ (R − R0) ∗
t1∑

t=0

γtu
p
t (16)

�bp = η ∗ (R − R0) ∗
t1∑

t=0

γt. (17)

Based on movement preparation and execution, initial states
can be explicitly expressed as knowledge of movements, which
is beneficial to motion generalization and will be further
described in the next section.

Compared with using only an RNN as motion control
network to realize the movement preparation and execu-
tion process, by dividing the preparation and execution of
movements into two RNNs, the motion learning is acceler-
ated to converge under the application of the node-perturbation
method. When only an RNN is used to implement movement
preparation and execution process, namely, the recurrent
weight matrix J = Jp = Je, in order to update the input weight
Bp, perturbations can only be imposed in the time period of
[0, t1] for estimating the gradient of reward function with
respect to Bp and updating Bp. However, the weight J partici-
pates in evolution of the network during the entire time period
of [0, t1 + t2], so when node-perturbation method is used, the
partial gradient of reward function with respect to J involving
the time period of [t1, t1 + t2] cannot be estimated, which is
not conducive to convergence of motion learning. For solving

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

1696 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 4, DECEMBER 2022

the problem, the preparation and execution of movements are
divided into two RNNs as above, and the parameters of the
execution network are kept fixed.

C. Rapid Generalization for Novel Movements Based on the
Latent Space of the Learned Initial States

By means of controlling the execution network to evolve
from different initial states, the downstream musculoskeletal
system can realize various movements. Therefore, in order
to perform an unlearned motion, it is essential to calculate
the specific initial state for the new motion. When motion
tasks have similarities, the use of shared knowledge can effec-
tively improve the learning efficiency. In addition, taking
into account the optimal subspace hypothesis in neuroscience,
redundancy may exist in the high-dimensional initial state
to complete a same movement. Inspired by these assump-
tions, a rapid generalization method based on the latent
space of learned initial states for new movement targets is
proposed. It no longer requires large-scale training, so that
the musculoskeletal system can learn new motion flexibly and
quickly.

When given a new movement target, the learned initial states
can serve as a kind of motor primitive. For facilitating rapid
acquisition of new motion, We first use the learned initial states
to construct a latent space by principal component analysis
(PCA) [49], [50]. Then, the coordinates of the low-dimensional
initial state corresponding to the novel movement target are
initialized according to positional relationship between the
learned movement targets and the new target in physical space.
Subsequently, the optimal low-dimensional initial state for a
new movement target in latent space is searched for by com-
bining with the evolutionary algorithm and transformed into
the whole neural space, as shown in Fig. 2(b). Hence, the
dimensionality of variables that need to be optimized is sig-
nificantly reduced, so that the rapid generalization of the initial
state for a novel movement could be realized.

First, we construct a latent space of initial states via PCA
which is a well-known approach to performing dimensionality
reduction. Let S = [s0, s1, . . . , sn], where sj ∈ R

N represents
an initial state which has been learned to achieve a specific
movement, that is, the initial membrane potential of hidden
neurons of the execution network. The mean vector s ∈ R

Nand
covariance matrix C ∈ R

N×N of initial states are obtained from
the equations

s = 1

n + 1

n∑
i=0

si (18)

C = 1

n

n∑
i=0

(si − s)(si − s)T . (19)

Let {λ1, λ2, . . . , λN} denote an ensemble of eigenvalues of
the covariance matrix C, and the elements are arranged in
descending order, namely: λ1 ≥ λ2 ≥ · · · ≥ λN . We select ρ

orthonormal eigenvectors associated with the largest ρ eigen-
values to form the matrix V = [e1, . . . , eρ] which can be
regarded as an orthonormal basis for Rρ , and ρ is the dimen-
sionality of the latent space. Letting S = [s0 − s, s1 −

s, . . . , sn − s], then the learned high-dimensional initial states
can be projected into the latent space which are constructed
by ρ eigenvectors

W = VTS (20)

where W = [w0, w1, . . . , wn]. Each learned initial state in S
is mapped to a low-dimensional vector in W, which could be
regarded as the corresponding coordinate vector in the latent
space.

Given a new movement target z expected to be reached, we
search for the low-dimensional representation w of the initial
state for the novel movement target z based on the covari-
ance matrix adaptation evolutionary strategy (CMA-ES) [51],
and transform optimal solution into the whole neural space
to reconstruct the high-dimensional initial state, so that the
desired movement could be achieved. The process of applying
CMA-ES to find the optimal solution vector requires multiple
rounds of optimization. In each iteration, there are multiple
candidate solution vectors obtained stochastically by sampling
the multivariate normal distribution. The performance of each
candidate solution is evaluated through the loss function, and
parameters of the multivariate normal distribution such as the
mean vector would be updated based on the few sampled
solution vectors with low loss values, so that the probabil-
ity of reproducing good candidate solution vectors in the next
iteration could be increased. Gradually, we can acquire the
appropriate solution with optimal fitness.

Specifically, in each iteration g, multiple parallel low-
dimensional initial states are sampled from the multivariate
normal distribution, namely

wg
i ∼ N

(
μg,

(
σ g)2

�g
)

for i = 1, . . . , λ (21)

where λ represents the number of candidate solution vectors
sampled in parallel in an iteration, wg

i represents the ith can-
didate solution vector sampled in iteration g, N(μg, (σ g)2�g)

represents a multivariate normal distribution with the mean
vector μg and covariance matrix (σ g)2�g. The covariance
matrix consists of two parts: 1) σ g denotes the step size and
2) �g is a positive-definite matrix.

Herein, it is a remarkable fact that reasonable initialization
of μ0 can effectively reduce the computational cost of search
and improve the speed of search. Therefore, we take advantage
of the relation between novel movement target and the learned
movement targets in physical space to estimate roughly the
low-dimensional initial state for the novel movement target.
Specifically, for a novel target, we select k learned movements
among all learned motions, whose corresponding movement
targets could form a convex polygon which contains new
movement target. We calculate the distance from the selected
learned movement targets to the new target, and denote the
distance by dm, m = 1, . . . , k. Then, the initial value w̃ of low-
dimensional initial state for the new target before optimizing
by CMA-ES can be computed as a linear combination of low-
dimensional representations of initial states corresponding to
selected movements, namely

w̃ =
k∑

m=1

amw(m), w(m) ∈ W (22)

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MOTION LEARNING AND RAPID GENERALIZATION FOR MUSCULOSKELETAL SYSTEMS 1697

am = d−1
m∑k

m=1 d−1
m

for m = 1, . . . , k (23)

where w(m) is the low-dimensional initial state for the mth
selected movement. Then, we assign the value of w̃ to the
parameter μ0 related to CMA-ES before sampling candi-
date vectors in the first iteration. Owing to the use of prior
knowledge, learning efficiency can be further improved.

In each iteration, the high-dimensional initial state cor-
responding to each candidate solution can be calculated as
follows:

sg
i = Vwg

i + s. (24)

Therefore, these candidate solutions give rise to different
movements. We compute the value of loss function L(w) for
each candidate solution vector based on the deviation between
actual motion and desired motion, and select x candidates with
a lower loss among λ candidates to adjust parameters of the
multivariate normal distribution. In particular, the mean vector
is updated as follows:

μg+1 =
x∑

i=1

yiw
g
i:λ (25)

where wg
i:λ is the ith best performing candidate solution vector

in the iteration, which satisfies: L(wg
1:λ) ≤ L(wg

2:λ) ≤ · · · ≤
L(wg

λ:λ), yi is the weight of wg
i:λ, and it obeys

∑x
i=1 yi =

1, yi ≥ 0, yi ∝ 1\L(wg
i:λ) for i = 1, . . . , x. At the same time, in

order to sample promising candidate solution vectors with an
increased likelihood in the following iterations, � and σ also
need to be updated iteratively, and they have a corresponding
evolution path which represents a summation of a sequence of
consecutive steps over a mass of iterations, respectively [52].
The evolution path related to � is computed based on the
so-called rank-one update for �g as follows:

pg+1
c = (1 − cc)p

g
c +

√
cc(2 − cc)yeff

σg

(
μg+1 − μg

)
(26)

where cc is the cumulation coefficient of the evolution
path and yeff is a positive coefficient and it obeys: yeff =
(
∑x

i=1(yi)
2)−1. To generate a reliable estimation for the matrix

� in each iteration, it is updated according to the evolution
path and several sampled candidate solution vectors with good
performance as follows:

�
g+1
τ =

x∑
i=1

yi

(
wg

i:λ − μg
)(

wg
i:λ − μg

)T

(σ g)2
(27)

�g+1 = (1 − c1 − cc)�
g + c1pg+1

c

(
pg+1

c

)T + cτ�
g+1
τ (28)

where �
g+1
τ denotes the estimation of the matrix � relying

on the selected x candidates in iteration g + 1, �g+1 is the
estimated matrix � in the iteration g+1 in practice, and c1
and cτ are the learning rates for updating the positive-definite
matrix �. The values of c1, cτ , and c1 refer to [53]. The
other evolution path is also computed so as to control the step
size σ effectively. In the desired situation, successive steps are
expected to be independent and uncorrelated. Therefore, the
so-called cumulative step length adaptation (CSA) is applied,

where the core idea is to promote the actual evolution length
of the path to approximate its expected length under random
selection as close as possible. The step size σ increases when
the actual evolution length is longer than expected, on the con-
trary, it decreases when the actual evolution length is shorter
than expected. Formally, the evolution path related to σ is
calculated as follows:

pg+1
σ = (1 − cσ)pg

σ

+ √
cσ (2 − cσ)

√
yeff

(
�g)−1/2

(
μg+1 − μg

σ g

)
(29)

where cσ is the cumulation coefficient of the evolution path,
and

√
yeff(�

g)−1/2([μg+1 − μg]/σ g) ∼ N (0, I). The update
rule of step size can be written as

σ g+1 = σ g exp

(
cσ

dσ

∥∥pg+1
σ

∥∥
E[‖N (0, I)‖]

− cσ

dσ

)
(30)

where dσ denotes the damping parameter for adjusting step
size, E[∗] computes the expectation of the argument in paren-
theses. Under random selection, pg+1

σ follows multivariate
normal distribution with zero mean and unity covariance
matrix, so E[‖N (0, I)‖] gives the expected length of pg+1

σ .
The values of cσ and dσ can be found in [53].

Gradually, the optimal solution w∗, namely, the optimal low-
dimensional representation of the initial state for the desired
novel movement, is attained via multiple iterations. To achieve
the desired movement, the optimal initial state is further given
as follows:

snew = Vw∗ + s (31)

where snew is the optimal initial state for the novel motion,
in other words, snew is the initial membrane potential vec-
tors of hidden neurons of the execution network for the novel
movement. Then, the execution network evolves from the ini-
tial state snew and produces appropriate muscle excitations,
and the musculoskeletal system can complete a novel desired
movement accurately. In this way, the dimensionality of vari-
ables that need to be optimized is reduced from the number of
elements in the initial state, i.e., the number N of hidden neu-
rons of the execution network, to the dimensionality ρ of latent
space. The pseudocode of the complete algorithm is shown in
Algorithm 1.

IV. EXPERIMENTS

A. Motion Learning of the Preparation Network and the
Execution Network

The experiments to verify the effectiveness of motion learn-
ing of the preparation network and execution network are
performed, and comparative experiment on dividing movement
preparation and execution of movements into one RNN or two
RNNs is also performed.

1) Experimental Setup: The center-out reaching task is
executed by the musculoskeletal model to evaluate the
performance of motion learning based on movement prepa-
ration and execution. This task is a classical experiment

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

1698 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 4, DECEMBER 2022

Algorithm 1: Rapid Generalization for Novel Movements
Based on the Latent Space of the Learned Initial States

Input: loss function L(w), novel movement target
z,initial states set S; initial distribution parameters
σ 0,and �0;

Output: initial state snew for the novel movement;
• Compute the mean vector s and projection matrix V;
• Set the value of μ0 with Eq. (22), (23)
for g = 0 : Ng do

for i = 1 : λ do
• Obtain a low-dimensional initial state by

sampling : wg
i ∼ N (μg, (σ g)2�g);

• Calculate the new initial state using wg
i :

sg
i = Vwg

i + s;
• The execution network evolves from sg

i ,
and generate muscle excitations;

• The musculoskeletal system makes a
movement with muscle excitations;

• Evaluate the solution vector using L(wg
i);

• Select x best solution vectors with lower loss;
• Update μg+1,�g+1,σ g+1with Eq. (25)-(30);
if g == Ng then select the best solution vector w∗;

• Reconstruct the initial state for the novel movement:
snew = Vw∗ + s.

Fig. 3. Experimental Setup of the center-out reaching task. The muscu-
loskeletal model is required to remove its endpoint P from the start position
S to eight targets A-H.

paradigm to investigate motor control of humans in neuro-
science, where the participants require to reach from a central
location to different targets on a circle surrounding the start
position. As depicted in Fig. 3, before each movement, the start
position of the endpoint of arm model is S. The movement
targets are eight equidistant points A-H on the circle with a
radius of 14 cm around the start position S.

First, an RNN is defined to act as the execution network
whose output is fed into the musculoskeletal model to activate
the muscles. To make the musculoskeletal model move its end-
point from the start position S to eight equidistant movement
targets successfully, the other RNN called the preparation
network is trained to generate appropriate initial states of the
execution network. The 2-D position vector pd = (xd, yd) of
eight targets on the circle in the sagittal plane is provided to
the preparation network in turn as the input vector in differ-
ent episodes. The hidden layers of both RNNs are composed

TABLE I
PARAMETERS RELATED TO THE PREPARATION NETWORK AND ITS

WEIGHTS MODIFICATION

TABLE II
PARAMETERS RELATED TO THE EXECUTION NETWORK

of N = 200 neurons. The weights of the preparation network
and execution network are initialized according to previous
work [39], [47], so that the RNNs can have relative smooth
dynamics and enough representation ability. More concretely,
each element of Bp, Jp, bp, Je, be, and Ve is initially set to
0 with probability p0. The nonzero elements of Bp, bp, be,
and Ve are initialized from uniform distributions over a small
range, and the remaining elements of Jp and Je are drawn
from a normal distribution. The spectral radius of Je is less
than 1. The membrane potential of each hidden neuron of the
preparation network is set to 0 when each episode begins.
The weights related to the execution network are kept fixed
after they are initialized. We update the weights of prepa-
ration network based on the learning rule as described in
Section III-B. Details on parameters related to the prepara-
tion network and weights modification are listed in Table I,
and details on parameters concerning the execution network
are given in Table II.

During training, the performance of each episode is evalu-
ated by adopting the following loss function:

L = −R = γ1

∥∥∥p − pd
∥∥∥2 + γ2

∥∥ṗ
∥∥2 (32)

where p and ṗ represent the final position and velocity of
the endpoint of upper limb model, respectively, and ‖ · ‖2

computes the 2-norm. γ1 and γ2 are used to set the relative
importance of position error and velocity error, and they are
tuned to 1 and 0.005, respectively.

2) Motion Learning by Training the Preparation Network:
According to the method proposed in Section III-B, the
weights of the preparation network can be adjusted iteratively
in the direction of producing proper initial states after each
episode. After training, the execution network can evolve from
the appropriate initial states, which are produced by the trained

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MOTION LEARNING AND RAPID GENERALIZATION FOR MUSCULOSKELETAL SYSTEMS 1699

(a) (b)

Fig. 4. Performance on motion learning based on the preparation network
and the execution network. (a) Value of loss function during training.
(b) Trajectories of the endpoint of arm model when training is completed.

(a) (b)

(c) (d)

Fig. 5. Membrane potential of partial neurons in hidden layer during
movement preparation and execution stage. (a)–(d), respectively, represent the
membrane potential of partial neurons in hidden layer when the movement
target is point A, C, E, and G on the circle.

preparation network. At the same time, it outputs muscle exci-
tation signals to drive the arm model to generate the desired
movements with high precision. The curves of loss function
associated with the eight target points are shown in Fig. 4(a).
It is obvious that the deviation between actual movement
and expected movement decreases rapidly as the number of
episodes increases. Fig. 4(b) shows the trajectories of the end-
point of the arm model when training is completed in the
center-out reaching task. The average error of the endpoint is
1.60 ± 0.83 mm.

The membrane potentials of partial neurons in the hidden
layer of the preparation network and execution network dur-
ing movement preparation and execution stages are shown
in Fig. 5. At t = 0.10 s, the evolving network is switched
from the preparation network to the execution network, and
the preparation network transmits the membrane potentials of
neurons in the hidden layer at that moment to the execution
network as its initial state. Therefore, at t = 0.10 s, due to
the change of network characteristics and the withdrawal of
input vector, the membrane potentials have obvious fluctua-
tions. As shown in Fig. 5, during movement preparation, that
is, before t = 0.1 s, for the same hidden neurons, the time
evolutions of membrane potentials corresponding to different
movement targets are significantly different, and membrane

Fig. 6. Performance on motion generalization of the preparation network for
the novel movement targets on the circle.

(a) (b)

Fig. 7. Performance on motion learning based on one RNN that goes through
movement preparation and execution process. (a) Value of loss function during
training. (b) Trajectories of the endpoint of the arm model when training is
completed.

potentials have rich patterns at the period, which gives rise
to high degree of differentiation between initial states. This
is crucial for providing specific initial states to the execution
network according to various movement targets.

3) Motion Generalization of the Preparation Network: In
addition, after the training, 20 untrained points on the same
circle are obtained as movement targets to test the generalization
ability of the preparation network, and the trajectories of the
endpoint are given in Fig. 6. Through the observation of Fig. 6,
the motion learning of the preparation network and execution
network can provide the ability of generalization in terms of
movement targetswith thesamedistanceanddifferentdirections.

4) Comparative Experiment on Dividing the Preparation
and Execution of Movements Into Two RNNs or One
RNN: A comparative experiment is carried out to verify that
dividing the preparation and execution of movements into two
RNNs rather than one RNN accelerates the motion learning.
In the comparative experiment, only one RNN is applied as a
motion control network, which also goes through the motion
preparation and execution process. The performance of motion
learning is depicted in Fig. 7. By comparing it with Fig. 4,
when two RNNs are adopted, the loss curve fluctuates less
and declines more steadily, the motion learning is faster and
can achieve movements with higher precision under the same
number of learning episodes.

B. Rapid Generalization for Novel Movements Based on the
Latent Space of the Learned Initial States

Through motion learning of the preparation network and
execution network, initial states can be explicitly expressed as

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

1700 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 4, DECEMBER 2022

knowledge of movements, and some movement-specific ini-
tial states have been learned successfully. In the following
experiments, the effectiveness of proposed rapid generaliza-
tion method for new movement targets with the utilization of
learned initial states is verified.

1) Rapid Generalization for Novel Movements by Searching
for the Corresponding Low-Dimensional Initial States: To
prove the validity of the proposed rapid generalization method
in Section III-C, we acquired 40 novel movement targets by
uniformly sampling points within the same circle, and they are
used for reaching tasks. We still adopt the execution network
with the same parameters depicted in Table II. Eight initial
states, which are generated by the preparation network for the
eight equidistant targets on the circle in reaching task, are uti-
lized to construct the latent space according to (18) and (19).
The loss function L(w) used to evaluate the low-dimensional
initial state coordinates is the same as that in (32). In our
experiments, the parameter λ of CMA-ES is set to 10.

Since we applied eight learned 200-D initial states to con-
struct the latent space, the effective projection subspace has
a maximum dimension of eight. Under the premise that the
dimension of latent space has enough representation ability,
the lower the dimensionality of the latent space, the more
beneficial it is to improve the efficiency of search for optimal
low-dimensional initial state for the desired motion. Herein,
the following experiments have indicated the 2-D latent space
is sufficient for the rapid generalization of new movement
targets within circle. The 2-D latent space also provides conve-
nience for visualization. So the latent spaces in all subsequent
experiments are all 2-D, namely, ρ = 2.

As mentioned in Section III-C, in an attempt to set the
parameter u0 of CMA-ES properly to improve the search effi-
ciency, we initialize the coordinate value of low-dimensional
initial state for the novel movement according to (22) and (23)
before searching for the optimal solution by CMA-ES and
assign the initial value to u0, herein some learned motions
need to be selected to calculate the initial value. Specifically,
for a novel movement target within the circle, the learned
movements which are corresponding to the two nearest tar-
gets and the two farthest targets to the new target among the
existing eight movement targets on the circle are selected. The
reason for this selection is that for almost all points within
circle as new movement target, if only initial states for the
eight movement targets on circle are provided as prior knowl-
edge, the movement targets corresponding to the selected
learned motions could form a convex polygon containing a
new movement target.

The initial states of the execution network corresponding to
new movements could be learned successfully by searching
for proper low-dimension ones in latent space to minimize
the loss function and then transforming them into the whole
neural space. Fig. 8 shows final trajectories of the endpoint of
the musculoskeletal system under ten rounds of iterations of
CMA-ES. The average error is 0.75 ± 0.67 mm. It indicates
all new movement targets can be reached accurately without
large-scale training and confirms the proposed method based
on latent space is not only feasible but also can effectively

Fig. 8. Performance on rapid generalization for new targets within the circle
based on the 2-D latent space of the learned eight initial states.

(a) (b)

(c) (d)

Fig. 9. Performance on rapid generalization for new targets and the distribu-
tion of the corresponding low-dimensional initial states. (a)–(d), respectively,
represent the performance on rapid generalization for new targets on the cir-
cles based on the 2-D latent space of the learned eight initial states (left),
and the distribution of optimal low-dimensional initial states in the 2-D latent
space (right) when targets are evenly arranged along circles with radii of 12,
10, 8, and 6 cm.

reduce the computational burden for generalization of new
movements. This is because the learned initial states are fully
utilized as prior knowledge, and the dimensionality of the
controlled variable has been greatly reduced.

In addition, to observe the coordinate distribution of differ-
ent initial states in latent space, four groups of experiments
on center-out reaching tasks are designed, in which the same
number of movements targets are evenly arranged along cir-
cles with radii of 12, 10, 8, and 6 cm, respectively. Fig. 9
illustrates the motion trajectories of the musculoskeletal model
after motion generalization. The optimal low-dimensional ini-
tial states corresponding to movement targets are also given in
Fig 9, which makes it abundantly clear that the initial states of
the execution network for movement targets are not disorderly
distributed in the latent space. It is observed that the distri-
bution of low-dimensional movement-specific initial states in
the latent space has a certain similarity with the arrangement
of motion targets in physical space. This provides a basis to
estimate low-dimensional initial state roughly by (22) and (23)
according to the positional relationship between the learned
movement targets and the new target in physical space before
searching.

2) Impact of Initializing Low-Dimensional Initial States
Based on the Position of Corresponding Targets: We
conducted experiments to observe the effect of initializing the

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MOTION LEARNING AND RAPID GENERALIZATION FOR MUSCULOSKELETAL SYSTEMS 1701

Fig. 10. Results of comparative experiments which show the impact of
random initialization of the low-dimensional initial state and initialization of
the low-dimensional initial state based on the physical location of the target.

low-dimensional initial state for new movement target based
on the distribution of targets. Forty uniformly sampled points
within the same circle with the radius of 14 cm are obtained
as new movement targets, and comparative experiments under
random initialization and initialization based on (22) and (23)
are carried out to verify the effectiveness of initializing the
low-dimensional initial state for new target. The initial value
of low-dimensional initial state is assigned to the parameter u0

of CMA-ES. As reflected in Fig. 10, reasonable initialization
of the low-dimensional initial state can significantly speed up
the process of motion generalization.

3) Impact of the Number of Selected Learned Initial States
Used for Constructing the Latent Space: The learned high-
dimensional initial states are not only utilized to solve the
orthonormal basis of the latent space but also useful for
reconstructing the high-dimensional initial state for a novel
movement target by means of the mean vector of them, as
in (24). To observe whether the number of initial states engag-
ing in producing the latent space has an effect on learning
novel movement, we compared the performance of general-
ization when latent space is based on the learned initial states
with different quantity.

We sampled 40 points uniformly within the circle with the
radius of 14 cm as novel targets in reaching tasks. In the
contrast experiments, the latent spaces are produced through
n = 4, 8 learned high-dimensional states corresponding to
n = 4, 8 equidistant targets on the circle, respectively. It is
worth noting that there are two possible sets to pick four
equidistant targets out of the eight learned targets on the cir-
cle with radius of 14 cm to construct latent space. As Fig. 3
shows, one set consists of A, C, E, and G. The other set con-
sists of B, D, F, and H. In order to eliminate the impact of
initialization on learning speed in different cases, initial values
of low-dimensional initial states for new reaching experi-
ments are the mean of the low-dimensional coordinates of
the n learned initial states in each case. Fig. 11 shows the
three loss curves of the three cases during searching for the
optimal low-dimensional initial states corresponding to new
targets. In three cases, after 50 rounds of iterations of CMA-
ES, the average errors of endpoint are all less than 1 mm.
Since new targets can all be reached with high precision,
the initial states with different quantity in three cases contain

Fig. 11. Results of comparative experiments which show the impact of the
number of selected initial states used for constructing the latent space.

enough information that are needed to reconstruct the high-
dimensional initial states. Furthermore, the three loss curves
almost overlap with each other after removing the effects of
initialization to the low-dimensional initial states in the three
cases. It illustrates that the number of initial states involving
in constructing latent space has no significant influence on
the search speed of the optimal low-dimensional initial states
for new targets and accuracy of new movements, as long as
the initial states constructing the latent space contain enough
information.

C. Fault Tolerance Analysis of the Initial State

In [38], the hypothesis that “optimal subspace” of an appro-
priate state for one motion is a high-dimensional ellipsoid is
proposed, which indicates the noise occurring in some direc-
tions will hardly affect the motion consequences, while noise
along some directions will cause the actual motion to devi-
ate significantly from the desired motion. This shows that the
optimal initial state corresponding to a desired motion has a
certain tolerance space. The hypothesis is also applicable to
the initial state of the execution network in this article and is
verified in the experiment.

As mentioned before, the dynamic equation of the execution
network can be expressed as follows:

τ ẋe = −xe + Je tanh
(
xe) + be. (33)

Although tanh(xe) in (33) brings nonlinearity to the exe-
cution network, tanh(xe(i)) ≈ 0.8xe(i) when element xe(i) ∈
[−1, 1], and xe(i) represents the ith element of vector xe. Given
the membrane potentials of most hidden neurons are in the
range [−1, 1] during the movement execution stage, for the
convenience of analysis, we ignore the nonlinearity of the exe-
cution network dynamics for the time being and regard it as
linear, so (33) can be further approximated as follows:

τ ẋe = (
0.8Je − I

)
xe + be. (34)

Let A = 0.8Je − I, if xe evolves from the initial state xe
0

from time t = 0 onward, (34) can be solved analytically in
mathematics as follows:

xe(t) = exp

(
A
τ

t

)
xe

0 +
∫ t

0
exp

(
A
τ

(t − s)

)
beds. (35)

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

1702 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 4, DECEMBER 2022

The muscle excitations produced by the network can be
calculated as follows:

ze(t) = Ve tanh
(
xe(t)

) ≈ 0.8Ve
(

exp

(
A
τ

t

)
xe

0 + f (t)
)

(36)

where f (t) = ∫ t
0 exp([A/τ](t − s))beds. Assume that xe∗

0 is
an appropriate initial state which has been learned for target
pd. Similarly, the appropriate muscle excitations which can
drive the musculoskeletal system to reach the target pd can be
written as follows:

ze∗(t) = Ve tanh
(
xe∗(t)

) ≈ 0.8Ve
(

exp

(
A
τ

t

)
xe∗

0 + f (t)
)

.

(37)

We define the output error of the execution network as the
total squared difference between the actual output and desired
output in the following equation. Though in fact, in this experi-
ment, only the time [0, t2] belongs to the movement execution
stage, here we expand the integration domain to an infinite
domain to compare the difference between the outputs of
the execution network over total time courses under different
initial states

e =
∫ ∞

0

∥∥ze(t) − ze∗(t)
∥∥2

dt

=
∫ ∞

0

∥∥∥∥0.8Ve exp

(
A
τ

t

)(
xe

0 − xe∗
0

)∥∥∥∥
2

dt

= 0.64
(
xe

0 − xe∗
0

)TQ
(
xe

0 − xe∗
0

)
(38)

where Q ∈ R
N×N is called “observability Gramian” of pair

([A/τ], Ve), and Q can be computed by solving a related
Lyapunov equation in mathematics, the derivation details of
(38) refers to [54].

According to (38), under the assumption that the dynamics
of the execution network is approximately linear, if deviations
with the same size (Euclidean norm) between xe(t) and xe∗(t)
are along the direction of the eigenvectors of Q correspond-
ing to large eigenvalues of Q, they will cause larger error of
muscle excitations. On the other hand, deviations along the
direction of the eigenvectors associated with small eigenval-
ues of Q have less impact on suitable muscle excitations for
the target pd.

We made the following experiments to verify this conclu-
sion. Noises with the same value of the Euclidean norm, which
are along different eigenvector directions, are applied to the
appropriate initial states corresponding to multiple targets on
the circle. The average position deviations of different targets
due to the application of the noise along the same eigenvec-
tor direction are calculated. Then, the 200 eigenvectors of Q
are sorted in the descending order of their related eigenvalues,
and every eight eigenvectors are divided into one set. The
average error related to 8 eigenvectors in each set is further
calculated, and 25 sets of corresponding average errors are
shown with bars of the same color in Fig. 12. The larger the
index of eigenvector sets, the smaller the corresponding eigen-
values of the eigenvectors in this set. As shown in Fig. 12,
as the index of eigenvector sets increases, the average posi-
tion errors decrease. Although the actual network dynamic
equations are nonlinear, (38) still accounts for the result to

Fig. 12. Results which show position deviation caused by applying noise
along different eigenvector directions to the initial state.

some extent. Specifically, if the actual initial state deviates
from the correct initial state in the direction of the eigen-
vectors with large eigenvalues, it will lead to a large error
of muscle excitations, which will further give rise to a large
deviation of the final reaching position of the musculoskele-
tal system. On the contrary, the deviation of the initial state
in the direction of eigenvectors with small eigenvalues has
less influence. So the perturbations in the potent direction
of the eigenvectors with large eigenvalues should be elimi-
nated as possible for the precise control of the musculoskeletal
system. The experiments of applying noises with different
sizes along the direction of the eigenvectors were also per-
formed, whose results are shown with bars of different colors
in Fig. 12. As the size of applied noise gradually increases,
the final position deviation of the musculoskeletal system also
increases. Although the initial state has great fault tolerance
in the directions of eigenvectors with small eigenvalues and
some perturbations in these directions are allowed, the pertur-
bation will still cause large movement deviation when the size
of perturbation exceeds a certain level.

V. DISCUSSION

In this section, the work in this article is compared with
related work, and the future study is also discussed.

Kao et al. [38] aimed to propose an appropriate the-
oretical scaffold for formulating movement preparation in
neuroscience. They adopted optimal anticipatory control to
let the RNN automatically evolve from a random state to
the desired initial state which is given previously before the
reaching motion of a two-link arm. However, the process of
getting initial state takes advantage of the expected torque
trajectory of the arm which is obtained by backpropagating
through the dynamics equations of the two-link arm, but this
is difficult for the musculoskeletal system owing to its high
redundancy and coupling. In addition, the method in [38]
lacks the generalization ability for novel movement with high
efficiency. In [55], Sun et al. designed an RNN as motor
network to control an arm plant which is actuated by six mus-
cles. Although the evolution process of the network is also
divided into movement preparation and execution processes,
appropriate time-varying motor commands are generated by
using Hessian-free optimization to update the weights of the

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: MOTION LEARNING AND RAPID GENERALIZATION FOR MUSCULOSKELETAL SYSTEMS 1703

motor network. Therefore, in [55], initial states are not explic-
itly modulated and utilized as prior knowledge to speed up
subsequent learning. In our article, the initial states can be
regarded as a kind of motor primitive, and the execution
network is deterministic once it is initialized, so the learned
initial states could be reused to generate new initial states for
novel movements.

In this article, concentrating on modulating the initial state
of the control system based on movement preparation provides
a new perspective on the control method of musculoskeletal
robotic systems. The framework may also give inspiration to
research in some other potential application scenarios, such
as upper limb exoskeleton robots and functional electrical
stimulation (FES) technology which is applied for the restora-
tion of upper extremity function [56]. In these scenarios, the
controlled systems are all strongly redundant, nonlinear, and
coupling. However, the proposed framework in this article
still have some limitations. First, although the learned initial
states could be used to achieve rapid generalization for novel
movements, several rounds of optimization are still needed
for acquiring the corresponding low-dimensional initial states
of the unlearned targets. Second, the framework is used in
reaching tasks, the trajectory cannot be as smooth as that of a
human due to the lack of trajectory constraints. Third, during
motion learning, the reward-modulated learning rule requires
plenty of experiments with the musculoskeletal robots, which
limits the efficiency in related applications. In the future, we
will consider realizing the generalization for new motion with-
out additional optimization. Specifically, an initial state library
can be established, and the newly acquired initial state can be
added to the library to guide the subsequent movement, so that
the efficiency of the algorithm can be improved by incremental
learning. The distribution law of initial states in potential space
can be further discussed and clearly expressed so as to facili-
tate generalization. Besides, the existence of optimal subspace
reveals which directions are important for precise control, and
gives an inspiration that the preparatory errors along these
potent directions should first be selectively eliminated dur-
ing the motor preparation in the future work. In addition, the
reaching movement is one form of various robotic manipula-
tions, the musculoskeletal robotic system may be applied to
realize more complex tasks such as tracking [57], [58]. More
key neural mechanisms on motion control will be incorporated
into the control method to reap the potential advantages of the
human brain, so that human-like flexible manipulation could
be performed.

VI. CONCLUSION

The main motivation for this article comes from the stud-
ies of the neural responses in the motor cortex during animal
motion in neuroscience. In a series of motion tasks such as
fast ballistic movement, the neural activities in motor cortex
can be described by a dynamic system which evolves from a
specific initial state in each episode.

Inspired by the research on movement preparation in the
motor cortex, a motion learning framework based on RNN
modulated by initial states is proposed for a sophisticated

musculoskeletal system. First, two RNNs are introduced as
the preparation network and the execution network to achieve
the motion learning. Dividing the preparation and execution
of movements into two RNNs accelerates the convergence of
motion learning under the application of the node perturbation
method. Based on movement preparation, initial states of RNN
can be explicitly utilized as knowledge of movement targets.
On that basis, a method that can realize rapid generalization for
new movement is further proposed. We proposed to optimize
the low-dimensional initial state related to new motion in
latent space of the learned initial states and reconstruct the
corresponding high-dimensional ones to achieve rapid gener-
alization. A musculoskeletal robotic system with two joints
and nine muscles was adopted to verify the effectiveness of
the proposed motion learning framework.

REFERENCES

[1] K. P. Tee, D. W. Franklin, M. Kawato, T. E. Milner, and E. Burdet,
“Concurrent adaptation of force and impedance in the redundant muscle
system,” Biol. Cybern., vol. 102, no. 1, pp. 31–44, 2010.

[2] C. Yang, C. Zeng, C. Fang, W. He, and Z. Li, “A DMPs-based framework
for robot learning and generalization of humanlike variable impedance
skills,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 3, pp. 1193–1203,
Jun. 2018.

[3] Y. Nakanishi et al. “Design approach of biologically-inspired mus-
culoskeletal humanoids,” Int. J. Adv. Robot. Syst., vol. 10, no. 4,
pp. 216–228, 2013.

[4] H. Qiao, J. Chen, and X. Huang, “A survey of brain-inspired intelligent
robots: Integration of vision, decision, motion control, and muscu-
loskeletal systems,” IEEE Trans. Cybern., early access, Apr. 28, 2021,
doi: 10.1109/TCYB.2021.3071312.

[5] S. Zhong, J. Chen, X. Niu, H. Fu, and H. Qiao, “Reducing redundancy of
musculoskeletal robot with convex hull vertexes selection,” IEEE Trans.
Cogn. Develop. Syst., vol. 12, no. 3, pp. 601–617, Sep. 2020.

[6] Y. Asano et al. “Human mimetic musculoskeletal humanoid kengoro
toward real world physically interactive actions,” in Proc. IEEE-RAS
16th Int. Conf. Humanoid Robots (Humanoids), 2016, pp. 876–883.

[7] Y. Asano, K. Okada, and M. Inaba, “Design principles of a human
mimetic humanoid: Humanoid platform to study human intelligence
and internal body system,” Sci. Robot., vol. 2, no. 13, 2017,
Art. no. eaaq0899.

[8] S. Wittmeier et al. “Toward anthropomimetic robotics: Development,
simulation, and control of a musculoskeletal torso,” Artif. Life, vol. 19,
no. 1, pp. 171–193, 2013.

[9] Y. Dabiri, S. Najarian, M. R. Eslami, S. Zahedi, and D. Moser, “A
powered prosthetic knee joint inspired from musculoskeletal system,”
Biocybern. Biomed. Eng., vol. 33, no. 2, pp. 118–124, 2013.

[10] C.-T. Chen, W.-Y. Lien, C.-T. Chen, and Y.-C. Wu, “Implementation of
an upper-limb exoskeleton robot driven by pneumatic muscle actuators
for rehabilitation,” Actuators, vol. 9, no. 4, p. 106, 2020.

[11] E. P. Grabke, K. Masani, and J. Andrysek, “Lower limb assistive device
design optimization using musculoskeletal modeling: A review,” J. Med.
Devices, vol. 13, no. 4, p. 13, 2019.

[12] Z. Li, C.-Y. Su, G. Li, and H. Su, “Fuzzy approximation-based adaptive
backstepping control of an exoskeleton for human upper limbs,” IEEE
Trans. Fuzzy Syst., vol. 23, no. 3, pp. 555–566, Jun. 2015.

[13] S. Kurumaya, K. Suzumori, H. Nabae, and S. Wakimoto,
“Musculoskeletal lower-limb robot driven by multifilament muscles,”
Robomech J., vol. 3, no. 1, pp. 1–15, 2016.

[14] Y. Wu, J. Chen, and H. Qiao, “Anti-interference analysis of bio-inspired
musculoskeletal robotic system,” Neurocomputing, vol. 436, no. 3,
pp. 114–125, 2021.

[15] F. C. Anderson and M. G. Pandy, “Static and dynamic optimization
solutions for gait are practically equivalent,” J. Biomech., vol. 34, no. 2,
pp. 153–161, 2001.

[16] D. G. Thelen, F. C. Anderson, and S. L. Delp, “Generating dynamic
simulations of movement using computed muscle control,” J. Biomech.,
vol. 36, no. 3, pp. 321–328, 2003.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCYB.2021.3071312

1704 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 14, NO. 4, DECEMBER 2022

[17] K. Tahara and H. Kino, “Reaching movements of a redundant muscu-
loskeletal arm: Acquisition of an adequate internal force by iterative
learning and its evaluation through a dynamic damping ellipsoid,” Adv.
Robot., vol. 24, nos. 5–6, pp. 783–818, 2010.

[18] K. Tahara, Y. Kuboyama, and R. Kurazume, “Iterative learning control
for a musculoskeletal arm: Utilizing multiple space variables to improve
the robustness,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012,
pp. 4620–4625.

[19] M. H. Balaghi I., R. Vatankhah, M. Broushaki, and A. Alasty, “Adaptive
optimal multi-critic based neuro-fuzzy control of mimo human mus-
culoskeletal arm model,” Neurocomputing, vol. 173, pp. 1529–1537,
Jan. 2016.

[20] W. Qi, H. Su, and A. Aliverti, “A smartphone-based adaptive recogni-
tion and real-time monitoring system for human activities,” IEEE Trans.
Human-Mach. Syst., vol. 50, no. 5, pp. 414–423, Oct. 2020.

[21] H. Kambara, K. Kim, D. Shin, M. Sato, and Y. Koike, “Learning and
generation of goal-directed arm reaching from scratch,” Neural Netw.,
vol. 22, no. 4, pp. 348–361, 2009.

[22] J. Weng, E. Hashemi, and A. Arami, “Natural walking with mus-
culoskeletal models using deep reinforcement learning,” IEEE Robot.
Autom. Lett., vol. 6, no. 2, pp. 4156–4162, Apr. 2021.

[23] Łukasz Kidziński et al. “Learning to run challenge solutions:
Adapting reinforcement learning methods for neuromusculoskeletal
environments,” in Proc. NIPS Competition Build. Intell. Syst., 2018,
pp. 121–153.

[24] Łukasz Kidziński et al. “Artificial intelligence for prosthetics: Challenge
solutions,” in Proc. NeurIPS Competition, 2020, pp. 69–128.

[25] A. Diamond and O. E. Holland, “Reaching control of a full-torso,
modelled musculoskeletal robot using muscle synergies emergent under
reinforcement learning,” Bioinspiration Biomimetics, vol. 9, no. 1, 2014,
Art. no. 016015.

[26] A. d’Avella, P. Saltiel, and E. Bizzi, “Combinations of muscle synergies
in the construction of a natural motor behavior,” Nat. Neurosci., vol. 6,
no. 3, pp. 300–308, 2003.

[27] E. Rückert and A. d’Avella, “Learned parametrized dynamic movement
primitives with shared synergies for controlling robotic and muscu-
loskeletal systems,” Front. Comput. Neurosci., vol. 7, p. 138, Oct. 2013.

[28] J. Chen and H. Qiao, “Muscle-synergies-based neuromuscular control
for motion learning and generalization of a musculoskeletal system,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 6, pp. 3993–4006,
Jun. 2021.

[29] J. Chen, S. Zhong, E. Kang, and H. Qiao, “Realizing human-like manip-
ulation with a musculoskeletal system and biologically inspired control
scheme,” Neurocomputing, vol. 339, pp. 116–129, Apr. 2019.

[30] R. S. Razavian, B. Ghannadi, and J. McPhee, “A synergy-based motor
control framework for the fast feedback control of musculoskeletal
systems,” J. Biomech. Eng., vol. 141, no. 3, p. 12, 2019.

[31] J. N. Sanes and J. P. Donoghue, “Plasticity and primary motor cortex,”
Annu. Rev. Neurosci., vol. 23, no. 1, pp. 393–415, 2000.

[32] M. M. Churchland et al., “Neural population dynamics during reaching,”
Nature, vol. 487, no. 7405, pp. 51–56, 2012.

[33] K. V. Shenoy, M. Sahani, and M. M. Churchland, “Cortical con-
trol of arm movements: a dynamical systems perspective,” Annu. Rev.
Neurosci., vol. 36, pp. 337–359, Jul. 2013.

[34] M. M. Churchland and J. P. Cunningham, “A dynamical basis set for
generating reaches,” in Cold Spring Harbor Symposia on Quantitative
Biology, vol. 79. Cold Spring Harbor, NY, USA: Cold Spring Harbor
Lab. Press, 2014, pp. 67–80.

[35] A. Afshar, G. Santhanam, M. Y. Byron, S. I. Ryu, M. Sahani, and
K. V. Shenoy, “Single-trial neural correlates of arm movement prepara-
tion,” Neuron, vol. 71, no. 3, pp. 555–564, 2011.

[36] M. M. Churchland, J. P. Cunningham, M. T. Kaufman, S. I. Ryu,
and K. V. Shenoy, “Cortical preparatory activity: Representation of
movement or first cog in a dynamical machine?” Neuron, vol. 68, no. 3,
pp. 387–400, 2010.

[37] M. M. Churchland, M. Y. Byron, S. I. Ryu, G. Santhanam, and
K. V. Shenoy, “Neural variability in premotor cortex provides a signa-
ture of motor preparation,” J. Neurosci., vol. 26, no. 14, pp. 3697–3712,
2006.

[38] T.-C. Kao, M. S. Sadabadi, and G. Hennequin, “Optimal anticipatory
control as a theory of motor preparation: A thalamo-cortical circuit
model,” Neuron, vol. 109, no. 9, pp. 1567–1581, 2021.

[39] G. Hennequin, T. P. Vogels, and W. Gerstner, “Optimal control of tran-
sient dynamics in balanced networks supports generation of complex
movements,” Neuron, vol. 82, no. 6, pp. 1394–1406, 2014.

[40] T. Miconi, “Biologically plausible learning in recurrent neural networks
reproduces neural dynamics observed during cognitive tasks,” Elife,
vol. 6, Feb. 2017, Art. no. e20899.

[41] D. G. Thelen, “Adjustment of muscle mechanics model parameters
to simulate dynamic contractions in older adults,” J. Biomech. Eng.,
vol. 125, no. 1, pp. 70–77, 2003.

[42] K. R. Saul et al., “Benchmarking of dynamic simulation predictions
in two software platforms using an upper limb musculoskeletal
model,” Comput. Methods Biomech. Biomed. Eng., vol. 18, no. 13,
pp. 1445–1458, 2015.

[43] A. A. Russo et al. “Motor cortex embeds muscle-like commands in an
untangled population response,” Neuron, vol. 97, no. 4, pp. 953–966,
2018.

[44] G. F. Elsayed, A. H. Lara, M. T. Kaufman, M. M. Churchland, and
J. P. Cunningham, “Reorganization between preparatory and movement
population responses in motor cortex,” Nat. Commun., vol. 7, no. 1,
pp. 1–15, 2016.

[45] O. Barak, “Recurrent neural networks as versatile tools of neu-
roscience research,” Current Opinion Neurobiol., vol. 46, pp. 1–6,
Oct. 2017.

[46] D. Sussillo, “Neural circuits as computational dynamical
systems,” Current Opinion Neurobiol., vol. 25, pp. 156–163,
Apr. 2014.

[47] J. Chen and H. Qiao, “Motor-cortex-like recurrent neural network
and multi-tasks learning for the control of musculoskeletal systems,”
IEEE Trans. Cogn. Develop. Syst., early access, Dec. 21, 2020,
doi: 10.1109/TCDS.2020.3045574.

[48] I. R. Fiete and H. S. Seung, “Gradient learning in spiking neural
networks by dynamic perturbation of conductances,” Phys. Rev. Lett.,
vol. 97, no. 4, 2006, Art. no. 048104.

[49] C. Yang, C. Chen, N. Wang, Z. Ju, J. Fu, and M. Wang, “Biologically
inspired motion modeling and neural control for robot learning from
demonstrations,” IEEE Trans. Cogn. Develop. Syst., vol. 11, no. 2,
pp. 281–291, Jun. 2019.

[50] C. Yang, C. Chen, W. He, R. Cui, and Z. Li, “Robot learning system
based on adaptive neural control and dynamic movement primitives,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 3, pp. 777–787,
Mar. 2019.

[51] N. Hansen, “The CMA evolution strategy: A tutorial,” 2016,
arXiv:1604.00772.

[52] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation dis-
tributions in evolution strategies: The covariance matrix adaptation,” in
Proc. IEEE Int. Conf. Evol. Comput., 1996, pp. 312–317.

[53] N. Hansen, “Benchmarking a bi-population cma-es on the bbob-2009
function testbed,” in Proc. 11th Annu. Conf. Companion Genet. Evol.
Comput. Late Breaking Papers, 2009, pp. 2389–2396.

[54] T.-C. Kao and G. Hennequin, “Neuroscience out of control: control-
theoretic perspectives on neural circuit dynamics,” Current Opinion
Neurobiol., vol. 58, pp. 122–129, Oct. 2019.

[55] Y. Sun, H. Shi, and F. Wang, “Learning and encoding motor primitives
for limb actions in a brain-like computation approach,” Neurocomputing,
vol. 385, no. 4, pp. 160–168, 2020.

[56] D. C. Crowder, J. Abreu, and R. F. Kirsch, “Hindsight experience replay
improves reinforcement learning for control of a mimo musculoskeletal
model of the human arm,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 29, pp. 1016–1025, May 2021.

[57] H. Su, W. Qi, C. Yang, J. Sandoval, G. Ferrigno, and E. De Momi,
“Deep neural network approach in robot tool dynamics identification
for bilateral teleoperation,” IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 2943–2949, Apr. 2020.

[58] X. Yu, S. Zhang, L. Sun, Y. Wang, C. Xue, and B. Li, “Cooperative
control of dual-arm robots in different human-robot collaborative tasks,”
Assembly Autom., vol. 40, no. 1, pp. 95–104, 2019.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 04,2024 at 14:20:02 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCDS.2020.3045574

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

