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A Hierarchical Architecture for Multisymptom
Assessment of Early Parkinson’s Disease

via Wearable Sensors
Chen Wang , Liang Peng , Zeng-Guang Hou , Fellow, IEEE, Yanfeng Li, Ying Tan, and Honglin Hao

Abstract—Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disorder and the heterogeneity of early
PD leads to interrater and intrarater variability in observation-
based clinical assessment. Thus, objective monitoring of PD-
induced motor abnormalities has attracted significant attention
to manage disease progression. Here, we proposed a hierarchi-
cal architecture to reliably detect abnormal characteristics and
comprehensively quantify the multisymptom severity in patients
with PD. A novel wearable device was designed to measure motor
features in 15 PD patients and 15 age-matched healthy subjects,
while performing five types of motor tasks. The abnormality
classes of multimodal measurements were recognized by hidden
Markov models (HMMs) in the first layer of the proposed archi-
tecture, aiming at motivating the evaluation of specific motor
manifestations. Subsequently, in the second layer, three single-
symptom models differentiated PD motor characteristics from
normal motion patterns and quantified the severity of cardinal
PD symptoms in parallel. In order to further analyze the dis-
ease status, the multilevel severity quantification was fused in the
third layer, where machine learning algorithms were adopted
to develop a multisymptom severity score. The experimental
results demonstrated that the quantification of three cardinal
symptoms was highly accurate to distinguish PD patients from
healthy controls. Furthermore, strong correlations were observed
between the Unified PD Rating Scale (UPDRS) scores and the pre-
dicted subscores for tremor (R = 0.75, P = 1.40e − 3), bradyki-
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nesia (R = 0.71, P = 2.80e − 3), and coordination impairments
(R = 0.69, P = 4.20e − 3), and the correlation coefficient can be
enhanced to 0.88 (P = 1.26e − 5) based on the fusion schemes.
In conclusion, the proposed assessment architecture holds great
promise to push forward the in-home monitoring of clini-
cal manifestations, thus enabling the self-assessment of disease
progression.

Index Terms—Machine learning, multilevel fusion, multisymp-
tom assessment, Parkinson’s disease (PD), wearable sensor
system.

I. INTRODUCTION

PARKINSON’S disease (PD) is a progressive neurodegen-
erative disease characterized by pathological disappear-

ance of dopaminergic neurons in substantia nigra [1], [2], and
affects over six million worldwide [3]. The clinical pheno-
type of PD encompasses cardinal motor symptoms, such as
tremor, bradykinesia, rigidity, postural instability, and gait dis-
turbance [4], [5], which directly impact the quality of life
for the millions of PD patients. These cardinal symptoms
can be primarily treated by dopaminergic treatments (i.e.,
infusion of levodopa-carbidopa intestinal gel [6] and Deep
Brain Stimulation [7]), and the clinical assessment of hetero-
geneous symptoms is highly valuable for optimal adjustment
of treatment in patients with PD [8], [9]. Typically, continu-
ous monitoring and assessment of early symptom development
provide foundations for clinicians to detect motor alterations
and predict the disease progression.

At present, the clinical assessment of PD symptoms is
manually performed by clinicians according to rating scales
[e.g., unified Parkinson’s disease rating scale (UPDRS) [10],
unified Dyskinesia rating scale (UDysRS) [11], and abnor-
mal involuntary movement scale (AIMS) [12]], of which
the UPDRS is most widely accepted. These conventional
scales are mostly performed in the hospital not representa-
tive of the home environment, which also suffer of inter-
rater and intrarater variability due to personal experience
and perceptual bias [10]. Furthermore, discrete characteris-
tics of rating scales lead to the ignorance of subtle alter-
ations during PD progression [13], which compromises sen-
sitive and quantitative multisymptom evaluation in patients
afflicted by this neurodegenerative disorder. Therefore, auto-
matically monitoring and evaluating PD-induced impairments
have attracted considerable interest to address these unmet
needs.
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TABLE I
OVERVIEW OF STUDIES IN THE ASSESSMENT OF PD

Recently, wearable technology has been widely employed in
PD-related applications. Wearable sensors, such as accelerom-
eters, gyroscopes, and motion tracking systems, were used to
objectively measure motor abnormalities associated with PD
out-of-clinic (e.g., see Table I). Among these studies, one or
two specific motor symptoms have been considered for disease
identification or severity estimation based on relatively limited
tasks, including finger tapping tests, hand pronation/supination
movements, and postural sway. Commonly, the accelerom-
eter attached on joints of extremities is an effective means
of tremor measurements (e.g., amplitude and frequency), and
angular velocities recorded by gyroscopes can reflect the sever-
ity of bradykinesia. In order to comprehensively monitor and
manage disease progression in the early stages of PD, simul-
taneous multisymptom quantification should be emphasized
during activities of daily living.

The machine learning approach is an emerging technology
typically used to quantify the severity of motor abnormali-
ties in PD patients, which can be broadly summarized into
two categories. The first extracts related parameters from
external sensor data to predict the severity of PD symptoms
based on UPDRS guidelines. For example, Kim et al. [21]
derived the tapping velocities and range-of-motion of fingers
from gyroscope signals during finger tapping tests, which
showed a correlation with clinical scales. The second involves
regression/classification models between sensor features and
UPDRS scores, and focuses on distinguishing abnormal and
normal movements for disease diagnosis. The systems in
Patel et al. [9], for instance, used the support vector machine
(SVM) to distinguish PD patients from healthy controls based
on accelerometer data. Giuberti et al. [22] estimated the

leg agility using SVM and K nearest neighbors (kNNs) for
automated UPDRS assessment. However, these systems only
generate one-sided information for clinical decision making,
which are not straightforward to be interpreted and associated
with behavioral abnormalities out-of-clinic. Hence, we aim for
an easy-to-understand assessment of multisymptom severity
in which the level of motor impairments can be continuously
analyzed for PD patients.

In this study, we introduce a hierarchical architecture to
automatically quantify the severity of cardinal symptoms in
PD patients. As tremor, bradykinesia, and postural distur-
bance are the common initial PD-induced symptoms, a novel
wearable device was developed to collect multimodal signals
during five types of motor tasks that lead to the manifesta-
tions of specific symptoms. In order to address the unmet
clinical need of objective monitoring of multiple symptoms
in daily activities of PD patients, five hidden Markov models
(HMMs) were trained to automatically recognize symptom-
specific movements in the first layer. Subsequently, the severity
of single symptoms was independently quantified based on
the predicted abnormality classes in the second layer. For the
comprehensive multisymptom assessment, we further fused
the multilevel severity estimations using machine learning
algorithms to generate a multisymptom severity score (MSS),
which was capable of providing a valid support for the early
prediction of PD.

Our contributions in quantitatively evaluating the multiple
motor impairments in PD patients out-of-clinic are composed
of three key methodological achievements.

1) A measurement system was designed to track the motion
of upper and lower extremities during different motor
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Fig. 1. Overview of the assessment system. Two wearable bands were
attached at the wrist and ankle. Data gathered from all sensors were syn-
chronously transmitted to the patient’s smartphone and rendered on the cloud,
which enables the clinician to remotely monitor the disease progression.

tasks, in which PD-induced symptoms became clinically
manifest.

2) The simultaneously measured motor features were char-
acterized by an HMM-based approach, and then dif-
ferent abnormality classes were detected to trigger the
single-symptom models in the next layer.

3) The severity estimations of single motor symptoms were
integrated by multilevel fusion schemes using the arti-
ficial neural network, and kernel-based and ensemble-
learning algorithms, with the aim to yield a more
comprehensive analysis of functional status.

The remainder of this study is organized as follows.
Section II introduces experimental methods, consisting of the
details of the wearable device, experimental setup, and data
acquisition. Section III presents the hierarchical architecture
for multisymptom assessment. Then, the experimental results
are detailed in Section IV. Finally, Section V discusses the
results and concludes this article.

II. EXPERIMENTAL METHODS

A. Measurement System

We have developed a novel wearable Parkinson’s assessment
device (wPAD) (see Fig. 1), including two bands worn at the
patient’s wrist and ankle, respectively. Each band is equipped
with a MEMS inertial sensor (MPU9250, InvenSense) includ-
ing a 3-D accelerometer and a 3-D gyroscope. The data
range of the linear acceleration and angular velocity was ±8G
(G = 9.81 m/s2) and ±1000 dps (degree per second) in x-,
y-, and z-axes, respectively. The accuracy, precision, and reli-
ability of the data acquisition performance were validated in
our previous study [23].

The acquisition of all data was performed at a sampling
rate of 1000 Hz and synchronously transmitted to a personal
computer at 200 Hz. A Bluetooth communication module
(Bluetooth 4.0) was used to stream the data on a smartphone
application, which allows PD patients engage in any daily
activities. In addition, we adopted cloud services to wirelessly
send the data to the personal computer of the clinician, and
thus, provide foundations for telemedicine.

TABLE II
SUBJECT DEMOGRAPHICS

B. Participants and Clinical Testing

Fifteen patients diagnosed with PD were recruited from the
Peking Union Medical College Hospital, and 15 healthy age-
matched control subjects were also included in this study.
The demographic information of 30 subjects is presented in
Table II.

The inclusion criteria for the PD subjects selection were:
1) idiopathic PD diagnosed according to the U.K. PD Society
Brain Bank criteria; 2) disease progression ranges from 1 to
2.5 according to the Hoehn and Yahr scale; 3) suffering from
PD for less than three years; 4) no severe cognitive impair-
ment; and 5) able to visit the clinic for experiments. All PD
subjects were clinically evaluated by an experienced clinician
using Hoehn and Yahr scale and UPDRS Sections II and III
prior to participating.

The inclusion criteria for the control subjects were free of
dementia, neurological, or psychiatric disorders, and had no
first-degree relatives with PD. The study was reviewed and
approved by the Ethics Committee of Chinese Academy of
Medical Sciences and Peking Union Medical College, and
written informed consent was provided by each subject after
notified of experimental procedures.

C. Procedure

As PD progresses, motor symptoms often manifest them-
selves more severely on one side of the body than on the
other side [24]. Therefore, the wPAD was worn on the wrist
and ankle of the most affected side for PD patients. It should
be noted that patients were recorded in the medication OFF
state (i.e., at least 12 h after their PD medication), and healthy
subjects accomplished all assessment by mounting the device
on the nondominant body side.

All subjects were instructed to perform five motor tasks at
a time for a minimum of 20 s for each task (see Fig. 2).

1) Resting: The subject stayed seated with both forearms
resting on the arms of a chair, and maintained this
posture for 20 s.

2) Extending Hand Movement: The subject stayed seated
and fully extended both arms in front of them with palms
facing toward the ground at the shoulder height level.

3) Alternating Hand Movement: While sitting, the subject
first extended both arms in front of them, and then rhyth-
mically pronated/supinated hands with palms facing up
and down as fast as possible.
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(a) (b) (c) (d) (e)

Fig. 2. Overview of the experimental setup. All participants were asked to perform five types of motor tasks: (a) resting, (b) extending hand, (c) alternating
hand, (d) tapping heel-toe, and (e) walking while wearing the developed Parkinson’s assessment device.

4) Tapping Heel-Toe Movement: The subject was seated as
in Task 1, and rhythmically taped heel-toe on the floor
with their ankles rotating as complete as possible.

5) Walking: The subject started from a sitting position,
walked straight ahead for 10 s, made a turn, and walked
back for 10 s.

These tasks were selected according to standardized clin-
ical practice with aims to assess multiple manifestations in
patients affected by PD, such as rest tremor, postural tremor,
bradykinesia, postural instability, and gait disturbance. More
concretely, Task 1 and Task 2 are relevant to components III.
20 and III. 21 of the UPDRS, which focus on the evaluation of
the symptom severity for rest and postural tremor, respectively.
Task 3 and Task 4 correspond to components III. 25 and III.
26 of the UPDRS, which emphasize abnormalities in rhythm,
velocity, and amplitude of upper and lower limb movements
to estimate severity of bradykinesia. Task 5 can highlight the
postural sway, trunk rotation, and gait problems (e.g., stride
velocity and gait variability).

D. Data Preprocessing and Segmentation

In the following, signals in two modalities were smoothed
using a fourth-order Butterworth low-pass filter (cutoff
frequency: 10 Hz). After removing the noises due to high-
frequency sudden changes, we normalized the data from three
axes by min–max scaling for further data analysis. In order
to obtain continuous features from five different tasks, the
multimodal data were segmented into a series of fixed-length
windows, in which the overlapping technique was employed to
reduce the delay between adjacent windows [25]. The duration
of each window was selected as 200 ms, and the overlap-
ping ratio was 50%. Therefore, for an individual subject, 199
samples were generated for each motor task, and the total
number of samples was 995 in the five-class problem, which
was sufficient for severity estimation in our study.

III. HIERARCHICAL ARCHITECTURE FOR MULTISYMPTOM

ASSESSMENT OF PARKINSON’S DISEASE

A. Symptom-Specific Movement Recognition

In this section, we presented an HMM-based approach to
automatically recognize the abnormality classes of motor tasks

(i.e. Task 1-5), since each task induced specific clinical man-
ifestation in PD patients, further symptom-specific quantifica-
tion for rest tremor, postural tremor, upper-limb bradykinesia,
lower-limb bradykinesia and coordination impairments can be
triggered by this layer (see Fig. 3). In order to predict the
underlying symptom class from continuous sensor data, we
used HMMs to characterize the doubly embedded stochas-
tic process [26], and estimate the precise parameters in this
process.

An HMM is characterized by the observation sequence O
and a hidden state sequence Q according to a state transition
probability distribution A = {aij}, observation symbol prob-
ability distribution B = {bj(k)}, and initial state distribution
π = {πi} as follows [27]:

λ = (A, B, π) (1)

where

aij = P
[
qt+1 = Sj|qt = Si

]
, 1 ≤ i, j ≤ N

bj(k) = P
[
vk at t|qt = Sj

]
, 1 ≤ j ≤ N, 1 ≤ k ≤ M

πi = P
[
q1 = Si

]
, 1 ≤ i ≤ N

with

S = {S1, S2, . . . , SN}
V = {v1, v2, . . . , vM}

where N and M stand for the number of hidden states and
distinct observation symbols per state in the model.

In this study, we encoded the probability density function of
observed multimodal data using the Gaussian mixture model
(GMM) [28]

bj(O) =
C∑

c=1

ωjcψ

⎛

⎝O, μjc,
∑

jc

⎞

⎠, 1 ≤ j ≤ N (2)

where C stands for the number of mixture components, ωjc is
the kth mixture coefficient for state j, ψ and is the cth Gaussian
component with mean vector μjc and covariance matrix

∑
jc.

Specifically, the parameters of GMM were optimized based
on the K-means algorithm.

Given the continuous observation symbols as training data,
the HMM parameters were iteratively estimated based on the
expectation–modification (EM) method [29] so that the model
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Fig. 3. Hierarchical architecture for assessing the multisymptom severity for patients with PD. The accelerometer and gyroscope data served as the input
of the proposed architecture. After recognizing the symptom-specific movements in the HMM-based layer, the quantification of the tremor d

C1
i , bradykinesia

d
C2
i , and coordination impairments �i was motivated correspondingly in the second layer. Each of the single-symptom models estimate the severity in the

range of 0–1. In the third layer, we fused multilevel severity estimations to generate the MSS for the comprehensive assessment.

TABLE III
PREDICTIONS OF THE HMM-BASED LAYER

can best represent the time-varying nature of motion measure-
ments. Note that the number of hidden states was set as five
by fivefold cross-validation, while the number of Gaussian
functions and the value of K were set as 5 to result in the
good recognition performance but without increasing computa-
tional expensive. In the movement recognition layer, we started
by developing five HMMs corresponding to symptom-specific
movements, thereby motivating the recognition process for
an unknown observation sequence. The probability of that
sequence produced by each model was then computed using
the forward–backward procedure, i.e., a score of how well
each model matched a given sequence. By finding the highest
log likelihood, the predicted class can be determined among
five competing HMMs, and Table III describes all possible
predictions made by this layer.

B. Single-Symptom Quantification

To estimate the severity of cardinal PD symptoms in par-
allel, we developed the single-symptom quantification layer
using data in two modalities (see Fig. 3). More specifically,
the quantification of the symptom severity for tremor and
bradykinesia was performed by supervised machine learning
approaches, in which the feedforward neural network (FFNN),
SVM, and random forest (RF) served as representatives of
feedforward artificial neural network, and kernel-based and
ensemble-learning classification algorithms.

In case the tracked movements in current window was rec-
ognized as the tremor-related class (i.e., Task 1 and Task 2)

or bradykinesia-related class (i.e., Task 3 and Task 4) in
the first layer, the tremor-specific classifier or bradykinesia-
specific classifier was triggered accordingly. We extracted the
feature vector from the ith segment by concatenating the pre-
processed accelerometer and gyroscope data, and defined the
corresponding labels as +1 for PD group and −1 for healthy
group. Hence, the input vector XCm

i fed to the single-symptom
classifier Cm can be expressed as

XCm
i =

[
ζ

Cm
1 , . . . , ζCm

n , . . . , ζ
Cm

NCm
l

]T

(3)

where ζCm
n is the nth motor feature, and the total number of

features NCm
l is 480 for two types of classifiers. The predicted

probability vector dCm
i for severity estimation of tremor and

bradykinesia can be obtained

dCm
i = f Cm

(
XCm

i

)
(4)

where f Cm denotes the candidate models constructed by FFNN,
SVM, and RF. Specifically, the FFNN classifier comprised an
input layer with 480 nodes, a hidden layer with 27 nodes,
and an output layer with 1 node. The last two layers selected
the hyperbolic tangent and sigmoid as their activation func-
tions. The SVM classifier was trained with a radial basis
function kernel, and Platt’s method [30] was adopted to trans-
form outputs to posterior probabilities. The RF decided the
symptom-specific classification result based on the majority
vote of ten decision trees.

Suppose the current sample belongs to coordination-
related class, the coordination of upper limb and lower
limb movements was quantified by a synergy-based classi-
fier. Synergy is a manifestation of the motor control strate-
gies adopted by the central nervous system [31], [32], and
our previous study has expanded the concept of interlimb
synergies, which play a major role in motor function assess-
ment [33]. In order to better analyze PD-induced postural
characteristics during walking, we started by calculating the
correlation matrix from the motion segment, thereby weight-
ing each observed variable equally. The interlimb synergies
were then identified by using principal component analysis
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(PCA) to extract a set of uncorrelated variables from all 12
channels, and these new linear combinations can characterize
the coordination ability in individuals affected by PD.

Therefore, instead of calculating principal components, we
quantified the altered movement patterns based on k weighted
angular similarity (kWAS) algorithm [34], which is capable
of uncovering the angular similarity between the eigenvectors
obtained from PD subjects and healthy controls

�i(Si, Shc) = 1 − 1

2

n∑

p=1

⎡

⎢
⎢⎢
⎣

⎛

⎜
⎜⎜
⎝

σp
n∑

q=1
σq

+ λp
n∑

q=1
λq

⎞

⎟
⎟⎟
⎠

∣
∣up · vp

∣
∣

⎤

⎥
⎥⎥
⎦

(5)

where Si denotes the motor synergies of the ith segment
extracted from an individual subject, Shc denotes the averaged
synergies derived from healthy controls, up and vp are the pth
eigenvectors of the corresponding correlation matrices, and σq

and λq are the respective eigenvalues. Note that n was set to
12 to involve all movement patterns derived from multimodal
signals into comparison. It can be seen that the value of �i

ranges from 0 to 1, and becomes lower as the coordination
ability approaches normal status.

C. Multilevel Fusion

Based on the quantification of the multisymptom severity
(i.e., rest tremor, postural tremor, bradykinesia, and postural
disturbance), we constructed a fusion layer to combine the
multilevel features (see Fig. 3). Unlike the classification mod-
els in the second layer, the regression models based on FFNN,
SVR, and RF were adopted to facilitate a more comprehensive
quantification.

To begin with, the feature vector Yj was constituted by
concatenating the output vectors derived from tremor-specific
classifier, bradykinesia-specific classifier, and coordination-
specific classifier

Yj =
[
τ1, . . . , τn, . . . , τNF

l

]T
(6)

where τn is the severity estimation from the nth symptom-
related class, and NF

l stands for the five classes. Note that
the predicted probabilities from each class were sequenced
according to the chronological order of motion segments. We
referred to ground truth as UPDRS-III scores given by the
experienced clinician, therefore, the prediction for the overall
motor abnormalities can be expressed as follows:

Dj = ηF(
Yj

)
(7)

where ηF represent the candidate fusion algorithms.
Concretely, the FFNN was defined as a standard three-layer
feedforward network connected with hyperbolic tangent and
linear transfer functions in the hidden and output layers. The
node numbers of the three layers were determined as 5, 9,
and 1, respectively. Support vector regression (SVR) consisted
of a sigmoid kernel to train probabilistic models, and RF
decided the regression result based on the majority vote given
by four decision trees.

Furthermore, the severity predictions of multiple motor
symptoms per patient were fused using the average rule [35]

Ŝ = 1

J

J∑

j=1

Dj (8)

where Ŝ refers to the MSS that quantitatively assesses the
motor abnormalities appearing mainly with PD patients in
the early stages. Note that all MSSs are nonnegative, and a
higher score indicates that the PD disease is more severe. As
characteristics derived from three cardinal symptoms were all
emphasized in the fusion layer, the MSS can be viewed as an
overall understanding of the PD-induced symptom severity for
a specific patient.

The hierarchical assessment architecture was trained and
tested with the following strategy. The full data set, consist-
ing of 29 850 segments collected from 30 individuals, was first
separated into two nonoverlapping parts: one group comprised
the training data set (i.e., a total of 17 910 segments from 18
individuals), and the other group including the remaining seg-
ments was used as the test data set, with the aim to demonstrate
the generalization performance of the architecture for unknown
patients. The five HMMs in the movement recognition layer
were first trained independently using the training data set.
For the single-symptom quantification layer, assuming that all
segments were predicted correctly, we further split the training
data set belonging to tremor and bradykinesia classes: 60% of
the labeled data served as the input of the six candidate models
for tremor-specific classifier or bradykinesia-specific classifier,
and 40% were used to determine the optimal tremor-specific
and bradykinesia-specific models. Subsequently, the predicted
probabilities of these optimal models and their respective
coordination ability scores were concatenated into the fea-
ture vectors for the three candidate fusion models, and the
best regression model was selected based on the quantification
performance. Finally, the remaining 40% of the full data set
were used for test, which confirm the optimal model selection.
It should be noted that hyperparameters of classification and
regression models were optimized by fivefold cross-validation
procedures. For example, the FFNN-based tremor assessment
model was trained using the gradient descent (traingd) algo-
rithm with a learning rate of 0.06. The penalty parameter
and kernel function parameter of the SVM-based bradykinesia
assessment model were, respectively, set as 0.315 and 0.002,
as well as 0.100 and 0.160 for the SVR-based fusion model.

IV. RESULTS

A. Recognition Performance

The architecture generalizability to unknown subjects was
first tested for each layer, and then the total performance over
layers was evaluated. In this section, we reported the recog-
nition ability of symptom-specific detectors in terms of the
following performance metrics:

Accuracy = TP + TN

TP + FN + FP + TN
(9)

Precision = TP

TP + FP
(10)
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Fig. 4. Recognition results for five types of symptom-specific movements that
lead to manifestations of rest tremor, postural tremor, upper limb bradykinesia,
lower limb bradykinesia and coordination impairments, respectively.

Recall = TP

TP + FN
(11)

F1 - Measure = Recall × Precision × 2

Recall + Precision
(12)

where TP and FP denote the numbers of true and false PD
patient identification, respectively; and TN and FN denote
the numbers of true and false healthy person identification,
respectively.

We started by analyzing the recognition performance among
the five motor tasks using the independent test data set, and
the confusion matrix of the estimated classes is shown in
Fig. 4. The highest recall was obtained by HMM5 with an
overall precision of 92.19%, mainly due to the discriminat-
ing features from trunk rotation, walking speed, and cadence.
HMM3 performed poorly for the upper limb bradykinesia-
related class, as 1.59% of the segments in this class were
misclassified as the postural tremor-related class. The reason
for the missclassification error can be explained by the simi-
larity between extending and alternating hand movements for
the PD patients in the severe stages. There were also limited
confusions (1.33%) between the resting and extending hand
movement, which have little effect on the severity estimation
in the next layer.

In addition, Fig. 5 presents the confusion matrix for the
three-class recognition problem (i.e., tremor, bradykinesia, and
coordination-related movements). The recognition confusion
mainly occurred between the tremor-related and bradykinesia-
related classes, and the interlimb coordination class was more
accurately recognized, which were consistent with the five-
class recognition results. Consequently, for all PD and control
subjects, the confusion matrices confirmed that motion seg-
ments can be accurately classified; therefore, this layer was
capable of triggering the further quantification of correspond-
ing motor symptoms.

B. Classification Performance

In the following, we investigate the classification reliabil-
ity of PD patients versus healthy controls obtained with the

Fig. 5. Integrated recognition results for three types of symptom-specific
movements that lead to manifestations of tremor, bradykinesia, and coordina-
tion impairments, respectively.

TABLE IV
OVERALL ACCURACY (%), PRECISION (%), RECALL (%), AND

F1-MEASURE (%) OF TREMOR-SPECIFIC CLASSIFIERS

TABLE V
OVERALL ACCURACY (%), PRECISION (%), RECALL (%), AND

F1-MEASURE (%) OF BRADYKINESIA-SPECIFIC CLASSIFIERS

proposed architecture. Inside the single-symptom quantifica-
tion layer, three types of classifiers estimated the symptom
severity for tremor, bradykinesia, and coordination impair-
ments in parallel. Table IV reports overall accuracy, precision,
recall, and F1-measure of the tremor-specific classifier on
the test data set, and the best performance among super-
vised machine learning algorithms is shown in highlighted
cells. It can be observed that FFNN outperformed with the
highest accuracy (89.28% compared to 88.32% and 85.49%)
and the best F1-measure (92.10% compared to 91.48% and
89.65%). Similarly, Table V shows the overall performance
of the bradykinesia-specific classifier, and the results derived
from the best model are highlighted. For the bradykinesia
estimation, SVM resulted in better performance with the accu-
racy as high as 85.13%, which outperformed RF and FFNN
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Fig. 6. Temporal evolutions for the quantification of interlimb coordination
ability: (a) PD patients and (b) healthy controls. The thin gray lines indicate
individual subject’s quantification results. The blue line and shaded blue refer
to the average evolution and standard deviation of quantification values across
PD patients, respectively. The red line and shaded red refer to the average evo-
lution and standard deviation of quantification values across healthy controls,
respectively.

by a margin of 2.70% and 2.53%, respectively. It is worth
mentioning that the best models were in agreement with the
optimal selections during the hierarchical architecture train-
ing, i.e., FFNN for tremor-specific classification and SVM for
bradykinesia-specific classification.

To investigate the classification performance of the
coordination-specific classifier, the contiguous quantification
of interlimb coordination ability were concatenated into a fea-
ture vector per individual. The statistical features extracted
from the evolution of quantification results verified the classi-
fier’s generalizability to discriminate PD patients with respect
to healthy controls, since a lower value represents the bet-
ter functional status and vice versa (see Fig. 6). Hence, these
promising results demonstrated that the hierarchical architec-
ture can reliably distinguish between PD versus healthy motor
characteristics, which provide a practical tool for the early
diagnosis of PD in home environments.

C. Quantification Performance

Since our purpose is to enable objective and quantitative
monitoring of PD-induced motor symptoms, it is essential to
investigate whether the proposed metrics (i.e., single-symptom
quantification and multisymptom quantification) exhibit signif-
icant correlations with clinical scores.

For the single-symptom assessment, we carried out the
Pearson correlation test [36] with 95% confidence intervals
to analyze the correlation between clinician-administrated

(a)

(b)

(c)

Fig. 7. Correlation analysis between the UPDRS-III scores and the single-
symptom quantification results: (a) TSSs, (b) BSSs, and (c) CISSs. The
Pearson correlation coefficient (R-value) and the P-value are indicated in each
subfigure, respectively.

UPDRS-III scores and the quantification results of three types
of severity estimation models. More specifically, the pre-
dicted probabilities produced by the optimal tremor-specific
and bradykinesia-specific classifiers were, respectively, inte-
grated using the average rule for each PD patient, and the
outputs of the coordination-specific classifier were similarly
integrated to generate a single-symptom score. Fig. 7 depicts
the results of correlation analysis for the tremor severity
score (TSS), bradykinesia severity score (BSS), and coor-
dination impairments severity score (CISS), in which the
TSS and BSS were derived from the FFNN-based tremor
assessment model and SVM-based bradykinesia assessment
model. The corresponding Pearson correlation coefficients
were 0.75 (P = 1.40e − 3), 0.71 (P = 2.80e − 3), and 0.69
(P = 4.20e − 3), which indicate that three types of single-
symptom scores are well correlated to the standardized rating
scale. As can be seen, the FFNN-based model captured the
tremor-related motor characteristics better than two other
estimation models, which was consistent with the superior
performance in identifying the subjects affected by PD.

For the multisymptom assessment, we started by testing
three candidate regression models in terms of the root mean
square error (RMSE)

SRMSE =
√√√√ 1

K

K∑

k=1

(
SRM

k − SUPDRS
k

)2
(13)

where K is the size of test data set, SRM
k is the kth sever-

ity predictions yielded by FFNN, SVR, and RF, and SUPDRS
k
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TABLE VI
RMSE OF THE HIERARCHICAL APPROACH

Fig. 8. Correlation analysis between the UPDRS-III scores and the multi-
symptom quantification results. The MSSs were derived from the SVR-based
model, which produced the best performance in the construction of the fusion
layer.

is the corresponding UPDRS-III scores. Table VI reports the
values of RMSE for all candidate models and highlights the
best results in blue. The SVR-based model performed supe-
riorly to both FFNN and RF, accompanied with the lowest
RMSE. It is worth noting that SVR was also selected as the
most suitable scheme for multilevel fusion on the training data
set, in which the values of RMSE for the fusion models con-
structed using the FFNN, SVR and RF were 3.16, 2.81, and
2.97, respectively.

The correlation analysis was next performed to validate the
association between UPDRS-III scores and MSSs for compar-
ison purposes. Fig. 8 shows the results of correlation analysis
and the corresponding Pearson correlation coefficients. We
found that the predicted MSSs exhibited a significant rela-
tionship with the UPDRS-III scores (R = 0.88, P = 1.26e-5),
which was even more successful in the quantification of motor
symptom severity. Therefore, by fusing the complementarity
of the multilevel motor characteristics, the clinical relevance
of the proposed architecture can be enhanced. The results
for single-symptom and multisymptom assessment have the
potential to facilitate reliable medical-decision making, as well
as implement the remote prediction of PD progression more
easily in home environments.

V. DISCUSSION AND CONCLUSION

In this study, we proposed a hierarchical approach to com-
prehensively assess multiple motor symptoms in patients with
early PD. Using a novel wearable device attached on the wrist
and ankle, we were able to gather signals in two modali-
ties during different motor tasks. As the PD-induced motor
abnormalities are quite heterogeneous between patients, we
put the emphasis on continuous severity estimation of cardi-
nal motor symptoms in daily life. The experimental results
demonstrated that the proposed architecture was capable of

accurately identifying pathological motor characteristics and
objectively quantifying the PD symptom severity.

In more detail, for the classification performance, the hier-
archical architecture generally performed well for tremor and
bradykinesia, which classified PD versus healthy subjects
with accuracies of 89.28% and 85.13%, respectively. For
the quantification performance, a significant correlation was
observed between the estimated MSSs and the UPDRS-III
scores (R = 0.88, P = 1.26e − 5). Therefore, the MSSs can
take a global view of the functional status and disease progres-
sion of the PD patient. Our approach also yielded independent
subscores for tremor, bradykinesia, and coordination impair-
ments (i.e., TSS, BSS, and CISS), which provide targeted
information about PD-induced abnormalities that impair motor
functions. Furthermore, these encouraging results can sup-
port the self-assessment of PD patients during daily living, as
well as guide the individualization of the subsequent treatment
methods.

To our knowledge, ours is the first study to integrate
movement recognition into the automated assessment system
for home monitoring of patients with PD. Since symptom man-
ifestations vary across activities and the proposed assessment
process was performed in the free-living environment, the
tracked movements needed to be identified as different abnor-
mality classes to ensure that certain symptoms can manifest
themselves most obviously. After recognizing the symptom-
specific movements, the single-symptom models were trig-
gered for the evaluation of three cardinal symptoms, and the
performance metrics presented in Tables IV and V substanti-
ated the superior performance of FFNN and SVM in tremor
and bradykinesia detection, respectively.

Unlike the previous studies that have been so far limited
to estimate the presence of behavioral abnormalities in a spe-
cific symptom class, our assessment architecture used a fusion
scheme to further exploit the estimations of single-symptom
models. Moreover, the analysis of locomotor coordination abil-
ity, considering the altered synergy patterns between upper
and lower extremities, served as an input feature of the
multilevel fusion model to enhance clinical relevance. By
applying three types of regression models, we found that the
prediction of the SVR-based fusion model was even more
successful in the severity quantification, and showed a bet-
ter correlation with standardized clinical tests, as visualized
in Fig. 8.

In general, we concluded the proposed approach provides
an easy-to-use tool that can objectively assess and mon-
itor the disease progression in PD, enabling the in-home
assessment and cloud-based healthcare. Since the severity
estimation of rigidity needs a trained clinician to achieve
a full range of motion for the patient’s major body joint
and characterize the encountered resistance, the wearable
device composed of force sensors will be further developed
to support the remote assessment for rigidity. In addition,
due to the limited sample size, this study only presents a
preliminary demonstration, and future work with larger sam-
ple size can improve the generalization performance of the
architecture.
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