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Abstract—Deep neural networks have shown great promise in various domains. Meanwhile, problems including the storage and

computing overheads arise along with these breakthroughs. To solve these problems, network quantization has received

increasing attention due to its high efficiency and hardware-friendly property. Nonetheless, most existing quantization approaches

rely on the full training dataset and the time-consuming fine-tuning process to retain accuracy. Post-training quantization does not

have these problems, however, it has mainly been shown effective for 8-bit quantization. In this paper, we theoretically analyze

the effect of network quantization and show that the quantization loss in the final output layer is bounded by the layer-wise

activation reconstruction error. Based on this analysis, we propose an Optimization-based Post-training Quantization framework

and a novel Bit-split optimization approach to achieve minimal accuracy degradation. The proposed framework is validated on a

variety of computer vision tasks, including image classification, object detection, instance segmentation, with various network

architectures. Specifically, we achieve near-original model performance even when quantizing FP32 models to 3-bit without fine-

tuning.

Index Terms—Deep neural networks, compression, quantization, post-training quantization

Ç

1 INTRODUCTION

DEEP neural networks (DNNs) have been demonstrated
to be effective in a wide range of computer vision tasks,

including image recognition [1], [2], [3], [4], object detection
[5], [6], [7], segmentation [8], [9], and so on. At the same
time, the high complexities, including the huge storage and
computational requirements, as well as the power con-
sumption, have hindered the deployment of deep networks
to real-world applications. Under this circumstance, net-
work compression and acceleration [10], [11], [12], [13], [14]
have drawn much attention of researchers. Among these
compression techniques, network quantization is widely
used no matter on special hardware like TPU or general
hardware like CPU and GPU. By turning the floating-point
values within the networks to low-bit integers, the complex
floating-point operations can be replaced by more efficient
integer operations.

Despite its efficiency, the training of low-bit neural networks
is nontrivial. In [15], the authors proposed two basic network
quantization paradigms, i.e., quantization-aware training and
post-training quantization. Most of the current quantization
approaches belong to the former, where low-bit networks are
trained with quantization operations inserted. Quantization-
aware training can achieve higher accuracy because the learned
weights could be adjusted during training to fit the quantization
operations. On the other hand, quantization-aware training has
several drawbacks. It relies on the full training data and large
computing resources like GPUs. Moreover, the tedious and
time-consuming retraining procedure has posed high require-
ments indomainknowledge andexperience for theusers,which
is hindering the broader application of quantization techniques.

By contrast, post-training quantization has many desirable
properties. It does not need the training dataset, except for a very
small amount of data for calibration, thus no privacy or data

transmission problems will be caused. Moreover, post-training

quantization is network architecture free, back-propagation free,
and does not require domain knowledge or any optimization

tricks. It is for these reasons that post-training quantization is

supported and preferable to accelerate DNN inference by many
libraries and devices, such as the TensorRT [16] on GPU, TF-Lite

[15] onTPU, and the SNPEonQualcommdevices.
Despite the advantages of post-training quantization, it has

the problem of significant accuracy degradation. Thus for cur-
rent post-training quantization in TensorRT [16] and TF-Lite
[15] as well as the SNPE, only 8-bit quantization is supported.
However, for hardware accelerators, every bit saving could
result in significant resource reduction, including storage, com-
puting units, as well as energy consumption [17]. To this end,
ZeroQ [18] utilizes knowledge distillation andmixed-precision
quantization, i.e., allowing different channels and filters to be
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quantized into different bit-widths using separate quantization
scales. Besides the per-channel activation quantization and
mixed-precision quantization, ACIQ [19] also exploits run-
time dynamic quantization, which means the quantization
parameters (such as the clipping value or quantization scales)
are determined at inference time. These techniques substan-
tially improve the quantization performance, however, at the
cost of remarkable complexity for inference architecture
design. Thus naive post-training quantization with high accu-
racy still remains an open challenge.

In this paper, we argue that current post-training quanti-
zation approaches suffer from three main drawbacks. First,
current post-training quantization methods commonly min-
imize the local quantization error for each weight or activa-
tion tensor, without considering the global quantization loss
in the final output layer. Second, for the minimization of the
local quantization error mentioned above, only the step
sizes (i.e., the quantization scales) or equivalently, the clip
values, are optimized. While the quantized weights are only
adjusted passively with rounding operations caused by the
change of the step sizes. Third, the weight quantization and
activation quantization are conducted independently.

To solve the above drawbacks, we first theoretically analyze
the effect of network quantization and show that the quantiza-
tion loss in the final output layer is bounded by the layer-wise
activation reconstruction error. Then based on this analysis, we
propose an Optimization-based Post-training Quantization
framework and a novel Bit-split optimization approach to
simultaneously optimize the quantization scales as well as the
low-bit weights, to achieve minimal accuracy degradation.
Besides, by utilizing a re-scaling trick between the activations
and weights, we propose the Error Compensated Activation
Quantizationmethod, which can benefit fromper-channel acti-
vation quantization, but still has the same efficiency as per-
layer quantization without any extra computations or the need
of complicated convolution. The overall framework is effective,
hyper-parameter free, and can be readily implemented and
integrated into current network quantization libraries.

We comprehensively evaluate the proposed framework on
various computer vision tasks, including image classification,
object detection, instance segmentation, with various network
architectures. Specifically, we achieve near-original model per-
formance even when quantizing FP32 models to 3-bit without
fine-tuning, setting new state-of-the-art post-training quantiza-
tion results. We also implement a low-bit network accelerator
on Field-ProgrammableGateArray (FPGA) to show the advan-
tages of low-bit post-training quantization. This paper is an
extension of our preliminary conference paper [20]. The main
contributions are summarized as follows:

� Optimization-based Post-training Quantization frame-
work and Bit-split optimization approach are pro-
posed to simultaneously optimize the quantization
scales and the low-bitweights.

� A novel Error Compensated Activation Quantization
(ECAQ) method is proposed, which could lower the
quantization error for activations.

� We comprehensively investigate the effect of the cali-
bration set on the performance of post-training quan-
tization, which is widely ignored by previous post-
training quantization works.

2 PRELIMINARIES

A typical convolutional neural network consists of multiple
convolutional and fully connected layers, both of which can
be implemented as matrix multiplications as follows:

Y ¼WTX; (1)

where W represents the learnable parameter tensor of
convolutional or fully connected layers, X and Y stand
for the input and output activation tensors. Note that
throughout this paper, we refer to the weights (activa-
tions) corresponding to one specific layer as the weight
(activation) tensor.

2.1 Network Quantization

The matrix multiplications denoted by Eq. (1) are time-con-
suming. The purpose of network quantization is to map the
floating-point values of W and X into a finite set with dis-
crete elements, which can be encoded by low-bit numbers.
Network quantization has been widely studied, in which
many design choices should be considered from different
viewpoints.

Uniform Quantization versus Non-Uniform Quantization. In
non-uniform quantization, there are no restrictions for the
discrete values within the finite quantization set. While in
uniform quantization, the floating-point real numbers are
linearly quantized into low-bit integers, with the same step
value between two successive quantization integers. There-
fore, uniform quantization can turn the floating-point oper-
ations into integer operations, which are more efficient than
lookup tables used in non-uniform quantization. A special
case of non-uniform quantization, i.e., the logarithmic quan-
tization, is also efficient by turning multiplications into bit
shift operations.

Per-Layer Quantization versus Per-Channel Quantization.
Quantization can be conducted with varying quantization
granularity. In [15], the authors propose per-layer quantiza-
tion and per-channel quantization. Per-layer quantization
adopts a single quantizer (a quantization set) for an entire
tensor W or X of one layer. By contrast, per-channel quanti-
zation utilizes a separate quantizer for each channel (for
activation quantization) or each kernel (for weight quantiza-
tion). However, per-channel quantization for activations
could complicate the convolution operations.

Unified Quantization versus Mixed-Precision Quantization.
In unified quantization, we usually specify the bit-width for
each layer or even for the whole network. There are many
works that explore mixed-precision quantization, where
each channel or kernel can be quantized with different bit-
widths. Mixed-precision quantization can lower the accu-
racy loss caused by quantization, however, at the cost of a
more complicated quantization process as well as a more
complicated computing architecture at inference time.

2.2 Problems of Current Post-Training Quantization

Low-bit network quantization turns all the weights and acti-
vations into integers, which can introduce much noise,
resulting in dramatic accuracy loss compared with full-pre-
cision models. Especially for post-training quantization
where fine-tuning is not allowed.
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Because no fine-tuning is allowed, most post-training
approaches aim at finding a better criterion to independently
minimize the ‘distance’ between each of the pretrained
weight tensor W (or activation tensor X) and the quantized
one. For example, TF-Lite [15] utilizes the maximum and
minimum values of a pretrained model to determine the
quantization scales. TensorRT [16] tries to minimize the KL
divergence between the quantized distribution and the orig-
inal distribution to determine the quantization parameters.
[21] uses Mean Squared Error (MSE) minimization to find
the optimal quantization scales. These straightforward crite-
ria minimize local quantization error for each weight tensor
or activation tensor, without considering the global quanti-
zation loss in the final output layer.

Besides the suboptimal distance minimization criteria,
the discrete optimization problem is another obstacle. In
network quantization, the quantized parameters and activa-
tions to be optimized are fixed-point integers, which are
hard to solve due to the discrete nature. Instead, current
post-training quantization approaches only optimize the
step sizes (i.e., the quantization scales) or equivalently, the
clip values, while the quantized weights are not optimized,
and are only adjusted passively with rounding operations
caused by the change of the step sizes.

Another problem of current post-training approaches is
that they treat weight quantization and activation quantiza-
tion independently. However, input activation quantization
is obviously correlated with the weight quantization of the
current layer. Due to these reasons, the current post-training
quantization approaches work well for 8-bit quantization.
However, the quantization error of these simple criteria
could be catastrophic for lower-bit quantization.

In this paper, instead of seeking an approximate crite-
rion, we treat the network quantization as an optimization
problem, which can be efficiently solved by the proposed
methods.

2.3 Related Work

Deep neural networks (DNNs) are believed to be over-
parameterized. Many compression approaches are pro-
posed to remove the redundancy within DNN models.
Among them, network quantization has become a hot topic
in the DNN compression field.

2.3.1 Network Quantization

Quantization is a widely used technique for image and
video compression. Researchers also use the quantization
technique for deep neural network compression. Hashed-
Nets framework is proposed in [22] to group weights into
hash buckets, and all connections within the same bucket
share the same value. Gong et al. [23] first explore product
quantization for the weights of the fully connected layers.
After that, product quantization is used for Convolutional
Neural Network (CNN) compression in [12], [24]. More-
over, instead of directly quantizing the weights, [12], [24]
propose to minimize the layer-wise activation reconstruc-
tion error to learn the quantized weights. Activation recon-
struction is more accurate than weight reconstruction
because in network quantization we are interested in pre-
serving the output of the layer but not its weights [24].

However, the relationship between the layer-wise recon-
struction error and the final quantization loss is still not
clear. In this paper, we show that activation reconstruction
can also be used in fixed-point quantization. Moreover, we
show that the quantization loss in the final output layer is
bounded by layer-wise activation reconstruction error.
Based on this, we formulate the fixed-point quantization
problem as an activation reconstruction problem and pro-
pose a Bit-split framework for efficient optimization.

2.3.2 Fixed-Point Quantization

A widely used network quantization technique is low-preci-
sion fixed-point quantization, which can be roughly catego-
rized into two classes: the value approximation and the
structure approximation [25]. The value approximation
assumes the network architecture is fixed, and the weights
and/or activations are quantized into low-bit format. Gupta
et al. [26] show that deep networks can be trained using only
16-bit number representation. Lin et al. [27] extend fixed-
point quantization to 16, 8, and 4-bit. In [28], BinaryConnect
is proposed to turn weights into -1 or +1, resulting in 32�
compression. Further, Binarized Neural Network (BNN) [29]
is proposed to turn all weights and activations into -1 or +1.
In this way, the multiplication can be replaced by bit-wise
operations. After that, many binary approaches are proposed
[30], [31], [32], [33], however, there is still large accuracy deg-
radation on large-scale datasets. Multi-step quantization is
proposed in [34], [35] to gradually quantize the whole net-
work. The above quantization methods commonly utilize
hand-selected and fixed quantization steps. In [36], [37], [38],
[39], the quantization step is automatically learned, resulting
in much higher accuracy than the fixed quantization step.
Besides integer fixed-point quantization, low-precision loga-
rithmic quantization is also studied in [40], [41], [42].

The structure approximation [25] allows the network
architecture after quantization to be changed. In [25], the
authors propose layer-wise binary decomposition and
group-wise binary decomposition. Fixed-point factorization
[43], [44] approaches are also proposed to decompose one
layer into multiple binary or ternary layers. The Multi-Bit
Network (MBN) [45], [46], [47], [48] can be viewed as a spe-
cial case of structure approximation. In MBN, each floating-
point value of the floating-point model is represented by
multiple binary bits. The proposed Bit-split method belongs
to the value approximation. The final quantized model has
the same network architecture as the floating-point counter-
part, only the weights and/or activations are changed from
floating-point into low-bit format. Thus Bit-split belongs to
value approximation. On the other hand, Bit-split shares
some properties of the structure approximation (the Multi-
Bit Networks). In Bit-split, the original floating-point weights
are approximated by multiple ternary bits. After optimiza-
tion, these ternary bits are combined into low-bit values.

2.3.3 Data-Free Quantization

Low-bit quantization of a pre-trained model generally leads
to significant accuracy degradation. To solve this problem,
fine-tuning on the original training data is usually needed.
However, the training data may not be available. Thus net-
work quantization without training data has been studied.
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The authors of [39] propose quantization-interval-learning
(QIL) method, and find that QIL can be used on a heteroge-
neous dataset. Similarly, deep transferring quantization
(DTQ) is proposed in [49], which explores knowledge distil-
lation on source dataset to construct low-bit networks for
target dataset. ZeroQ proposed in [18] tries to optimize a
distilled dataset, which is used later for network quantiza-
tion. Xu et al. [50] explores the generative adversarial net-
works (GANs) to generator fake images that are used for
quantization. Zhang et al. [51] aim at diversifying sample
generation to improve the quantization using these gener-
ated images. These approaches avoid the access of the origi-
nal training dataset during the quantization stage, however,
the time- and resource-consuming fine-tuning using back-
propagation on large-scale dataset (heterogeneous or gener-
ated dataset) is still of necessity.

2.3.4 Post-Training Quantization

Post-training quantization (PTQ), which is first proposed in
[15], has recently drawn much attention. PTQ can be viewed
as a special case of data-free quantization. It only needs a
very small amount of data for calibration. In addition, PTQ is
also back-propagation free, avoiding the time- and resource-
consuming fine-tuning process. [19] proposes a run-time ana-
lytical clipping approach for integer quantization, which is
further improved by per-channel bit allocation. The authors
of [52] study post-training quantization from the viewpoint
of loss landscape. Mixed-precision post-training quantization
is also studied in [18]. Data-free quantization forMobileNet is
studied in [53]. In [54], the authors propose a post-training
piecewise linear quantization (PWLQ) method to divide the
floating-point values into non-overlapping regions, each of
which is quantized using a linear quantizer. The PWLQ [54]
can also be combined with other post-training quantization
methods for higher accuracy.

2.3.5 Second-Order Based Compression

Network compression techniques by making use of the sec-
ond-order Tayler-series approximation are also explored.
LeCun et al. [55] and Hassibi et al. [56] propose network prun-
ing using second-order derivatives. Recently, Peng et al. [57]
extend similar ideas to channel pruning. Second-order infor-
mation is also used for network quantization. The HAWQ
methodproposed in [58] allowsmixed-precision quantization
based on the Hessian information. HAWQuses the top eigen-
value of the Hessian matrix as a sensitivity metric to deter-
mine the mixed-precision bit setting. Later, in [59], [60], the
authors consider the full Hessian spectrum, specifically, the
trace of the Hessian matrix, to determine the bit setting for
mixed-precision quantization. However, in theHAWQ series,
the Hessian information is only used for relative sensitivity
analysis of different layers. After obtaining the bit setting, cri-
teria-based quantization methods are used to conduct the
quantization, without using anyHessian information. By con-
trast, in our approach, we directly optimize the quantized
weights based on the second-order information.

In this paper, we aim at the simplest post-training quanti-
zation scheme, i.e., we explore uniform quantization with
unified bit-width for all layers.Moreover,we use per-channel

weight quantization and per-layer activation quantization,
which allows for efficient convolution implementation.

3 METHOD

In this section, we introduce the proposed framework in
detail. First, Section 3.1 gives the notations and formulation
of the network quantization problem. Then in Section 3.2,
we theoretically analyze the effect of network quantization
and show that the quantization error in the final output
layer is bounded by the layer-wise activation reconstruction
error. Next, based on the theoretical analysis, we propose a
Bit-split method for uniform weight quantization in Sec-
tion 3.3.1 and a general iterative optimization for logarith-
mic weight quantization in Section 3.3.2. Last, an efficient
Error Compensated Activation Quantization method is
introduced in Section 3.4.

3.1 Problem Formulation

Given a deep neural network f with L layers and a pre-
trained model with parameters fWlgLl¼1, whereWl 2 Rdl�1�dl
is the parameter tensor of the lth layer. Here, dl represents
the number of input neurons of the lth layer. Given the
training set X0 � fx1; . . . ;xNg 2 Rd0�N , where xn is the nth
input sample, and N is the number of all training samples.
We denote the input and the linear output of the lth layer of
all training samples as Xl�1 � fxl�1

1 ; . . . ;xl�1
N g 2 Rdl�1�N and

Y l � fyl1; . . . ; ylNg 2 Rdl�N , respectively. More specifically,
we have Y l ¼WT

l X
l�1, and Xl ¼ sðY lÞ with s being the

non-linear activation function, which is usually the Rectified
Linear Unit (ReLU).

For network quantization, we aim to find the low-bit
weight tensors fŴlgLl¼1 that can minimize the quantization
loss, which is defined as the Frobenius norm of the discrep-
ancy between the full-precision output tensor Y L and quan-

tized output tensor Ŷ L (Ŷ L ¼ fðfŴlg;X0Þ) over the whole
training data, as follows:

min
1

N
kfðfŴlg;X0Þ � Y Lk2F

s.t. Ŵlij 2 Ql; for l ¼ 1; . . . ; L; (2)

where Ql represents the quantization values for the lth
layer. Take b-bit uniform quantization as an example, Ql ¼
f�2ðb�1Þ; . . . ; 0; . . . ; 2ðb�1Þ � 1g � a, where a is the step size
between two consecutive quantization values.

3.2 Network Quantization Analysis

Per-channel weight quantization, which utilizes a separate
quantizer for each output channel (a neuron for a fully con-
nected layer), is more accurate and is widely used in net-
work quantization. We also use per-channel weight
quantization throughout this paper.

Let us consider the weight quantization of a single chan-
nel while keeping all the other parameters fixed. The quan-
tized parameters associated with the ith output channel of
the lth layer are denoted as ŵl

i. In this way, the quantization
error is defined as follows:

E ¼ Eðŵl
iÞ ¼

1

N

XN
n¼1
kfðŵl

i;xnÞ � yLnk22; (3)

2122 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 19,2023 at 11:42:42 UTC from IEEE Xplore.  Restrictions apply. 



where ŵl
i ¼ al

i � qli is the quantized weight vector, which is a
product of the integer weight vector qli and the floating-
point scale factor al

i. Like previous low-bit quantization
methods [61], [62], [63], we introduce a separate scale factor
al
i for each weight vector qli.
To minimize the quantization loss, we utilize the Taylor

series approximation to the loss function Eq. (3) following
[57], [64], [65] as below:

Eðŵl
iÞ ¼ Eðwl

iÞ þ
�

@E

@wl
i

�T

dwl
i þ

1

2
dwl

i

T
Hl

idw
l
i þOðkdwl

ik3Þ; (4Þ

where dwl
i represents a perturbation (i.e., the quantization

noise) of the weight, Hl
i ¼ @2E=@ðwl

iÞ2 is the Hessian matrix
with respect to the parameters wl

i, and Oðkdwl
ik3Þ is the third

and all higher order terms.
According to the definition of the loss function in Eq. (3),

it is easy to find that the first term of Eq. (4) equals to 0, i.e.,
Eðwl

iÞ ¼ 0. As a result, wl
i is a minimum of E, thus the deriv-

ative also equals to 0, i.e., @E=@wl
i ¼ 0. Moreover, following

[55], we assume that the loss function Eq. (3) is nearly qua-
dratic. Thus the third and all higher order terms can also be
ignored. Our goal is then to solve

argmin
ŵl
i

dwl
i

T
Hl

idw
l
i

s.t. dwl
i ¼ ŵl

i � wl
i: (5)

With the loss function defined in Eq. (3), the first order
derivatives of the loss function with respect to wl

i are

@E

@wl
i

¼ 1

N

XN
n¼1

@E

@ylni
� @y

l
ni

@wl
i

; (6)

where ylni is the output corresponding to the ith channel (or
neuron) of the lth layer for input sample xn. Additionally,
the second-order derivatives, i.e., the Hessian matrix of the
loss function with respect to wl

i is defined as

Hl
i ¼

@2E

@ðwl
iÞ2
¼ 1

N

XN
n¼1

@

@wl
i

@E

@ylni

" #
� @y

l
ni

@wl
i

¼ 1

N

XN
n¼1

@2E

@ðylniÞ
2
� @y

l
ni

@wl
i

� @y
l
ni

@wl
i

T

¼ 1

N

XN
n¼1

@2E

@ðylniÞ
2
� xl�1

n � xl�1
n

T
: (7)

By substituting Hl
i into Eq. (5), we obtain the approxi-

mate error caused by the weight quantization as follows:

Eðŵl
iÞ � dwl

i

T
Hl

idw
l
i

¼ dwl
i

T 1

N

XN
n¼1

@2E

@ðylniÞ
2
� xl�1

n � xl�1n

T

 !
dwl

i

¼ 1

N

XN
n¼1

@2E

@ðylniÞ
2
� ðdwl

i

T
xl�1
n Þ2

¼ 1

N

XN
n¼1

@2E

@ðylniÞ
2|fflfflffl{zfflfflffl}

weighting

�ðylni � xl�1
n

T
ŵl

iÞ2; (8)

which is a weighted average of the activation quantization
error with weight coefficient @2E

@ðylni Þ
2 . The weighted average

minimization problem is still hard to optimize because of the

second-order derivatives w.r.t. the output neuron ( @2E

@ðylni Þ
2),

which can only be obtained by back-propagation. To avoid

this, we relax the weighted average minimization problem

into an unweighted averageminimization, as follows:

Eðŵl
iÞ �

1

N

XN
n¼1

@2E

@ðylniÞ
2|fflfflffl{zfflfflffl}

weighting

�ðylni � xl�1
n

T
ŵl

iÞ2

� 1

N

XN
n¼1
ðylni � xl�1n

T
ŵl

iÞ2

¼ 1

N
kyl�i �XTŵl

ik22; (9)

where yl�i is the output vector of the ith neuron across all
training samples, i.e., the ith row of Y l. In Section 4.6.1, we
will discuss the effect of this relaxation.

The last row of Eq. (9), i.e., 1
N kyl�i �XTŵl

ik2F , is the layer-
wise activation reconstruction error of layer l. More specifi-
cally, Eq. (8) indicates that the quantization error in the final
output layer is bounded by the layer-wise activation recon-
struction error with a scale factor. Thus, instead of minimiz-
ing the final quantization loss defined by Eq. (3), we could
alternatively minimize the layer-wise activation reconstruc-
tion error as follows:

minimize
ŵ

ky�XTŵk22: (10)

Note that ŵ ¼ a � q, thus instead of optimizing ŵ, we can
optimize the quantization scale factor a and the integer
weight vector q

minimize
a;q

ky� aXTqk22;

s.t. qðiÞ 2 Q; (11)

where Q is the set of all allowed quantization values. Note
that in this representation as well as in the following sec-
tions, we discard all the indexes for simplicity.

Eq. (11) indicates that we simultaneously optimize the
quantization scale a as well as the low-bit weights q. We
want to emphasize that we pose no constraints on q other
than the low-bit constraint. More specifically, different from
previous post-training quantization approaches, where
large full-precision weights are quantized to large low-bit
values (i.e., if wðiÞ 	 wðjÞ, then qðiÞ 	 qðjÞ). In our objective,
each qðiÞ can be any values in the quantization set Q. Thus
we call the proposed framework Optimization-based Post-
training Quantization. We will give more analysis about
this property in Section 4.6. In Section 3.3, we will discuss
how to solve this optimization problem efficiently.

3.3 Optimization-Based Weight Quantization

In Section 3.2, we have demonstrated that the quantization
error minimization problem can be transformed into a
layer-wise activation reconstruction problem of Eq. (11),
which is non-trivial to optimize due to the low-bit con-
straints of q.
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In this section, we propose a novel Bit-split and Stitching
(Bit-split) method for Eq. (11) with uniform quantization
constraints, which is efficient to optimize. We also give a
simple iterative optimization method to deal with logarith-
mic quantization, which is also hardware-friendly and has
been widely used [41], [42], [66], [67], [68], [69].

3.3.1 Bit-Split and Stitching

In this section, we propose a novel Bit-split and Stitching
(Bit-split) method for efficient uniform quantization, which
utilizes a divide-and-conquer strategy to solve the M-bit
integer programming of Eq. (11). The motivation is to split
integers into multiple bits (divide), then optimize each bit
(conquer), and finally stitch all bits back to integers.

Initialization. Before optimization, we need to initialize a

and q in Eq. (11). We use the same strategy of the TF-Lite
method, i.e., the quantization scale is selected so that it can
map the maximum integer into the maximum floating-point
value of the weights. More specifically, for M�bit weight
quantization, we initialize a and q as follows:

q max ¼ 2M�1 � 1;

a ¼ maxðwÞ=q max;

q ¼ roundðw=aÞ

8><
>: (12)

After the initialization of a and q, we can use the pro-
posed bit-split procedure to update a and q.

Bit-Split. In the Bit-split stage, we split the M-bit con-
straint of q into (M � 1) ternary optimization problems as
follows:

minimize
a;fq1;...;qM�1g

k y� aXT ð20q1 þ � � � þ 2M�2qM�1Þ k2F ;

s:t: qm 2 f�1; 0;þ1gD for m ¼ 1; . . . ;M � 1; (13)

where D is the vector length of q, qm is themth bit of q (from
right to left), with the Mth bit (i.e., the left most bit) stands
for the sign. Note that all (M � 1) bits share the same scale
factor a. Moreover, each bit of the M-bit integer has its own
implicit base, i.e., themth bit has an implicit base of 2m�1.

The first step of Fig. 1 illustrates the bit-split operation,
which takes the 4-bit quantization for example. For 4-bit
integer representation, there are one bit for sign and 3 bits
that consist of 0 or 1. Thus, the 4-bit integer can be split into
3 ternary values (i.e., -1, 0, and 1, which takes the sign into
consideration), which can be optimized separately. We will
show how to optimize these split bits in the following Bit-
Optimization section.

Bit-Optimization.There are M elements that should be
optimized in Eq. (13), i.e., the scale factor a and M � 1 bits
qm form ¼ 1; . . . ;M � 1. We utilize an iterative optimization
procedure.

The Optimization of a. From Eq. (11), we can see that a is a
floating-point scalar, which can be easily solved given the
quantized value q as follows:

a ¼ yTXTq

qTXXTq
(14)

The Optimization of qm. To solve Eq. (13) given the scale
factor a and all otherM � 2 bits fixed, we can get the follow-
ing optimization problem:

minimize
qm

k ym � amX
Tqm k22;

s:t: qm 2 f�1; 0;þ1gD; (15)

where ym and am are independent of qm

ym ¼ y� a
P

i 6¼m 2m�1XTqi;

am ¼ a2m�2

(
: (16)

By expanding Eq. (15) and denoting A ¼ a2
mXXT and s ¼

�2amXym, we could minimize the following equation:

JðqmÞ ¼ yTmym � 2amy
T
mX

Tqm þ a2
mq

T
mXXTqm

¼ qTmAqm þ sT qm þ const: (17)

The quadratic optimization problem of Eq. (17) is hard to
solve. Here we utilize an iterative optimization procedure,
i.e., to optimize each element of qm with the rest elements
fixed. In this way, the kth element of qm is as follows:

qðkÞm ¼
�signðr�kÞ if jr�kj > Akk

0 otherwise

�
; (18)

where r�k ¼ sk þ 2
P

i6¼k Akiq
ðiÞ
m .

Through iterative optimization from Eqs. (14) to (18), we
can get an approximate solution to Eq. (11).

Bit-Stitching. Note that during the bit-split stage, all bits
corresponding to the same integer share the same sign, i.e.,
each integer after bit-split consists of 0/1’s or 0/ -1’s
(Fig. 1b). However, after bit-optimization, this property
does not hold any longer. In other words, an integer after
bit-optimization may consist of 0/1/-1’s (Fig. 1c), where no
unified sign bit can be extracted.

To stitch all bits after bit-optimization back into integers,
we find that we can simply add all bits together. More spe-
cifically, given the optimized bits q01; . . . ; q

0
M�1, the new inte-

ger values can be obtained through the following equation:

q0 ¼ 20q01 þ � � � þ 2M�2q0M�1: (19)

Note that during bit-stitching, each of the M � 1 bits also
has its own implicit base, i.e., the mth bit has an implicit
base of 2m�1. Figs. 1c to 1d illustrates the bit-stitching
procedure.

3.3.2 Logarithmic Optimization

In Section 3.3.1, we have shown how to conduct efficient
uniform quantization with Bit-split optimization frame-
work. Besides uniform quantization, logarithmic quantiza-
tion is another hardware-friendly and widely used
quantization method [41], [42], [66], [67], [68], [69]. In this
section, we propose a general iterative optimization proce-
dure to deal with the optimization of Eq. (11) with logarith-
mic quantization constraints. Specifically, by expanding
Eq. (11), we have

Jða; qÞ ¼ ky� aXTqk22
¼ yTy� 2ayTXTq þ a2qTXXTq (20)

By setting @J
@a
¼ 0, the optimal value of a is given by

a� ¼ yTXTq

qTXXTq
(21)
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Substituting a� in Eq. (20), we can get

q� ¼ argmax
q

ðyTXTqÞ2
qTXXTq

: (22)

Suppose q is D-dimensional, for M-bit logarithmic quan-
tization, the programming of Eq. (22) has 2DM feasible
points, thus it is impractical to get the optimal solution
using exhaustive search.

Instead of pursuing the optimal solution using exhaus-
tive search, we could obtain the approximate solution by
utilizing the Discrete Cyclic Coordinate Descent (DCC)
method [70]. More specifically, during each coordinate
descent step, we only update one element of q while keep-
ing all the other elements unchanged. In this way, we only
need to check D2M possibilities for each optimization
cycle.

However, the D2M iterative optimization is still time-
consuming for large bit-width. Thus, we need to control the
bit-width to be small. On the other hand, logarithmic quan-
tization has higher coding efficiency than uniform quantiza-
tion when bit-width is small. As will be shown in
Section 4.2.2, logarithmic quantization can notably outper-
form uniform quantization for 3-bit or 4-bit weight quanti-
zation. However, as the bit-width increases, the logarithmic
quantization can not make use of the increased representa-
tion capacity and achieves much lower accuracy than uni-
form quantization. Thus, we only utilize the general
iterative optimization for logarithmic quantization with
M 
 4. We will give more results in Section 4.2.2.

3.4 Error Compensated Activation Quantization

Once the weights are quantized, the quantized weights stay
fixed during inference time. However, it is not the case for
activations that are dynamically produced at inference time.
Thus we could not directly optimize the quantized activa-
tions. Therefore, we adopt Mean Squared Error (MSE) as
the criterion to minimize the ‘distance’ between the activa-
tions of the pretrained model and those after quantization.

Different from previous approaches, which utilize one
quantizer for a whole layer for activation quantization, the
proposed Error Compensated Activation Quantization
(ECAQ) method could benefit from per-channel quantiza-
tion, but still has the same efficiency as per-layer quantiza-
tion without any extra computations or the need for
complicated convolution.

3.4.1 Per-Channel Activation Quantization

In this section, we first show that the activation ranges vary
severely for different channels. For demonstration, we
extract the output of the first and the second convolutional
layers (after ReLU) of the VGG-16-BN model for 2400
images which are randomly selected from the training set.
We plot the range for each channel as shown in Fig. 3.

From Fig. 3, we can see that large differences are
observed in output channel ranges for pretrained models.
Due to the large differences between channel ranges, per-
layer activation quantization may suffer from large quanti-
zation error. Thus in this paper, we explore channel-wise
quantizer for activations. Specifically, each input channel is
approximated by the quantized channel, which is scaled by
a separate scale factor as follows:

X½c; :; :� � b½c�X̂½c; :; :�: (23)

Here, b can be optimized by the following formulation:

minimize
b;X̂

k X � bX̂ k2F : (24)

Fig. 2a shows the per-channel quantization scheme,
where different channels with different quantization scales
are denoted by different colors.

Per-channel quantization can significantly lower the
quantization error, however, at the cost of more compli-
cated convolution operations. We will show how to solve
this problem in the next section.

3.4.2 From Per-Channel to Per-Layer Quantization

As shown in the previous section, per-channel activation
quantization could complicate convolution operations. This
is because that the convolutions (CONV) are implemented
as matrix multiplications (MatMul), as shown in the bottom
row of Fig. 2. When each channel has a separate scale factor,
the large matrix multiplication is separated into multiple
small matrix multiplications, which could dramatically
reduce the computing efficiency.

In this section, we exploit the re-scaling of activations
and weights to facilitate simple convolution implementation
when per-channel activation quantization is utilized. Specif-
ically, we can move the scale factor of each input channel to
its corresponding 2D kernels of all filters

Fig. 1. An illustration of Bit-split and Stitching (Bit-split) optimization procedure for 4-bit weight quantization. (a) Initial low-bit weights before Bit-split
optimization. (b) In the bit-split stage, each 4-bit value is split into 3 ternary values. (c) The bit-optimization for the decomposed ternary vectors. (d)
The last stage to stitch optimized bits back into integers. Take the third value for example, 20 � 1þ 21 � ð�1Þ þ 22 � ð�1Þ ¼ �5 ¼ �101b.
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W �X �W � b � X̂
¼Wb � X̂; (25)

whereWb satisfies

Wb½:; c; :; :� ¼ b½c�W ½:; c; :; :�: (26)

The re-scaling operation does not affect the convolution
output. Note that at this stage, the weights are not quan-
tized yet, i.e., the weights are floating-point values. After re-
scaling, we can further quantize the weights Wb using the
Bit-split method according to Section 3.3.1 as follows:

minimize
ab;qb

k y� abX̂
T qb k22; (27)

where ab and qb represent the scale factor and quantized fil-
ter for the re-scaled weights Wb. Fig. 2b illustrates the con-
volution after re-scaling, which can also be efficiently
implemented by matrix multiplication.

From Eq. (27), we can see that we are actually learning a
mapping from the per-layer quantized activations X̂ to the tar-
get output Y by taking the activation quantization and scale
factors b into consideration. Thus we call the proposed

method Error Compensated Activation Quantization. We
summarize the overall optimization procedure of the pro-
posed approach in Algorithm 1.

Algorithm 1. Post-Training Quantization Using Error
Compensated Activation Quantization and Bit-Split and
Stitching Weight Quantization

Input: Pretrained model denoted by weights fWlgLl¼1, weight
bit-widthMw and activation bit-widthMa.

Output: Quantized weights fqlgLl¼1, quantization scale falgLl¼1
for weights and fblgLl¼2 for activations.

1: for l ¼ 1; l 
 L do
2: Sampling a mini-batch images
3: Forward propagation to getXl and Y l

4: if l > 1 then
5: Optimize activation quantization scale bl according to

Eq. (24)
6: Move bl from activations to weights to obtain Wl

b

according to Eq. (26)
7: else
8: Wl

b  Wl, X̂l  Xl

9: end if
10: q max ¼ 2Mw�1 � 1
11: al  maxðWl

bÞ=q max

12: ql  roundðWl
b=a

lÞ
13: Calculate ql1; . . . ; q

l
Mw�1 using Bit-split

14: while al not converge do
15: Optimize al according to Eq. (14)
16: form ¼ 1;m < Mw do
17: Optimize qlm according to Eq. (18)
18: end for
19: Calculate ql using Bit-Stitching
20: end while
21: end for

4 EXPERIMENTS

In this section, we evaluate the efficiency of the proposed
method. We first evaluate the Bit-split and Stitching method

Fig. 2. (a) Illustration of per-channel activation quantization. Each input channel is quantized using a separate scale factor denoted by a specific color.
(b) Illustration of transforming per-channel quantization into per-layer quantization by re-scaling. The scale factors of input activations are merged
into the corresponding 2D kernels of the following floating-point filters. The bottom row shows how to conduct convolution (CONV) using matrix multi-
plication (MatMul) operations. Note that at this stage, the weights are not quantized yet. After merge, the floating-point filters can be further quantized
into integers using the Optimization-based Weight Quantization proposed in Section 3.3, so that the convolutions can be conducted by integer-only
accumulations. Best viewed in color.

Fig. 3. The ranges of activations for each channel (after ReLU) of the first
and second convolutions of VGG-16-BN. It can be seen that the ranges
for different channels differ severely.
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forweight quantization. Then the performance of Error Com-
pensated Activation Quantization is evaluated. We also com-
pare ourmethodwith current post-trainingmethods.

4.1 Implementation Details

Like previous Post-training Quantization approaches, the
proposed Bit-split framework relies on a batch of calibration
images. For ImageNet experiments, if not specified, we ran-
domly select 1024 images from the ImageNet training set as
the calibration set. During the optimization procedure, for
each layer, we extract the input and output feature maps,
then we randomly sample 12000 data points (the feature
vector of each spatial position at the output feature maps is
treated as a data point) to form the X and Y for the optimi-
zation of Eq. (11). For all experiments, we quantize the first
and the last layer into 8-bit, which is the common setting in
network quantization [19], [29]. We report the Top-1 and
Top-5 accuracy for ImageNet classification. Pytorch deep
learning framework is utilized for all our experiments, and
all ImageNet pretrained models are from torchvision. We
use GPU for feature maps extraction, while use CPU for the
quantization optimization procedure. The Bit-split optimi-
zation for ResNet-18 can be accomplished within 15 minutes
on CPU, which is negligible compared with several GPU
days needed by Quantization-aware Training. All bit-width
representation throughout this paper includes the sign bit.
Codes are available on GitHub at https://github.com/
wps712/BitSplit.

4.2 Weight Quantization Results

In this section, we evaluate the post-training weights quan-
tization using the proposed approach. Both uniform quanti-
zation results using Bit-split optimization as well as the
logarithmic quantization results are reported.

4.2.1 Bit-Split and Stitching for Uniform Quantization

We evaluate uniform quantization with Bit-split and Stitch-
ing method. The Top-1 and Top-5 accuracy results of post-
training quantization are reported using four popular con-
volutional models pre-trained on the ImageNet dataset. We

use the PyTorch pretrained models for all experiments. The
results are shown in Table 1. We quantize the weights into
3�8 bit while keeping activations un-quantized. We also
report the TF-Lite [15] results as a baseline for comparison.

From Table 1, it is clear that the proposed Bit-split and
Stitching method has very small accuracy degradation for
post-training weight quantization without fine-tuning. Our
method consistently outperforms the TF-Lite method. The
accuracy gap becomes larger as the bit-width goes down.
We first compare the proposed method with full-precision
models as well as TF-Lite models for ResNets and VGG-16.
Using the proposed Bit-split and Stitching method, no obvi-
ous accuracy loss is observed for 4-bit quantization or
higher. We also want to highlight that for 3-bit quantization,
previous approaches like the TF-Lite fail to work, while in
our Bit-split and Stitching method, only 0.9%�1.7% Top-5
accuracy drop is observed for various networks. Then, for
the light-weight MobileNet-V2 architecture, both the pro-
posed method and TF-Lite have higher accuracy drop than
that on ResNets and VGG-16. However, the proposed
method still achieves promising results for various bit-
widths, outperforming the TF-Lite method by large mar-
gins. Specifically, for 5-bit and 4-bit weight quantization,
the proposed Bit-split method has 0.3% and 1.8% Top-5
accuracy drop, respectively. Even for 3-bit quantization, the
Bit-split method still achieves reasonable accuracy.

In Table 1, we also report the results when activations are
quantized into 8-bit for ResNet-18, denoted by Bit-split (A8).
We can see that 8-bit activation quantization has no loss
compared with floating-point activations. The differences in
results (less than 0.1%) may be caused by the randomness.

4.2.2 Logarithmic Quantization Results

In this section, we evaluate the proposed general optimiza-
tion for logarithmic weight quantization. We quantize the
weights into 3 � 8 bit to show how the accuracy will change
as the bit-width increases for logarithmic quantization. In
all experiments, ResNet-18 and ResNet-50 are utilized for
evaluation. The results compared with uniform quantiza-
tion are summarized in Fig. 4.

TABLE 1
Comparison Results of the Top-1 and Top-5 Accuracy (%) for UniformWeight Quantization With Various Bit-Widths

Model 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ResNet-18 (69.76, 89.08) TF-Lite [15] 69.63 88.96 69.67 89.02 69.06 88.72 66.81 87.39 55.53 79.21 0.85 2.68
Bit-split 69.79 89.15 69.84 89.15 69.83 89.12 69.70 88.93 69.11 88.69 66.76 87.45
Bit-split (A8) 69.82 89.15 69.82 89.05 69.80 89.12 69.64 88.98 69.10 88.69 66.75 87.46

ResNet-50 (76.15, 92.87) TF-Lite [15] 76.12 92.88 76.07 92.86 75.87 92.82 75.17 92.50 70.14 89.57 4.22 11.53
Bit-split 76.20 92.97 76.16 92.91 76.17 92.90 76.05 92.82 75.58 92.57 73.64 91.61

ResNet-101 (77.47, 93.56) TF-Lite [15] 77.32 93.57 77.28 93.51 77.06 93.47 76.25 93.05 72.67 90.87 9.19 20.05
Bit-split 77.55 93.59 77.44 93.59 77.51 93.60 77.55 93.59 76.89 93.31 74.98 92.42

VGG-16-BN (73.37, 91.50) TF-Lite [15] 73.36 91.51 73.34 91.48 73.12 91.36 72.37 90.86 66.36 87.26 1.16 4.49
Bit-split 73.43 91.61 73.37 91.52 73.22 91.53 73.37 91.50 72.97 91.35 72.11 90.77

MobileNetV2 (71.87, 90.28) TF-Lite [15] 71.62 90.28 70.24 89.46 65.11 86.02 59.31 82.03 13.42 30.85 0.18 0.81
Bit-split 71.94 90.27 71.86 90.26 71.77 90.14 70.91 89.96 68.41 88.47 54.49 78.68

Per-channel weight quantization and floating-point activations are utilized. For ResNet-18, the results with 8-bit per-layer activation quantization, denoted by
Bit-split (A8), are also given, demonstrating that 8-bit activation quantization has no accuracy loss compared with floating-point activations. Bold values indi-
cate the best results.
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Fig. 4 shows that logarithmic quantization can notably
outperform uniform quantization for 3-bit and 4-bit weight
quantization. Specifically, 3-bit logarithmic quantization
can achieve 68.18% and 74.69% Top-1 accuracy for ResNet-
18 and ResNet-50, outperforming uniform quantization by
1.42% and 1.04%, respectively. These results are promising
considering that only 8 values are allowed for all the
weights. To our knowledge, this is the first work that achieves
close-to-full-precision accuracy for 3-bit weight quantization
without fine-tuning. With 4-bit quantization, the accuracy
gaps between logarithmic and uniform quantization
become 0.34% and 0.21% for ResNet-18 and ResNet-50.
However, as have been discussed in Section 3.3.2, logarith-
mic quantization has much lower coding efficiency than
uniform quantization when bit-width increases further. It
can be verified from Fig. 4 that the accuracy of logarithmic
quantization stops growing as the bit-width becomes higher
than 4. Actually, the accuracy of 5-� 8-bit logarithmic quan-
tization is slightly lower than that of the 4-bit logarithmic
quantization. Besides the coding efficiency, the optimization
of logarithmic quantization is more time-consuming than
uniform quantization using Bit-split method. Take the 8-bit
quantization as an example, the optimization time is more
than 2 hours for logarithmic quantization compared with 14
minutes for uniform quantization. Thus, we only prefer to
use the general iterative optimization for logarithmic quan-
tization with bit-widthM 
 4.

4.3 Error Compensated Activation Quantization

In this section, we evaluate the proposed Error Compensated
Activation Quantization (ECAQ) approach thoroughly. We

compare per-layer activation quantization, per-channel acti-
vation quantization, and the proposed ECAQ. To be clear,
we summarize the main difference between these three acti-
vation quantization schemes bellow:

� Per-layer: Per-layer quantization adopts a single
quantization scale for the entire input tensor X. The
convolution can be transformed into one large
matrix multiplication by unrolling (a.k.a. im2col)
[71].

� Per-channel: Per-channel quantization utilizes a sepa-
rate quantization scale for each input channel Xi.
The convolution is transformed into the sum of Cin

(the number of input channels) small matrix multi-
plications, which is less efficient than per-layer
quantization.

� ECAQ: Each input channel has a separate quantiza-
tion scale, however, these channel-wise quantization
scales are merged into weights of the following con-
volution. Thus the convolution can also be trans-
formed into one large matrix multiplication.

ResNet-18 network is adopted for demonstration. We
quantize activations into 3�8 bit and weights to 8-bit using
Bit-split. The results are shown in Table 3.

Table 3 shows that per-channel activation quantization
indeed generally outperforms per-layer quantization under
various bit-width settings. However, as shown in Section 3.4,
per-channel activation quantization can complicate convo-
lution implementation. By contrast, both the proposed
ECAQ method and direct per-layer quantization utilize a
single quantizer for a whole layer, which is efficient at infer-
ence time. For higher bit quantization, the ECAQ method
achieves similar results (less than 0.1% differences) as direct
per-layer quantization. However, for bit-width less than 5
bit, the proposed ECAQ consistently outperforms per-layer
quantization. Especially, for 4-bit and 3-bit quantization,
ECAQ outperforms direct per-layer quantization by 0.45%
and 1.44%, respectively, with a single scale for a whole
layer.

To further demonstrate the effectiveness of the proposed
framework thoroughly, we give the results of Error Com-
pensated Activation Quantization coupled with Bit-split
and Stitching weight quantization for various bit-widths on
different networks. The results are shown in Table 2. Like

Fig. 4. The accuracy comparison between uniform weight quantization
and logarithmic weight quantization with various bit-widths.

TABLE 2
Comparison Results of Top-1 and Top-5 Accuracy (%) for UniformQuantization ofBothWeights and ActivationsWith Various Bit-Widths

Model 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ResNet-18 (69.76, 89.08) TF-Lite [15] 69.57 89.02 69.46 88.87 67.95 88.02 61.47 83.43 18.84 36.33 0.13 0.61
Bit-split 69.74 89.09 69.68 89.07 69.58 88.96 69.28 88.77 67.56 87.76 61.30 83.47

ResNet-50 (76.15, 92.87) TF-Lite [15] 76.05 92.93 75.75 92.70 73.83 91.66 65.46 86.34 10.40 22.36 0.11 0.54
Bit-split 75.96 92.83 76.09 92.84 75.90 92.75 75.38 92.59 73.71 91.62 66.22 87.18

ResNet-101 (77.47, 93.56) TF-Lite [15] 76.78 93.31 74.07 91.79 31.78 55.96 0.82 2.65 0.25 0.98 0.09 0.54
Bit-split 77.23 93.55 77.20 93.47 76.93 93.42 76.07 92.95 74.68 92.18 63.96 85.65

VGG-16-BN (73.37, 91.50) TF-Lite [15] 73.31 91.53 72.94 91.25 70.65 89.77 54.45 78.18 3.41 10.17 0.18 0.78
Bit-split 73.43 91.54 73.43 91.55 73.34 91.45 72.89 91.22 71.14 90.29 66.11 86.92

MobileNetV2 (71.87, 90.28) TF-Lite [15] 71.15 90.07 68.54 88.51 51.72 75.40 10.95 25.52 0.19 0.93 0.10 0.52
Bit-split 71.73 90.22 71.36 90.03 70.16 89.31 65.94 86.93 49.23 74.21 9.59 23.76

We use per-channel scale factors for the weights and per-layer scale factors for the activations. Bold values indicate the best results.
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previous settings, the Top-1 and Top-5 accuracy results for
four popular convolutional models are reported. We quan-
tize both weights and activations simultaneously into 3�8
bit. We also use TF-Lite as a baseline for comparison.

Table 2 shows that when both activations and weights
are quantized using the same bit-width, the proposed
framework still dramatically outperforms TF-Lite by large
margins. For ResNet-18, ResNet-50 and VGG-16-BN, TF-
Lite fails at 4-bit quantization. By contrast, the proposed
method has less than 1.3% Top-5 accuracy degradation for
these three networks at 4-bit quantization for both weights
and activations. Note that even when both weights and acti-
vations are quantized to 3-bit, only 5 points accuracy loss is
observed, which is encouraging considering the very lim-
ited representation space and no fine-tuning is used. For the
very deep ResNet-101, the baseline approach fails at 4-bit,
while our approach still works at 3-bit quantization. For the
light-weight MobileNet-V2, Bit-split achieves small (less
than 1%) Top-5 accuracy drop with 6-bit weights and
activations.

In summary, the results in Table 2 show that the proposed
framework, i.e., Error CompensatedActivationQuantization
coupled with Bit-split and Stitching weight quantization, is
powerful for post-training uniform quantization. We will
compare the proposed frameworkwith previousworks thor-
oughly in the following section.

4.4 Comparison With the State-of-the-Arts

In this section, we evaluate the proposed framework with
existing post-training quantization approaches. The results
are shown in Table 4, which are summarized under differ-
ent bit-widths: A8W4 represents 8-bit activations and 4-bit
weights, and A4W4 (A6W6) indicates both weights and acti-
vations are quantized into 4-bit (6-bit). For a comprehensive
comparison, we also report whether per-layer or per-chan-
nel activation quantization, and unified-precision or mixed-
precision quantization schemes are utilized.

Table 4 shows that the proposed bit-split framework
dramatically outperforms previous results when per-layer
activation quantization and unified precision quantization
schemes are utilized. With 4-bit weight quantization, our
bit-split framework even outperforms the current state-of-
the-art method ACIQ-Mix, which utilizes per-channel
quantization, mixed-precision, and dynamic quantization.
When we utilize per-channel quantization for the pro-
posed bit-split framework, the accuracy can further be
improved, setting new state-of-the-arts for post-training
quantization.

4.5 Object Detection and Instance Segmentation

To show the generalization ability of the proposed frame-
work, we conduct experiments on object detection and
instance segmentation. MS COCO dataset is used for

TABLE 4
Comparison of Different Post-Training Quantization Approaches on ImageNet Classification Benchmark

Model Per-layer Unified-precision ResNet-18 ResNet-50 ResNet-101 VGG-16-BN

Full-precision - - 69.8 76.2 77.5 73.4

A8W4 TF-Lite [15] √ √ 55.5 70.1 72.6 66.4
ACIQ [19] � √ 67.4 74.8 76.3 71.7
ACIQ-Mix [19] � � 68.3 75.3 76.9 72.4
Bit-split √ √ 69.1 75.6 76.9 73.0

A6W6 TF-lite [15] √ √ 63.8 - - -
TF-lite-per-channel � √ 67.5 - - -
DFQ[52] √ √ 66.3 - - -
Bit-split √ √ 69.6 76.2 77.5 73.2

A4W4 TF-Lite [15] √ √ 18.8 10.4 0.3 3.4
DFC [71] √ √ 55.5 - - -
TensorRT [16] √ √ 31.9 46.2 49.9 -
LAPQ [51] √ √ 59.8 70.0 59.2 -
ACIQ-Mix [19] � � 67.0 73.8 75.0 71.8
Bit-split √ √ 67.6 73.7 74.7 71.1
Bit-split-per-channel � √ 68.1 74.2 75.3 71.8

Top-1 accuracy (%) is reported. We also indicate whether per-layer or per-channel activation quantization, and unified-precision or mixed-precision quantization
schemes are utilized. Weights are quantized using per-channel scale factors. Bold values indicate the best results.

TABLE 3
Comparison Results of the Top-1 Accuracy (%) for Post-Training Activation Quantization of ResNet-18

Act. Quant. Type FP32 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit

Per-layer 69.76 69.82 69.78 69.79 69.37 68.31 64.77
Per-channel 69.76 69.79 69.86 69.79 69.63 68.83 65.91
ECAQ 69.76 69.74 69.75 69.70 69.52 68.76 66.21

Weights are quantized to 8-bit using Bit-split with per-channel quantization scales. The boldfaced and underlined values stand for the best and second best results
for each setting.
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evaluation. We use mmdetection1 toolbox for the experi-
ments. The pre-trained models are trained on 80k training
images and 35k of validation images (trainval35k). The
accuracy is evaluated on the remaining 5k validation images
(minival). Input images are resized to 800 pixels in the
shorter edge.

We evaluate the bit-split framework using single-stage
object detection of RetinaNet [73], as well as the object
detection and instance segmentation using two-stage Mask
R-CNN [74]. Both networks using ResNet-50 as a backbone.
We quantize all layers into 4bit except the first layer and the
final output layers which are quantized to 8bit. Activations
are quantized into 8bit. The results are shown in Table 5.
We also report the post-training quantization results of
ACIQ for comparison. We can see that there are about
0.8%�1.2% mAP degradation with 8bit activations and 4bit
weights without fine-tuning, which demonstrates the gener-
alization ability of the proposed framework. The proposed
Bit-split method outperforms ACIQ by 0.2%�0.4% mAP on
both networks and tasks.

4.6 Optimization-Based Quantization Analysis

In this section, we analyze the Hessian approximation and
the quantization effect of the Bit-split method.

4.6.1 Hessian Approximation Analysis

In the Hessian matrix approximation of Eq. (9), we relax the
weighted quantization error minimization problem into an
unweighted minimization problem. However, is it good
enough to relax the weighted error minimization into
unweighted error minimization? The answer to this ques-
tion is not apparent. Actually, our target is to minimize the
quadratic form of the Hessian matrix H and the weight per-
turbation dw, i.e., the dwTHdw. But instead, we choose to
minimize the activation reconstruction error of Eq. (9).
Thus, we need to check the correlation between the Hessian
error term and the activation reconstruction error.

To this end, we calculate the hessian error term and the
corresponding activation reconstruction error by randomly
selecting 200 perturbations, for a convolutional kernel in
ResNet-18. The results are shown in Fig. 5. It can be seen

that these two error terms have a high correlation. Thus we
could use the activation reconstruction error minimization
as a delegate task for the minimization of the Hessian error
term.

4.6.2 Quantization Result Analysis

One key property of the proposed Optimization-based Post-
training Quantization framework is that we simultaneously
optimize the quantization scale a as well as the low-bit
weights q, which can be seen from Eq. (11). More specifi-
cally, previous post-training quantization methods mainly
optimize the quantization scale a, while all low-bit weights
are obtained by rounding operations. This quantization
strategy implies that large full-precision weights are quan-
tized to large low-bit values (i.e., if wðiÞ 	 wðjÞ, then
qðiÞ 	 qðjÞ). However, in the proposed Optimization-based
Post-training Quantization framework, each qðiÞ can be opti-
mized into any values in quantization set Q. In this section,
we compare the quantization effect of the proposed frame-
work with MSE based quantization method [21]. The results
are illustrated in Fig. 6.

Fig. 6a shows how many weights have changed their val-
ues after Bit-split optimization, compared with MSE based
post-training quantization method [21]. Overall, 15.45%
weights have changed their values. The distributions of the
absolute value change among these weights are illustrated
in Fig. 6b. The majority of the weights (93.4%) have changed
their values by 1. There are about 5.6% weights that have
changed by 2. The rest changes occupy about 1%. As for the
quantization scale change, we extract the first 50 quantiza-
tion scales of the 16th convolutional layer, which are illus-
trated in Fig. 6c. We can see that after optimization, the
quantization scales become a bit larger. Note that we find
this phenomenon for all layers, not just for the 16th layer.
The large quantization scale indicates that the learned quan-
tizer after optimization pays more attention to the weights
with large values.

4.7 Calibration Set Analysis

In post-training quantization, commonly a small number of
calibration images are required. In this section, we explore

TABLE 5
Object Detection (Bounding Box AP) and Instance

Segmentation (Mask AP) Results on COCO Minival Set

Model AP0:5:0:95 AP0:5 AP0:75

RetinaNet (Box) Full-precision 35.6 55.5 38.3
ACIQ (A8W4) 34.0 54.3 36.3
Bit-split (A8W4) 34.4 54.2 36.5

Mask R-CNN (Box) Full-precision 37.3 59.0 40.2
ACIQ (A8W4) 36.0 57.4 38.8
Bit-split (A8W4) 36.2 57.5 39.3

Mask R-CNN (Mask) Full-precision 34.2 55.9 36.2
ACIQ (A8W4) 33.0 53.8 35.1
Bit-split (A8W4) 33.4 54.4 35.4

We use per-channel scale factors for the weights and per-layer scale factors for
the activations.

Fig. 5. The correlation between the Hessian error term and the activation
reconstruction error for a convolutional kernel of ResNet-18.

1. https://github.com/open-mmlab/mmdetection
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the effect of the data source and the size of different calibra-
tion set on the performance of post-training quantization,
which are widely ignored by previous post-training quanti-
zation works.

4.7.1 Calibration Data Source

The proposed Bit-split method needs some calibration
images for quantization parameters optimization. We
want to point out that these calibration images are not
necessarily from the training data. Theoretically, any
images can serve as the calibration set, however, different
calibration sets can affect the performance of post-training
quantization.

In this section, we evaluate the performance of post-
training quantization with various calibration data sources.
We use ResNet-18 and the proposed Bit-split framework
with 8-bit activations and 4-bit uniform weights (A8W4) for
evaluation. TF-Lite and TensorRT results are also given for
comparison. The calibration sets for different application
scenarios are listed as follows:

� ImageNet-Train: A small number of training images
without annotations are available. Thuswe use Image-
Net training dataset for post-training quantization.

� ImageNet-Test: The training dataset is confidential,
however, a small number of images that come from
similar distribution as the training set are available.
For this case, we use images sampled from the test
set of ImageNet for simulation.

� DeepInversion: Due to privacy concerns, no real
images are available. However, the model provider
can provide some synthesized images. We use the
images synthesized by DeepInversion [75] as the cal-
ibration set.

� COCO-2017/VOC-2012: Suppose no training images
or synthesized images are available. Images of public
datasets, which come from different distributions,

can be used as the calibration set. We use COCO-
2017 and VOC-2012 datasets for evaluation, which
have some similarities with the ImageNet dataset.

� CIFAR-10: No training images or synthesized images
are available. CIFAR-10 dataset is used for evalua-
tion, which is very dissimilar to the ImageNet
dataset.

� Gaussian-Noise: As a baseline, we also report results
using random images drawn from Gaussian distri-
bution for calibration.

The results with different calibration sets are summa-
rized in Table 6. It is easy to find that the calibration sets
would affect the performance of the Bit-split method.
Table 6 also gives the results of TF-Lite and TensorRT.
Different from Bit-split, TF-Lite and TensorRT are more
robust to different calibration sets. This is because that
the weight quantization of TF-Lite and TensorRT does
not rely on the calibration images. Moreover, the Bit-split
method consistently outperforms TF-Lite and TensorRT
by large except for Gaussian-Noise, which we will discuss
later.

For Bit-split, using the same training images (ImageNet-
Train) as the pretrained model obtains the highest accuracy.
Moreover, images from ImageNet-Test can be viewed as
sampled from the same distribution of the training images
of the pretrained model, thus ImageNet-Test results are
almost the same as ImageNet-Train.

Surprisingly, the Bit-split method can still achieve high
accuracy even without any real images. By using the synthe-
sized images from DeepInversion, about 0.62% Top-5 accu-
racy degradation is observed compared with that using real
training images. These results show that though the synthe-
sized images are visually quite different from training
images, they can still be used as the calibration set for net-
work quantization. One drawback of DeepInversion is that
the generating of the synthesized images requires the whole
training dataset as well as the time-consuming Stochastic
Gradient Descent (SGD) procedure.

Another finding from Table 6 is that the accuracy of
using public datasets for calibration can be very different. It
depends on the similarity between the calibration dataset
and the training dataset of the pretrained models. Specifi-
cally, when the public calibration dataset is similar to the
training set, the accuracy could be very close to that of using

Fig. 6. The changes of quantization scales and the low-bit weights after
W4 Bit-split optimization on ResNet-18. (a) The percentage of quantized
weights that have changed the values after optimization. Overall,
15.45% weights have changed their values. (b) The distribution of the
absolute value change among these weights. (c) The quantization
scales before and after optimization for the first 50 channels of the 16th
convolutional layer.

TABLE 6
The Effect of Calibration Data Source of Post-Training

Quantization on ResNet-18

Calibration Set Bit-split TF-Lite TensorRT

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ImageNet-Train 69.10 88.69 55.49 79.10 55.50 79.15

ImageNet-Test 69.02 88.63 55.49 79.18 55.45 79.18
DeepInv. [74] 68.36 88.07 55.49 79.17 55.55 79.14
COCO-2017 68.53 88.37 55.47 79.13 55.54 79.18
VOC-2012 68.48 88.25 55.51 79.20 55.51 79.15
CIFAR-10 62.53 84.38 55.53 79.14 55.46 79.09
Gaussian-Noise 9.73 21.98 54.22 78.31 54.10 78.24

A8W4 with uniform quantization is adopted for evaluation. We use per-chan-
nel scale factors for the weights and per-layer scale factors for the activations.
All results in this table are obtained with 1024 calibration images.
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the original training set for calibration. For example, there is
only 0.32% Top-5 accuracy degradation using COCO-2017
for calibration. The results of VOC-2012 are similar. How-
ever, when the public calibration dataset is very dissimilar
to the training set, there will be a large accuracy drop after
quantization. Take the CIFAR-10 images for example, there
is more than 4% accuracy gap with pretrained model. The
reason is that the CIFAR-10 images are very different from
ImageNet, especially that the image resolution of CIFAR-10
is much smaller than ImageNet. Thus it is inaccurate to use
CIFAR-10 images for the quantization parameter selection
of ImageNet pretrained models. In summary, if we have
some prior information about the pretrained models, we
can simply select a similar public dataset for calibration,
and the results should be very close to that of using the orig-
inal training dataset.

As a baseline, we also report results using random
images drawn from Gaussian distribution for calibration
(Gaussian-Noise). The Bit-split method with Gaussian-Noise
has a large accuracy drop, only 9.73% Top-1 accuracy is
achieved. By contrast, the TF-Lite and TensorRT are more
robust even with random noise for calibration. These results
are not surprising, because the weight quantization of TF-
Lite and TensorRT does not rely on the calibration images.
However, the Bit-split method, which learns the mapping
between the inputs and the outputs, would overfit to the
random noise.

4.7.2 Calibration Size

In this section, we explore another factor that can result in
performance diversity of the proposed post-training quanti-
zation, i.e., the size of the calibration set. We use ResNet-18
and the proposed Bit-split framework with 8-bit activations
and 4-bit uniform weights (A8W4) for evaluation. The num-
bers of images used for calibration are f2i; i ¼ 0; 1; . . . ; 10g.
The results are presented in Fig. 7.

Fig. 7 shows that calibration size could affect the perfor-
mance of post-training quantization. As the number of
images increases, the accuracy improves. There is no notice-
able accuracy drop with more than 100 images, which
means that most of the classes are never seen by the model
during the post-training optimization procedure. This result
indicates that the proposed post-training framework learns
a general low-bit feature representation, no over-fitting is

observed. More surprisingly, with only 2 calibration images,
Bit-split can already achieve very promising results.

In Fig. 7, we also plot the accuracy of TF-Lite and Ten-
sorRT for comparison. Not surprisingly, TF-Lite and Ten-
sorRT are robust to the calibration size, because these two
approaches do not use calibration images for the optimiza-
tion of the low-bit weights. With only one calibration image,
Bit-split achieves much lower accuracy than TF-Lite and
TensorRT. This is because that the low-bit weight optimiza-
tion of Bit-split overfits to that calibration image. However,
with more than one images, Bit-split can substantially out-
perform TF-Lite and TensorRT.

4.8 Speed Estimation

The ultimate goal of neural network quantization is to reduce
the storage and to speed up the inference. Thus in this sec-
tion, we evaluate the speed efficiency of the quantized net-
works with various bit-widths on Field-Programmable Gate
Array (FPGA). In this experiment, we implement the Bit
Fusion [76], a state-of-the-art bit-scalable CNN accelerator
on Xilinx VC709 FPGA. Bit Fusion employs a systolic array-
based design, each Processing Element (PE) in the array is
composed of 16 2-bit multipliers that can be fused to support
for 2/4/8-bit multiplications. To highlight the hardware effi-
ciency of quantization, we use double buffer scheme for all
the on-chip buffers to overlap the transfer time by computa-
tion, leaving the other configurations of our implementation
the same as the original ASIC design. All the experiments are
conducted at 200MHz.

At the inference stage, wemerge all the quantization scales
into the corresponding batch normalization layers following
[67] to simplify the execution. Moreover, for consistency, we
report the results with per-channel weight quantization and
per-layer activation quantization. Note that in this setting, dif-
ferent quantization approaches including [15], [16], [52], [53]
only vary in the optimization procedure, while the resulting
network architectures at inference are the same. Thus the exe-
cution time is determined only by the bit-width settings.
However, previous approaches only show acceptable accu-
racy with 8-bit quantization, while the proposed method can
compress the network into 4-bit. Thus in this section, we use
the A8W8 quantization as the baseline to show the speed
advantages of the proposedmethod.

The speed results for one single image with input size
224� 224 are reported in Table 7. We use ResNet-18 for
demonstration. With 8-bit quantization, the execution time
on the FPGA board is about 222.7 ms, which is a very strong
baseline. When quantizing the weights into 4-bit (A8W4),
Bit-split delivers 1.98� speedup compared to the baseline
(A8W8), at the cost of about 0.7% accuracy degradation.

Fig. 7. The accuracy of post-training quantization on ResNet-18 with dif-
ferent numbers of images for calibration. A8W4 with uniform quantiza-
tion is adopted for evaluation.

TABLE 7
Speed Comparison of ResNet-18 With Various

Bit-Widths on FPGA

Bit-width Execution time (ms) Speedup ratio

A8W8 222.704 1�
A8W4 114.305 1.98�
A4W4 57.605 3.87�
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When the activations are further quantized into 4-bit
(A4W4), the speed can be further improved, achieving
about 3.87� speedup compared to the baseline. These
results show that lowering the bit-width for activations and
weights using the proposed Bit-split framework can signifi-
cantly improve the inference efficiency.

5 CONCLUSION

In this work, we propose an efficient framework for lower-bit
post-training quantization.We first theoretically show that the
quantization loss in the final output layer is bounded by the
layer-wise activation reconstruction error. Then based on the
analysis, we propose an Optimization-based Post-training
Quantization framework and a novel Bit-split optimization
approach to simultaneously optimize the quantization scales
as well as the low-bit weights, to achieve minimal accuracy
degradation. Besides, we propose an Error CompensatedActi-
vation Quantization method to lower the quantization error
for activations. The overall framework is effective, hyper-
parameter free, and can be readily implemented and inte-
grated into current network quantization libraries. Extensive
experiments demonstrate that the proposed framework sets
new state-of-the-arts for post-training quantization. Specifi-
cally, we achieve near-original model performance evenwhen
quantizing FP32models to 3-bit without fine-tuning.
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