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ABSTRACT 

Making recognition more reliable under unconstrained envi- 
ronment is one of the most important challenges for real- 
world face recognition. In this paper, we propose a novel 
approach for unconstrained face verification. First, we use a 
spectral-clustering method based on Structural Similarity 
index to estimate the captured environments of facial images. 
Then for each pair of environments, we learn two coupled 
metrics, such that facial images captured in different envi-
ronments can be transformed into a media subspace, and 
high recognition performance can be achieved. The coupled 
transformations are jointly determined by solving an opti-
mization problem in the multi-task learning framework. 
Experimental results on the benchmark dataset (LFW) show 
the effectiveness of the proposed method in face verification 
across varying environments.  

Index Terms— Face verification, metric learning, un-
constrained environment, multi-task learning 

1. INTRODUCTION 
In the past several decades, face recognition has received 

a great deal of attention from the scientific and industrial 
communities, due to its wide range of applications including 
access control, security and surveillance. With thousands of 
published papers, face recognition under well controlled 
environment is relatively mature and provides high recogni-
tion rates. However, when images are collected under un-
controlled environment, such as uncontrolled lighting, pose 
variations, the performance decreases significantly. 

In this paper, we address the unconstrained face verifica-
tion. Face verification is a binary classification problem 
over pairs of face images, and we have to decide whether 
the same person is depicted in both images. One typical ap-
plication for face verification is self-serviced immigration 
clearance using E-passport. Obviously, it is not a good 
choice to directly pass the query image to the face verifica-
tion system enrolled with normal images, because the varia-
tions between images of the same face due to illuminations 
or viewing direction are almost always larger than image 
variations due to change in face identity[1].(As in Fig.1) 

There has been a lot of prior works on comparing images 
under unconstrained environments. A commonly used way 
is to restore the probe image into the same condition of gall- 

         
Figure 1: Illustration of the similarity between face images across pose and 
illumination. The similarity between images is computed using SSIM 
measure (Eq.1), where 1 is the score for identical images and 0 is the low-
est score. (a) and (b) ((d) and (e)) are face images of the same identity, but 
are captured under different pose (illumination). The similarity between (a) 
and (b) ((d) and (e)) are smaller than (b) and (c) ((d) and (e)) of different 
identity. 

ery. For this purpose, many image processing techniques for 
illumination normalization [1, 2] or illumination invariant 
features [3, 4] have been proposed. And for the problem of 
pose variation, some researchers proposed feasible ap-
proaches to synthesize virtual images across pose in 2D 
space as pose transformation [5] or in 3D space as 3D face 
reconstruction and projection. For the problem of expression, 
2D warps or 3D morphable model [6] is used to generate 
some virtual expression images. 
  Besides explicitly dealing with the problem of pose or 
illumination, many researchers apply some statistical ma-
chine learning methods for uncontrolled face recognition. 
Distance metric learning [7] is one of the most widely used 
approaches. The goal of distance metric learning is to learn 
a proper transformation matrix, so that in the transformed 
space, the distance between the images of the same identity 
is small, while the distance between different identities is 
large. Recently, some researchers apply some other statis-
tical approaches, such as canonical correlation analysis 
(CCA) [8], and Partial Least Squares (PLS) [9]. Their objec-
tive is to find basis vectors for two sets of variables such 
that the correlation between the projections of the variables 
onto these basis vectors is mutually maximized. 

In this paper, inspired by previous works [7,8,9], we pro-
pose a novel way for unconstrained face verification. The 
main contributions of our approach lie in two aspects: 
Firstly, we propose a data-driven approach to estimate the 
captured environment. We use the Structural SIMilarity 
index (SSIM) [10] to measure the pixelwise similarity of 
two face images, and then a spectral clustering method is 
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applied to cluster the training images into different envi-
ronments. Secondly, for comparing images captured in two 
different environments, we find two coupled transformation 
matrices(as illustrated in Fig.2), such that in a common 
subspace, the similarity between faces of the same identity 
is near one, while the similarity of different identity is near 
zero. We formulate the problem of simultaneously learning 
the environment coupled metrics for several pairs of envi-
ronments as a multi-task learning problem, and an alternat-
ing method is applied to solve the problem efficiently.  
2. STRUCTURAL SIMILARITY INDEX BASED    
ENVIRONMENT CLUSTERING 

In a real face recognition system, face images may be 
captured under different environments, where viewpoint, 
illumination, expression, and occlusion can vary considera-
bly. All these factors are confounded in the image data.  
  In this section, we use a clustering method to estimate the 
environments implicitly. The key step for clustering is to 
define the similarity. We apply the Structural SIMialrity 
index (SSIM) [10] to measure the similarity between images. 
According to [11], SSIM yielded the most robust perfor-
mance across multiple pose and illumination. The SSIM 
measure between pixels in the same location  in image   
and  is given by                 
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where  are the local mean and standard deviation of a 
fixed window around .The value  is the correlation of 
pixels in this window in both images. The values of  are averaged across all pixel location to produce the final 
similarity measure. This measure ranges between [0, 1], 
where 1 is achieved for identical images. 
  After the definition of similarity, we can measure the si-
milarities between all the training facial images. It results in 
a similarity matrix , where is the number of 
training images. If  is very large, the similarity matrix  
will be very dense and large. So we define a sparse similar-
ity matrix, where just the similarity between one image and 
its K nearest neighbors are considered (the k nearest neigh-
bors are selected based on SSIM). It can be formulated as:  
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And then a spectral clustering method is applied to get the 
implicit environments. Some example images of clustering 
results are shown in Fig 3.  
3. ENVIRONMENT COUPLED METRIC LEARNING 

The output of last section is the environment label that each 
image belongs to. So if there are n facial images in the 
training set, it can be represented as , 
where  is the feature vector of one image;  

is the identity label, is the number of indi-
viduals; and  is the environment label, E is the 
number of environments. 

 
Figure 2: An illustration of coupled transformation matrices  for 
one pair of environment  

3.1. Coupled Metric Learning for One Pair of Environ-
ments 
  For simplicity, we first consider one pair of 
ments . represents the training im-
ages in environment , and in environ-
ment  The basic idea of our method is to learn two 
coupled metrics, which map and respectively into a 
joint new subspace, where the new distance measure is more 
ideal for face recognition. 

We represent two coupled metrics as A and B, each for 
one environment. And we define the linear transformation in 
matrix form as follows: 

             (3) 
where , and y represent the new fea-
ture in the d dimensional transformed subspace. The objec-
tive is that in the new subspace, the similarity of two face 
images representing the same individual should be near one, 
and the similarity of two face images representing different 
individuals should be near zero. In our experiment, we use 
Euclidean distance measure between two images in the 
transformed subspace, and a sigmoid function is applied to 
obtain a probabilistic estimation of whether the two images 
depict the same individual. The probability can be modeled 
as: 
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and b  is a bias term. 
  We formulate the coupled metric learning as an optimiza-
tion problem. The objective function to be maximized is 
defined as: 
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where if , otherwise This 
objective function can be seen as the log-likelihood of all 
the images pairs between two environments, and it is very 
similar to Logistic Discriminate Metric Learning[7], but we 
learn two coupled metrics instead of just one metric.  
  is differentiable with regard to matrix A, B and 
b, so we can optimize it using a gradient based optimizer. 
The gradient of ( , , )L A B b  can be computed as: 
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The gradient of with regard to B can be calculated 
as similar as A. After obtaining the gradient, A, B and b can 
be updated by gradient ascend.  
3.2. Multi-task Metric Learning for Several Pairs of En-
vironments 

In the last part, we just consider the problem of coupled 
metric learning for one pair of environments. But in practice, 
facial images may be captured under several environments, 
and we should do face verification across different envi-
ronments.  

Let  denote the coupled metrics for one pair of 
environments . Inspired by the methodology of mul-
ti-task learning [14], we consider the coupled metric learn-
ing for one pair of environments as one task, and model the 
commonalities between various tasks through shared metrics 

 and the task-specific idiosyncrasies with additional 
matrices . The final optimization 
problem is defined as: 
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The first term is the log-likelihood of all training samples. 
The second term encourages that the coupled matrixes for 
each pair of environments are not far away from the shared 
metrics, which solve the problem between small sample size 
and large number of parameters in some way.  is the 
weighting parameter, and it is set by cross validation. 

To solve this problem, we use the alternating method to 
iteratively optimize over two set of variables: the common 
metric and the task specific metrics . 
Specifically, given initial , we fix and op-
timize over  and then fix  
and optimize over . This process is repeated until 
convergence or a pre-defined number of steps. 

With  fixed, the resulting problem can be de-
composed into several optimization problems, each of which 
optimizes over  It can be formulated as: 
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It is an extension of problem (7) with some regularization 
terms, and it can be solved by gradient ascend. 

With fixed  , we need to solve the fol-
lowing problem: 
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It can be solved efficiently with closed-form solution. 
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4. EXPERIMENTS 
We conduct experiments on the LFW dataset [12]. The 

LFW benchmark defines two evaluation protocols: the re-
stricted and unrestricted setting. In our experiment, we fol-
low the unrestricted setting. Under this setting, arbitrary 
number of training pairs can be generated based on the giv-
en face labels. The performance of our method is measured 
by 10-fold cross validation procedure. Note that, the people 
for testing are different from the training, so the experiment 
can verify the generalization ability of our model. 
4.1. Experimental setting 
  Following [7], Viola Jones’s face detector [13] is run on 
the original images, which gives out an approximate loca-
tion and scale of the face. And then we cut the face image 
and normalize to  pixels. These cropped images 
are used for environment clustering. Nine facial points are 
located and then SIFT descriptors are computed at three 
scales, centered on these nine facial points, which are avail-
able from[7]. The dimension of the result descriptor for each 
point is . For testing, we first determine the 
captured environment for each image, and then transform 
the original descriptor by the learned environment coupled 
metrics. Finally, we compute the probability that the two 
faces belong to the same individual. We implement our me-
thod in MATLAB, and the source code is available upon 
request. 
4.2. Experimental results 
  In order to get good initialization for the alternating opti-
mization procedure, we use nine of the ten subsets for esti-
mating the  The subsets are provided by the author 
under restricted mode, and each subset consists of 300 
same-person pairs and 300 different-person pairs. We dis-
card the environment of each image, and get by 
solving the optimization problem (7) with the constraint 

. And we denote . 
  In order to estimate the captured environment of each 
image, we cluster all the face images belonging to the nine 
training folders into  centers. In our experiment, according 
to [11], we set k=100 for constructing the similarity matrix 
W. And we set  by considering the trade-off between 
the number of images belonging to each cluster and the in-
terpretation of each cluster (the sample images of clustering 
result and interpretation are shown in Fig(3)). When a new 
image comes, we use the majority voting of k nearest 
neighbors to determine its environment class. 

After estimating the environment, we randomly generate 
N intra-personal pairs and N extra-personal pairs for each 
pair of environments, which are used for training the envi-
ronment coupled metrics. (In experiment, we set N=1000). 
If the overall number of intra-personal pairs that can be 
generated from one pair of environments is smaller than 200, 
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we won't learn the coupled metric for this pair of environ-
ments, and we set the metric with . The performance 
of is (79.27 0.60) , which is equal to the result of 
LDML[7] under restricted setting. Table 1 shows the per-
formance of our environment coupled metrics for the cor-
responding pairs of environments. It can be seen that the 
accuracy of comparing pairs of images under the same en-
vironment is higher than under different environments, and 
the performance of our learned coupled metric is much bet-
ter than  The overall accuracy of our method’s verifi-
cation rate at FPR=0.1 is (88.9 0.37) . In Table 2, we 
compare our method with other state-of-art methods (we 
copy the results from[15,17].). With only SIFT descriptor, 
our method significantly outperforms [7,16,17]. When com-
bining four descriptors, the results of [16] and [17] are im-
proved to(89.50 0.51)  and (90.07 0.51)  respective-
ly, while our method with only one descriptor is comparable 
to them. The results verify the effectiveness of our method. 
The ROC curves of our method and others are depicted in 
Fig 4. Complete benchmark results can be found on the 
LFW website [15].  

5. CONCLUSION 
In this paper, we present a new approach named environ-
ment coupled metric learning for unconstrained face verifi-
cation.  First, we use SSIM based spectral clustering to 
estimate the image captured environments. Second, for 
comparing images captured in different environments, dif-
ferent from some previous work, our approach tends to find 
two coupled transformation matrixes, so that in the trans-
formed subspace, the similarity of intra-person is near one, 
while the similarity of inter-person is near zero. We further 
formulate the problem of learning multi pairs of environ-
ment coupled metrics in the multi-task learning framework. 
Experiment results show the effectiveness of our proposed 
method. In the future work, we will investigate the perfor-
mance of our method with different descriptors. 
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