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Abstract
The modified H‘ filtering problem for a class of Markovian jump systems with unknown nonlinear dynamics is investigated in the work by developing

the neural event-triggered filter co-design method. Moreover, the true system modes are assumed to be inaccessible such that the estimated jumping

modes are utilized for the mode-dependent filters. In particular, a novel event-triggered mechanism is introduced to improve filtering communication

efficiency, where the unknown nonlinearity approximation is conducted by a neural network. By virtue of employing Lyapunov–Krasovskii method, suf-

ficient filtering conditions are constructed to ensure the optimal H‘ performance under the mean-square framework, based on which desired mode-

dependent filter gains, event-triggering, and neural network parameters are co-designed with an aid of matrix techniques. Illustrative simulations with

two practical examples are finally carried out to validate the usefulness and advantages of our developed approach.
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Introduction

During the last decades, Markovian jump systems have

attracted increasing research attention owing to their theoreti-

cal significance and practical value (Shi and Li, 2015; Teel

et al., 2014; Wang et al., 2020b; Zhang et al., 2016). Indeed,

Markovian jump systems have the notable modeling ability in

describing complex dynamical systems with subsystems under

perturbed jumping parameters or changing environments,

which have a wide background in numerous real-world appli-

cations. For instance, typical Markovian jump systems can be

applied to model the robotic systems (Jiang et al., 2020),

power systems (Ugrinovskii* and Pota, 2005), biological sys-

tems (Shen et al., 2019), and other engineering areas (Xu

et al., 2022; Zhu et al., 2022). Especially, mode-dependent

control schemes have been verified to be effective with the

help of system jumping modes. Nevertheless, it is worth men-

tioning that it is always difficult or impossible to acquire the

true system mode information in time, which would lead to

the mode mismatch between original systems and devised con-

trollers or filters. Under this context, it is necessary to further

investigate the mode-dependent analysis and synthesis issues

with mode mismatch phenomena (Wang et al., 2021; Wu

et al., 2017; Zhang et al., 2019a). As one of the nonsynchro-

nous mode-dependent control methods, much effort has been

paid to the so-called asynchronous control for Markovian or

semi-Markovian systems. More precisely, the estimated sys-

tem modes are utilized with the form of conditional probabil-

ity in the controllers instead of true system modes, such that

more applicability can be achieved accordingly. To name a

few, a novel asynchronous passive control method is proposed

for Markovian jump systems based on a hidden Markovian

model, where mode information is assumed to be unaccessible

(Wu et al., 2016). Moreover, the asynchronous finite-time fil-

tering problem of Markovian jump systems is addressed by

estimated system modes (Ren et al., 2019). Furthermore, the

asynchronous state estimator is developed for Markovian

jump neural networks with randomly occurring sensor satura-

tions (Men et al., 2018). These remarkable methods can well

deal with the nonsynchronous features and improve the con-

trol performance.
Another hot research topic lies in the fact of network-

induced constraints with limited communication resources for

networked control systems. Recently, to cope with the general

time-triggered schemes, many remarkable methods have been

developed for novel event-triggered strategies (Ge et al., 2021;

Peng and Li, 2018; Zou et al., 2020). By setting certain event

functions and thresholds for the signal transmissions, more

communication efficiency can be increased to some extent. As

a result, various event-triggered control strategies have been

reported and many distinguishing achievements can be found
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in the literature. In particular, the optimal control problem

can be well solved by the event-triggered mechanism with

more efficiency (Wang et al., 2022; Zhao et al., 2022). For the

Markovian jump systems with multiple system modes, some

researchers have focused on mode-dependent event-triggered

mechanisms for less conservatism results (Dai et al., 2019;

Dong and Gong, 2020). However, it should be pointed out

that it is always difficult to determine the mode-dependent

event-triggering strategies under nonsynchronous mode jump-

ing (Cao et al., 2020; Ji et al., 2020; Liu, 2016). Therefore, it is

important to develop asynchronous approaches during the

control procedures. It can be found that considering the asyn-

chronous features for Markovian jump systems can further

increase the design applicability with more practical imple-

mentations. On the other hand, recently, event-triggered

schemes with neural networks have been reported with pro-

mising control performance. Unfortunately, to the authors’

best knowledge, few efforts have been devoted to the mode-

dependent event-triggered filtering topics of Markovian jump

systems with unknown nonlinear dynamics, especially for the

cases with asynchronous features or neural network learning

methods, which motivates us for this research.
Inspired by the above results, this work aims at solving

the optimal H‘ filtering for Markovian jump systems by pro-

posing a novel mode-dependent neural event-triggered strat-

egy along with asynchronous controllers. In comparison with

most reported literature, our main contributions could be

listed by the following parts:

(1) A novel event-triggered scheme is established for the
Markovian jump systems with unknown nonlinear
dynamics, where the neural network learning strategy
is taken into account for practical implementations.
Generally speaking, our proposed filter design method
can provide a new way to combine the neural network
learning and the event-triggered strategy, such that
the unknown system dynamics can be released.

(2) The asynchronous co-design method for mode-
dependent filters and event-triggering parameters is
proposed to ensure the modified H‘ performance.
For comparative research, in the context of asynchro-
nous mode-dependent design for the Markovian
jump system, our developed modified H‘ perfor-
mance can deal with the external disturbance and

neural network approximation error in a unified
framework.

(3) To show the merits of our developed filtering design,
illustrative examples with practical system models are
also provided with validation simulation results. It is
noteworthy that the established sufficient conditions
can be solved by convex optimization with the formu-
lated online neural network learning law, which can
relax the requirement of precise nonlinear dynamics
for the filter design procedure.

The rest parts of our work are organized as follows. In sec-

tion ‘‘Problem statement and preliminaries,’’ the nonlinear

Markovian jump system model is introduced and the formu-

lated filtering problem is presented. In section ‘‘Main results,’’

by applying the Lyapunov–Krasovskii function, analysis and

synthesis of theoretical derivations are given with mathemati-
cal proofs. In section ‘‘Simulation examples,’’ the simulations
are performed with three examples. In section ‘‘Conclusion,’’

the overall paper is concluded at the end.

Problem statement and preliminaries

Consider the following Markovian jump system with
unknown nonlinear dynamics

_x(t)=A(s(t))x(t)+ f (x(t))+B(s(t))w(t)
y(t)=C(s(t))x(t)+D(s(t))w(t)
z(t)=L(s(t))x(t)
x(0)= x0,s(0)=s0

8>><
>>: ð1Þ

where x(t) 2 R
n denotes the system state, f (x(t)) represents the

unknown nonlinear function, w(t) 2 R
m stands for the exter-

nal disturbance belonging to L2½0,‘), y(t) 2 R
l corresponds

to the output measurement, z(t) 2 R
s is the signal to be esti-

mated, and all A(s(t)), B(s(t)), C(s(t)), D(s(t)), and L(s(t))
are constant matrices for a fixed s(t). In addition, s(t) is a
continuous-time discrete-state Markov process on (O,F,P),

which takes values in S= f1, . . . ,Ng and its transition prob-
ability matrix is denoted by P=(pij), 8i, j 2 S with

Pr (s(t + h)= jjs(t)= i)=
pijh+ o(h), i 6¼ j,
1+piih+ o(h), i= j,

�

and

pii =�
XN

j= 1, i6¼j

pij,8i, j 2 S

For simplicity, denote s(t)= i as i index, and it follows that

_x(t)=A(i)x(t)+ f (x(t))+B(i)w(t)
y(t)=C(i)x(t)+D(i)w(t)
z(t)=L(i)x(t)
x(0)= x0,s(0)=s0

8>><
>>:

Consequently, a mode-dependent Luenberger-type filter is
designed with consideration of event-triggered communica-

tion as follows

_̂x(t)=A(i)x̂(t)+ f̂ (x̂(t))+K(i)(y(tkh)� C(i)x̂(tkh))
ẑ(t)=L(i)x̂(t)

�
ð2Þ

where f̂ (x̂(t)) represents the approximate unknown nonlinear-

ity and K(i) denotes the mode-dependent filter gains to be
designed. It should be pointed out that the Luenberger-type
observers have considerable advantages in system structure

and implementation (Tarantino et al., 2000; Zhang et al.,
2019b). The following event-triggered strategy is utilized
under the networked framework. In detail, based on the sam-

pling period h . 0, an event generator with ZOH is adopted
to update the released signals with tkh, k = 0, 1, 2, . . .. By

applying the ZOH with desired sampling period h to keep the
sampled latest signal, Zeno’s behavior can also be avoided for
the triggering transmissions.
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By defining the filter error as xe = x(t)� x̂(t) and

ze = z(t)� ẑ(t), it can be obtained that

_xe(t)=A(i)xe(t)+ f (x(t))� f̂ (x̂(t))
�K(i)(C(i)xe(tkh)+D(i)w(tkh))+B(i)w(t)

ze(t)=L(i)xe(t)

8<
: ð3Þ

Subsequently, the corresponding triggering function is
designed by

eT
k (t)W1(i)ek(t)ø e(i)yT

e (tkh)W2(i)ye(tkh) ð4Þ

where

ek(t)= ye(tkh+ jh)� ye(tkh)

ye(tkh)=C(i)xe(tkh)+D(i)w(tkh)

0 ł e(s(t))\1 and W1(i). 0, W2(i). 0 are mode-dependent
scaling matrices.

Remark 1. It is worthwhile to point out that the event-triggered

strategies always focus on improving the communication effi-

ciency with less updated information. For Markovian jump sys-

tems, the mode-dependent triggering function can utilize the

mode information for more design feasibility. In addition, the

proposed event-triggered strategy can be further extended to

the cases with network constraints, that is, network-induced

delays and so on (Li et al., 2018; Mazenc et al., 2022).

By employing the virtual delay approach within triggering
intervals ½tkh, tk + 1h) (Fridman 2010), it can be derived that
C(i)xe(tkh)+D(i)w(tkh)=C(i)xe(t � d(t))+D(i)w(t � d(t))+ tk(t),

which can lead to that

tT
k (t)W1(i)tk(t)ł e(i)(ye(t � d(t))+ tk(t))

T 3

W2(i)(ye(t � d(t))+ tk(t))

where 0 ł d(t)= t � tkh\h means the virtual delay.
As a result, the developed filter can be further modified by

_̂x(t)=A(i)x̂(t)+magentaf̂ (x̂(t))+K(i)(y(t � d(t))
+ tk(t)� C(i)x̂(t � d(t))),

ẑ(t)=L(i)x̂(t)

8<
: ð5Þ

Since f (x(t)) is unknown for the filter system, a neural net-
work is applied for unknown approximate reconstruction
(Noriega andWang, 1998; Yang et al., 2016). Then, it follows that

f (x(t))=W�u(x(t))+ d1(t) ð6Þ

where d1(t) denotes the approximation error, u(x(t)) implies

the nonlinear neuron vector, and

W�= arg min
W(t)2OW

sup
x2Ox

k d(t) k
( )

represents the optimized neuron weights in the neural net-

work. Under this context, f̂ (x̂(t)) can be obtained to approxi-
mate f (x(t)) as follows

f̂ (x̂(t))=W(t)u(x̂(t)) ð7Þ

where W(t) represents the weight matrix of the neural net-

work. Hence, it follows that

_xe(t)=A(i)xe(t)� K(i)C(i)xe(t � d(t))
+ ~W(t)u(x̂(t))+ d(t)� K(i)tk(t)
+B(i)w(t)� K(i)D(i)w(t � d(t)),

ze(t)=L(i)xe(t)

8>><
>>: ð8Þ

where d(t)= d1(t)+ d2(t), d2(t)= W�(u(x(t))� u(x̂(t))) and
~W(t)=W�(t)�W(t).

Remark 2. As the neural networks have an adaptive adjustment

mechanism to approximate the nonlinearities with desired accu-

racy and generalization ability, they can be adopted for super-

ior unknown dynamics with input-output data.

Furthermore, notice the fact that the true modes of system

(1) are always difficult to acquire. To deal with the hidden
modes, the observed modes are utilized by the mode-

dependent filter. As such, the nonsynchronous filter gain K(r)
with observed modes is applied instead of K(i), where
1(t)= r 2 T = f1, . . . ,Mg is another stochastic process with

the following conditional probability

Prf1(t)= rjs(t)= ig=lir ð9Þ

XM
r = 1

lir = 1 ð10Þ

Eventually, the resulting filtering error system can be
rewritten as follows

_xe(t)=A(i)xe(t)� K(r)C(i)xe(t � d(t))
+ ~W(t)u(x̂(t))+ d(t)� K(r)tk(t)
+B(i)w(t)� K(r)D(i)w(t � d(t))

ze(t)=L(i)xe(t)

8>><
>>: ð11Þ

Remark 3. In practice, the nonsynchronous phenomenon

between the observer and original systems can be found due to

information dropouts and delays. As a result, it is reasonable to

consider the hidden mode detection strategy to deal with an

unpredictable mode mismatch.

Moreover, the optimal modified H‘ performance is intro-
duced for disturbance attenuation.

Definition 1. The filtering error system (11) is said to satisfy

the optimal modified H‘ performance in mean-square sense if

there exists a constant g . 0 such that

ð‘

0

EfzT
e (t)ze(t)gdt

\g2

ð‘

0

EfwT (t)w(t)+wT (t � d(t))w(t � d(t))

+ dT (t)d(t)gdt

ð12Þ

under zero initial conditions.
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Remark 4. It is noted that for some practical systems, the cor-

responding dynamics with uncertainties should be considerably

taken into account for design robustness (Tutsoy, 2015, 2016;

Tutsoy et al., 2018). Under this context, the above-modified

H‘ performance can be further extended to deal with the uncer-

tainties, such that the modeling errors can be effectively

decreased in the meantime.

To this end, the objective of this paper is to determine the

asynchronous filter gain K(r) such that the modified H‘ per-

formance can be achieved accordingly.

Main results

In this section, our main theoretical results will be established

based on matrix convex optimization techniques.

Theorem 1. System (11) can satisfy the modified H‘ perfor-

mance with mode-dependent filter gain K(r), r 2 T and

parameter g . 0 according to Definition 1, if there exist mode-

dependent matrix P(i). 0, i 2 S and matrices Q . 0, R . 0,
S . 0, L . 0, such that the following linear matrix inequality

holds, where

Y(i, r)=
Y1(i, r) Y2(i, r)
� Y3(i, r)

� �
\0

with

Y1(i, r)

=
Y11(i, r) Y12(i, r)

� Y13(i, r)

� �
,

Y11(i, r)

=
Y111(i, r) P(i)+A(i)T S

� �2S + h2R

" #
,

Y111(i, r)

=Q� R+
XN

j= 1

pijP(j)+LT (i)L(i),

Y12(i, r)

=

R

�
PM

r = 1

lirSK(r)C(i)

2
4

3
5,

Y13(i, r)

=� 2R+ e(i)CT (i)W2(i)C(i),

Y2(i, r)

= Y21(i, r),Y22(i, r)½ �,
Y21(i, r)

=

0 0 0

0 S �
PM

r= 1

lirY (r)

R 0 e(i)CT (i)W2(i)

2
6664

3
7775

�Y22(i, r)

=

0 0

SB(i) �
PM

r= 1

lirSK(r)D(i)

0 e(i)CT (i)W2(i)D(i)

2
664

3
775,

Y3(i, r)

=
Y31(i, r) Y32(i, r)

� Y33(i, r)

� �
,

Y31(i, r)

=

�Q� R 0 0

� �g2I 0

� � �W1(i)+ e(i)W2(i)

2
4

3
5,

Y32(i, r)

=

0 0

0 0

0 e(i)W2(i)D(i)

2
4

3
5,

Y33(i, r)

=
�g2I 0

� �g2I + e(i)DT (i)W2(i)D(i)

� �

and the online neural network learning law is designed as

follows

_W(t)=LS _xe tð ÞuT (x̂(t))

Proof. For certain mode i, choose the mode-dependent

Lyapunov–Krasovskii function as follows

V (i, t)=V1(i, t)+V2(i, t)+V3(i, t)+V4(i, t) ð13Þ

where

V1(i, t)= xT
e (t)P(i)xe(t)

V2(i, t)=

ðt

t�h

xT
e (s)Qxe(s)ds

V3(i, t)= �h

ð0

��h

ðt

t+ s

_xT
e (h)R _xe(h)dhds

V4(i, t)= trf ~WT
(t)L�1 ~W(t)g

In addition, the weak infinitesimal operator L for mode-
dependent V (i, t) is defined by

LV (i, t)= lim
D!0

1

D
fEfV (s(t+D), t+D)js(t)= ig

� V (i, t)g

Subsequently, taking the above weak infinitesimal opera-
tor along with evolution of V (i, t), it yields that

LV1(i, t)= 2xT
e (t)P(i) _xe tð Þ+

XN

j= 1

pijx
T
e (t)P(j)xe(t)

LV2(i, t)= xT
e (t)Qxe tð Þ � xT

e (t � h)Qxe t � hð Þ

LV3(i, t)= h2 _xT
e (t)R _xe(t)� h

ðt

t�h

_xT
e (s)R _xe(t)ds

LV4(i, t)= 2trf _~W
T

(t)L�1 ~W(t)g

Furthermore, based on the resulting filtering error system
dynamics, one has that
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2Ef _xT
e tð ÞS(A(i)xe(t)� K(r)C(i)xe(t � d(t))

+ ~W(t)u(x̂(t))+ d(t)� K(r)tk(t)+B(i)w(t)

� K(r)D(i)w(t � d(t))� _xe tð Þ)g= 0

Based on the online neural network learning law, one has

that

LV4(i, t)= 2trf _~W
T

(t)L�1 ~W(t)g
= 2trf�u(x̂(t)) _xT

e tð ÞS ~W(t)g

which implies that

Ef _xT
e tð ÞS ~W(t)u(x̂(t))� trfu(x̂(t)) _xT

e tð ÞS ~W(t)gg= 0

By applying Jensen’s inequality Kim (2016), it can be
obtained that

� h

ðt

t�h

_xT
e (s)R _xe(s)ds

ł

xe(t)
xe(t � d(t))

xe(t � h)

2
4

3
5

T �R R 0

� �2R R

� � �R

2
4

3
5 xe(t)

xe(t � d(t))
xe(t � h)

2
4

3
5

In addition, it can be obtained by the event-triggering con-

dition that

e(i)(ye(t � d(t))+ tk(t))
T W2(i)(ye(t � d(t))+ tk(t))

� tT
k (t)W1(i)tk(t). 0

such that the triggering matrices can be introduced in the con-

vex optimization conditions.
By virtue of the trace property of matrices in the

Lyapunov–Krasovskii function V (i, t) and the neural network

learning the law of _W(t)=LS _xe tð ÞuT (x̂(t)) in Theorem 1, it

can be deduced that

LV (i, t)+ zT
e (t)ze(t)� g2wT (t)w(t)

� g2wT (t � d(t))w(t � d(t))� g2dT (t)d(t)

\hT (t)Y(i, r)h(t)

where h(t)=½xT
e (t), _xT

e (t), xT
e (t�d(t)), xT

e (t�h), dT (t), tT
k (t),wT (t),

wT (t � d(t))�T with Y(i, r) defined in Theorem 1.
Hence, it can be verified that if Y(i, r)\0 holds, then

zT
e (t)ze(t)� g2wT (t)w(t)� g2wT (t � d(t))w(t � d(t))� g2dT (t)d(t)\0

can be satisfied by integrating Y(i, r)\0 between 0 and ‘

under the zero initial condition. As a result, the modified H‘

performance can be ensured according to Definition 1 and
the neural network parameters and the event-triggering para-

meters can be designed by solving the convex optimization

problem, which completes the proof.
The modified H‘ performance is introduced to the mode-

dependent filtering problem based on a neural event-triggered

co-design approach, such that neural network approximation

errors and external disturbances can be attenuated with a sat-

isfied level. Based on the established optimal conditions in

Theorem 1, the following theorem is presented to synthesize
the mode-dependent filter gains.

Theorem 2. System (11) can satisfy the modified H‘ perfor-

mance and parameter g . 0 according to Definition 1, if there

exist mode-dependent matrices P(i). 0, ., Y (r), r 2 T and

matrices Q . 0, R . 0, S . 0, L . 0, such that the following lin-

ear matrix inequality holds, where

�Y(i, r)=
�Y1(i, r) �Y2(i, r)
� �Y3(i, r)

� �
\0

with

�Y1(i, r)

=
�Y11(i, r) �Y12(i, r)

� �Y13(i, r)

" #

�Y11(i, r)

=
�Y111(i, r) P(i)+A(i)T S

� �2S + h2R

" #

�Y111(i, r)

=Q� R+
XN

j= 1

pijP(j)+LT (i)L(i)

�Y12(i, r)

=

R

�
PM

r= 1

lirY (r)C(i)

2
4

3
5

�Y13(i, r)

=� 2R+ e(i)CT (i)W2(i)C(i)

�Y2(i, r)

= �Y21(i, r), �Y22(i, r)
� �

�Y21(i, r)

=

0 0 0

0 S �
PM

r= 1

lirY (r)

R 0 e(i)CT (i)W2(i)

2
6664

3
7775

�Y22(i, r)

=

0 0

SB(i) �
PM

r = 1

lirY (r)D(i)

0 e(i)CT (i)W2(i)D(i)

2
6664

3
7775

�Y3(i, r)

=
�Y31(i, r) �Y32(i, r)

� �Y33(i, r)

" #
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�Y31(i, r)

=

�Q� R 0 0

� �g2I 0

� � �W1(i)+ e(i)W2(i)

2
64

3
75

�Y32(i, r)

=

0 0

0 0

0 e(i)W2(i)D(i)

2
64

3
75

�Y33(i, r)

=
�g2I 0

� �g2I + e(i)DT (i)W2(i)D(i)

� �

and the online neural network learning law is designed as

follows

_W(t)=LS _xe tð ÞuT (x̂(t))

With above feasible solutions, the mode-dependent filter gain

K(r), r 2 T can be obtained by

K(r)= S�1Y (r):

Proof. By letting SK(r)=Y (r), the proof can be directly fol-

lowed by Theorem 1.

Remark 5. The derived criterion in Theorem 2 is represented in

the form of strict linear matrix inequality, such that the mode-

dependent filter parameters can be solved conveniently with

mathematical software. Furthermore, by applying recent

advances in Lyapunov–Krasovskii function construction meth-

ods, i.e. time-dependent Lyapunov functional Lee and Park

(2017), the Wirtinger-based integral inequality Seuret and

Gouaisbaut (2013), the derived conservatism can be further

deduced accordingly. The optimized value of g can be solved

based on the above convex optimization condition as

min g,

s:t: �Y(i, r)\0, i 2 S, r 2 T

such that the minimal value of g in the modified H‘ performance

can be obtained. Furthermore, the overall optimal filter design

can be formulated as follows: [H]

Simulation examples

In what follows, the simulation results are provided to demon-

strate the advances of the developed co-design filtering

approach.

Example 1.Consider the Markovian jump system (1), where

the system parameters are given by

A(1)=
�1:7 0

0 �1:4

� �
,A(2)=

�1:5 0

0 �2:1

� �

B(1)=
0:3 0

0 0:4

� �
,B(2)=

0:5 0

0 0:5

� �

C(1)=
1 0

0 1:2

� �
,C(2)=

1 0

0 1

� �

D(1)=
0:2 0

0 0:4

� �
,D(2)=

0:1 0

0 0:3

� �

L(1)=
0:5 0

0 0:6

� �
,L(2)=

0:7 0

0 0:4

� �

and the unknown nonlinear function f (x(t)) is set by

f (x(t))= 0:2
tan x1(t)
tan x2(t)

� �

Furthermore, the transition probability and conditional prob-

ability matrices are supposed to be

P=
0:6 �0:6
�0:7 0:7

� �

and

L=
0:5 0:5
0:4 0:6

� �

In the simulation, the parameters of neural network are designed

by

L= 2I

u(x(t))=
1

1+ e�x1 (t)

1
1+ e�x2 (t)

" #

W (0)=
0 0

0 0

� �

and the external disturbances are assumed to be

w(t)= ½0:1 sin (t), 0:1 sin (t)�T . As a result, by choosing the mod-

ified H‘ performance as g = 1 and sampling period as

h= 0:2 s, the mode-dependent filter gains and the event-

triggering parameters are solved by Theorem 2 as

K(1)=
�0:4409 0

0 1:0754

� �
, K(2)=

0:5580 0

0 �0:7315

� �

W1(1)=
1:0209 0

0 1:0196

� �
, W1(2)=

1:0462 0

0 1:0443

� �

W2(1)=
0:7833 0

0 0:7212

� �
, W2(2)=

0:6963 0

0 0:6921

� �

Algorithm 1. The optimal filter design algorithm.

Require:

The parameters of state-space system model;

The parameters of constructed neural network;

The parameters of asynchronous conditional probability;

Ensure:

1: Solving the linear matrix inequality conditions in Theorem 2;

2: Solving the convex optimization conditions in Remark 5;

3: return mode-dependent filter gains K(r), event-triggering

matrices W1(i),W2(i), H‘ performance g;
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With these parameters, the simulation results are shown in

Figures 1–4. It can be seen in Figure 2 that the filtering error

dynamics can converge to zeros despite external disturbance,

while the true system modes and filtering modes are shown in

Figure 1. Figure 3 depicts the event-triggering instants, such

that one can find that our developed filtering strategy can con-

siderably decrease the information communication with desired

filtering performance. Figure 4 illustrates the neural network

learning error dynamics for the filter, where the unknown non-

linear function is well approximated. Moreover, a comparison

result with a neural network and without unknown nonlinear

dynamics approximation in the filter design is given in Figure 5,

where one can find that the adoption of neural network can

effectively improve the filter applicability.

Example 2. In what follows, a practical example of the tunnel

diode circuit is borrowed to verify the applicability of our pro-

posed filtering method, where the dynamics are described by

id(t)= 0:01Vd(t)+ r(i)V 3
d (t)

where r(i) denotes the characteristic parameter with two modes

i= 1, 2Wang et al. (2020a). Then, by setting the circuit para-

meters C = 100 mF, L= 1H , R= 10O, r(1)= 0:004,

r(2)= 0:005, the state space dynamics can be further repre-

sented as follows

_x(t)=A(i)x(t)+ f (i, x(t))+B(i)w(t)
y(t)=C(i)x(t)+D(i)w(t)
z(t)=L(i)x(t)
x(0)= x0,s(0)=s0

8>><
>>:

with

A(1)=
� 0:01

C
1
C

� 1
L
� R

L

" #
,A(2)=

� 0:01
C

1
C

� 1
L
� R

L

" #
,

B(1)=
0

0:1
L

" #
,B(2)=

0

0:1
L

" #
,

C(1)= 1 0½ �,C(2)= 1 0½ �,

D(1)= 0:1,D(2)= 0:1,

L(1)= I , L(2)= I ,

f (s(t), x(t))=
� r(i)

C
x2

1(t) 0

0 0

" #
x(t)

Moreover, the transition probability matrix is described by

P=
0:5 �0:5
�0:6 0:6

� �

and the conditional probability matrix is given as

L=
0:3 0:7
0:5 0:5

� �

Other main simulation parameters can be chosen as same as

that in Example 1, then by solving Theorem 2, the following fil-

ter gains and event-triggering matrices can be calculated by

K(1)=
2:9816

�1:8245

� �
,K(2)=

3:7840

�2:0436

� �
W1(1)= 108:3703,W1(2)= 100:1931

W2(1)= 0:9314,W2(2)= 0:6289

With initial conditions ½�0:1, 0:2�T , the filtering error

dynamics, the event-triggering instants and the neural learning

approximation error responses are depicted in Figures 6–9,

which can lead to the conclusion that our developed filtering

method achieves desired performance.

Example 3. In addition, another practical example of VTOL

(vertical take-off and landing) helicopter is also employed with

nonlinear dynamics (Yan et al., 2019). Then, the state space

model can be described as follows

_x(t)=A(i)x(t)+ f (i, x(t))+B(i)w(t)
y(t)=C(i)x(t)+D(i)w(t)
z(t)=L(i)x(t)
x(0)= x0,s(0)=s0

8>><
>>:

where x(t)= ½x1(t), x2(t), x4(t), x4(t)�T and x1(t), x2(t), x4(t), x4(t)

represent the horizontal velocity, vertical velocity, pitch rate,

and pitch angle of VTOL, respectively. The two-mode jumping

is conducted by air speed under 135, and 170 knot, with

A(1)=

�1:4 1:4 0:2 �0:1

�0:5 �1:41 0 �2:0

0:1 0:37 �1:71 1:42

0 �0:2 �0:1 �0:3

2
6664

3
7775

A(2)=

�1:4 1:4 0:2 �0:1

�0:5 �1:41 0 �2:0

0:1 0:51 �1:71 2:52

0 �0:2 �0:1 �0:3

2
6664

3
7775

B(1)=

0:1 0

0 0:1

0:1 0

0 0:1

2
6664

3
7775,B(2)=

0:1 0

0 0:1

0:1 0

0 0:1

2
6664

3
7775

C(1)=
1 0 1 0

0 1 0 1

� �
,C(2)=

1 0 1 0

0 1 0 1

� �

D(1)=
0 0 0:1 0

0 0:1 0 0

� �
,D(2)=

0 0 0:1 0

0 0:1 0 0

� �

L(1)=
0 1 0 1

1 0 1 0

� �
, L(2)=

0 1 0 1

1 0 1 0

� �
f (i, x(t))= 0:1 sin (jx(t)j)

Moreover, the transition probability matrix is described by

P=
0:7 �0:7
�0:9 0:9

� �

and the conditional probability matrix is given as

Ma et al. 7
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Figure 1. The jumping modes of Markovian jump system and its filter.
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Figure 2. The filtering error dynamics.
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Figure 3. The event-triggering instants and intervals.
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Figure 4. The neural network approximation error dynamics.
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Figure 5. Comparison result of neural network approximation.
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Figure 6. The jumping modes of Markovian jump system and its filter.
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L=
0:8 0:2
0:3 0:7

� �

Similarly, with other same parameters and zero initial condi-

tions, the corresponding filter gains and event-triggering

matrices can be calculated by

K(1)=

1:2486 1:1917

�0:0646 0:6464

0:9756 0:1259

�0:1589 0:6250

2
6664

3
7775,K(2)=

0:1240 1:5719

�1:3793 0:8936

2:0158 0:0261

0:3450 0:4080

2
6664

3
7775

W1(1)=
666:7043 10:2832

10:2832 670:9950

� �
,W1(2)=

668:9408 10:4773

10:4773 670:8186

� �

W2(1)=
0:8640 �0:5557

�0:5557 1:5731

� �
,W2(2)=

0:5795 �0:3710

�0:3710 1:0532

� �

Based on these setting parameters and main similar settings

in Example 1, the simulation results are depicted in Figures 10–

0 10 20 30 40 50 60
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0.05

0.1

0.15
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0.25

Figure 7. The filtering error dynamics.
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Figure 8. The event-triggering instants and intervals.
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Figure 9. The neural network approximation error dynamics.
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Figure 10. The jumping modes of Markovian jump system and its filter.
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Figure 11. The filtering error dynamics.
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13. It can be seen from these resulting states that the true states

of the VTOL are well filtered with an effective neural learning

process and desired H‘ performance index, while the communi-

cation efficiency is considerably improved accordingly.

Therefore, all these simulation validation results can support

our theoretical results.

Conclusion

This paper is concerned with the optimal filter co-design issue

of Markovian jump systems with unknown nonlinearity and
unaccessible mode information. Afterward, the event-
triggered scheme is adopted such that less updated control

information can be utilized. More precisely, the signal trans-
mission is conducted by event-triggered scheme based on the

ZOH. Based on the hidden mode information estimation
model, the nonsynchronous mode-dependent filters are fur-
ther developed with online neural network learning rules,

where conditional probability modes are employed instead of
true modes. Sufficient analysis and synthesis criteria are

derived by convex techniques, such that the modified H‘ per-
formance can be achieved. Eventually, the effectiveness of the

theoretical results is shown via three simulation examples. In
our future research, some interesting results are extending
current nonsynchronous models to more complicated condi-

tions, that is, how to deal with the partly known conditional
probabilities for mode information mismatch in a more gen-

eral form.
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Appendix

Notation

R
N N dimensional Euclidean space matrices

A. 0 Positive symmetric definite matrix A

(O,F,P) Complete probability space
E� Mathematics expectation
symA A+A

T

L2½0,‘) Space of square-integrable functions

on ½0,‘)
trfAg The trace of matrix A

� Symmetry term in matrix
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