
 

Noncooperative Model Predictive Game With
Markov Jump Graph

Yang Xu, Yuan Yuan, Senior Member, IEEE, Zhen Wang, Senior Member, IEEE, and Xuelong Li, Fellow, IEEE

 
   Abstract—In  this  paper,  the  distributed  stochastic  model  pre-
dictive  control  (MPC)  is  proposed  for  the  noncooperative  game
problem  of  the  discrete-time  multi-player  systems  (MPSs)  with
the  undirected  Markov  jump  graph.  To  reflect  the  reality,  the
state  and  input  constraints  have  been  considered  along  with  the
external disturbances. An iterative algorithm is designed such that
model  predictive  noncooperative  game could  converge  to  the  so-
called ε-Nash equilibrium in a distributed manner. Sufficient con-
ditions  are  established  to  guarantee  the  convergence  of  the  pro-
posed algorithm. In addition, a set of easy-to-check conditions are
provided to ensure the mean-square uniform bounded stability of
the underlying MPSs. Finally, a numerical example on a group of
spacecrafts  is  studied  to  verify  the  effectiveness  of  the  proposed
method.
    Index Terms—Markov  jump  graph,  model  predictive  control
(MPC),  multi-player  systems  (MPSs),  noncooperative  game, ε-Nash
equilibrium.
  

I.  Introduction

OVER  past  decades,  the  noncooperative  game  has  been
attracting  extensive  research  attention  in  a  variety  of

communities  such  as  battlefield  [1],  air  combat  [2],  and  the
security  issue of  the  cyber-physical  systems [3].  In  engineer-
ing  practice,  the  noncooperative  game  has  been  also  widely
used  in  large-scale  systems  where  the  central  coordinator  is
absent  [4]–[6].  Furthermore,  in  [7],  the  pioneering  work  has
been  studied  with  the  social  dilemma  experiments  to  reveal
how networks  promote  when  there  exists  the  noncooperative
game  in  social  contacts.  Nash  equilibrium  (NE)  is  normally

adopted to  quantify the outcome of  the noncooperative game
[8]–[10].  On  NE,  no  players  could  benefit  by  changing  their
actions  if  other  players  keep  their  strategies  unchanged.  It  is
worth  noting  that,  in  practical  large-scale  systems,  each  sub-
system (normally regarded as player) is normally subjected to
various  constraints,  and  would  operate  in  a  distributed  man-
ner where global state and parameter information are not pre-
requisite [4], [11]–[14]. To handle such a problem, the model
predictive control (MPC) has been introduced into the nonco-
operative  game  in  some  pioneering  papers  [15]–[19].  By
designing  iterative  algorithms  of  the  MPC,  each  player  can
obtain  the  NE  by  only  adopting  the  local  state  information
from its  neighbors  rather  than  the  global  state  and  parameter
information. Nevertheless, as far as we are concerned, the suf-
ficient conditions have not been established in existing litera-
ture to guarantee the convergence of such iterative algorithms.
This formulates the main motivation of writing this paper.

As  mentioned  above,  the  MPC method  is  effective  in  han-
dling  the  dynamical  constraint  [20]–[25].  Though  the  con-
straints  in  the  noncooperative  games  can  be  dealt  with  by
MPC, another problem arises. In the traditional game setup, it
has been implicitly assumed that the global information of the
underlying  dynamical  system  should  be  possessed  by  all  the
controllers/players, which is impossible in most practical situ-
ations [26]. Furthermore, in the noncooperative game of con-
trol  systems,  there  exist  the  inevitable  bandwidth  limitations
on  communication  networks  [27].  This  inherent  limitation
may lead to data conflict, which is the root cause of phenom-
ena  caused  by  bad  networks.  The  scheduling  protocols  are
widely  used  to  avoid  data  collisions.  Typically,  scheduling
protocols  include  periodic  protocol,  quadratic  protocol  and
stochastic protocol [28].  Among these protocols,  the stochas-
tic  communication protocols  (SCP) have caught  the  attention
of researchers and been used in industrial systems [29]. In the
context  of  SCP implementation,  a  protocol  that  uses  Markov
chains  to  represent “random  switching” of  communication
topology among players has been widely used in vehicle pla-
toon  [30],  multiple  high-speed  trains  [31],  vehicular  ad  hoc
networks  [32],  complex  network  control  systems  [33]  and
multi-player  systems (MPSs)  [34].  Though the  Markov jump
graph has been studied for many MPSs [35]–[37], there is lit-
tle  literature on noncooperative games with constraints  under
Markov jump graphs, which formulates another motivation of
writing our paper.

As  such,  it  is  by  no  means  a  trivial  task  to  obtain  the  NE
solution  under  the  MPC  scheme  for  MPSs  over  the  Marko-
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vian jump switching graph. More specifically, the main tech-
nical  challenges  are  identified  as  follows:  1)  How  to  reflect
the dynamical state and control constraints in the noncoopera-
tive game problem? 2) How to design an algorithm for MPSs
such  that  each  player  could  obtain  the  so-called  NE solution
over the Markovian jump graph? 3) How to ensure the conver-
gence of the derived algorithm and overall controlled system?

The  main  contributions  of  this  paper  are  given  as  follows:
1)  the  studied  noncooperative  game  problem  is  reformulated
in  the  framework  of  MPC  under  the  state/control  input  con-
straints; 2) an iterative algorithm is put forward for the consid-
ered game problem such that the ε-NE can be attained in a dis-
tributed  manner;  and  3)  the  easy-to-check  sufficient  condi-
tions  are  established  to  guarantee  the  convergence  of  the
derived iterative algorithm and the stability of the underlying
MPSs.

Z≥0 Z[a,b]
a,b ∈ Z≥0 {a,a+1, . . . ,b} Z+

∥ · ∥ ∥ · ∥∞
s ∈ Z[1,n]

λ(A)
λ(A)

A ∈ Rn max(A) (ormin(A))

diag{·}

x ∈ Rn x∗ x̃ x̂
Pr{·}

E{·}

Notations:  is  the  nonnegative  integer  set.  with
 is  the  positive  integer  set .  is  the

positive integer set. I represents the unit matrix with appropri-
ate dimensions.  denotes the Euclidean norm.  denotes
the  infinite  norm. . 0 and 1 represent  the  matrices
full of 0 and 1 with appropriate dimensions, respectively. 
(respectively, )  represents  the  maximum  eigenvalue
(respectively,  minimum  eigenvalue)  of  matrix A.  For  a  con-
strained  variable ,   represents  that
each  element  in A takes  the  maximum  value  (or  minimum
value) in the constraint.  represents the diagonal matrix.
For  a  matrix,  *  represents  the  symmetric  part  in  the  matrix.
For  variable , ,  and  represent  the  optimal  value,
candidate  value  and  predictive  value  of x,  respectively. 
and  represent the probability and the expectation, respec-
tively.  

II.  Problem Formulation and Preliminaries
  

A.  Graph Topology

G(r(k)) = {V(r(k)),E(r(k)),A(r(k))}
V(r(k)) = {v1,v2, . . . ,vN} E(r(k)) =V(r(k))×

V(r(k)) A(r(k)) = [ai j(r(k))] (i, j ∈ V(r(k)))

{r(k),k ∈ Z≥0}

M = {1,2, . . . ,q} Π = πmn

Consider  the  MPSs  with N players.  The  stochastic  switch-
ing  topology  is  consid-
ered,  where , 

 and   represent  the
set  of  players,  the  set  of  edges  and  the  weighted  adjacency
matrix,  respectively.  The  parameter  is  a  dis-
crete-time  homogeneous  Markov  chain  taking  values  in  a
finite set  and its transition rate matrix 
is governed by
 

πmn = Pr{r(k+1) = n|r(k) = m} ≥ 0, ∀m,n ∈ M
k ∈ Z≥0 Σ

q
n=1πmn = 1 ∀m ∈ M

ai j(r(k)) = a ji(r(k)) > 0

aii(r(k)) = 0 i ∈ V(r(k)) Ni(r(k)) = { j : (v j,vi) ∈ E(r(k))}

for  and , . For an undirected graph,
 indicates that the i-th and the j-th play-

ers  can  exchange  information  equally.  Additionally,  we  have
 for all . 

represents  a  collection of  all  players  capable  of  communicat-
ing with the i-th player.  

B.  System Model
{1,2, . . . ,N}Consider  the  MPSs  with N players  labeled  by .

The underlying dynamics of the i-th player is described by
 

xi(k+1) = Aixi(k)+Biui(k)+Diωi(k) (1)

xi(k) ∈ Rnx ui(k) ∈ Rnu ωi(k) ∈ Rnx

Ai Bi Di
k ∈ Z≥0

where ,  and  represent  the
state  variable,  control  input  and  disturbance  of  player i,
respectively. ,  and  are  matrices  with  appropriate
dimensions.  represents  the  time  instant.  For  player i,
the state and control constraints are considered as
 

xi(k) ∈ Xi = {xi : biT
x xi(k) ≤ hi

x}

ui(k) ∈ Ui = {ui : biT
u ui(k) ≤ hi

u}
bi

x bi
u hi

x hi
uwhere , ,  and  are  all  matrices  with  appropriate

dimensions known a priori;  The disturbance term is  assumed
to satisfy
 

ωi(k) ∈Wi = {ωi(k) : biT
ω ωi(k) ≤ hi

ω}
bi
ω hi

ωwhere  is  a  known  appropriate  matrix  and  is  a  known
constant vector.  

C.  Control Input
(∀i ∈ V(r(k)))For player i , the control input to be designed

takes the form as
 

ui(k) = Kixi(k)+ ci(k) (2)
Ki

Φi = Ai+BiKi ci(k)
where  is  a  feedback  gain  to  be  designed  such  that

 is  strictly  stable;  is  the correction control
signal  generated  by  solving  the  Prob  1  which  would  be  pre-
sented subsequently.  

D.  Noncooperative Game
Xi

xi(k) x j(k) j ∈ Ni(r(k))
X j Ωi

−i =
∏

j∈Ni(r(k))X j
∏

x−i(k)
V(r(k)) xi

−i(k)

G(r(k))
𝟋(Xi, Ji,G(r(k))) xi

−i(k) ∈Ωi
−i ωi(k) ∈Wi

Ji(k) = Ji(x⃗ i(k), u⃗ i(k), x⃗ i
−i(k),r(k))

Denote the state constraint of the i-th player as . Note that
 is  affected  by ,  which  is  subjected  to

.  Define  where  is  the  Cartesian
product.  Denote  as  the  set  of  the  states  of  players  in

 except the i-th player. Denote  as the set of the
states  of  players  which  are  the  neighbors  of  the i-th  player.
The  game  thus  defined  on  is  denoted  by

.  For  any  given  and ,
player i aims  to  solve  the  following  optimization  problem
where  each  player  minimizes  the  individual  cost  function

 in a distributed and nonco-
operative manner. Here
 

Ji(k) =
Ts−1∑
s=0

∑
j∈Ni(r(k))

ai j(r(k))∥x̂i(k+ s|k)− x̂ j(k+ s|k)∥2Qi j

+

Ts−1∑
s=0

{
∥x̂i(k+ s|k)∥2Qi

+ ∥ûi(k+ s|k)∥2Ri

}
+ ∥x̂i(k+Ts|k)∥2Pi

(3)

and
 

x⃗ i(k) = [x̂T
i (k|k) x̂T

i (k+1|k) · · · x̂T
i (k+Ts|k)]T

u⃗ i(k) = [ûT
i (k|k) ûT

i (k+1|k) · · · ûT
i (k+Ts−1|k)]T

x⃗ j(k) = [x̂T
j (k|k) x̂T

j (k+1|k) · · · x̂T
j (k+Ts−1|k)]T

x̂i(k+ s|k) ûi(k+ s|k)
x̂ j(k+ s|k)

j ∈ Ni(r(k))
Qi > 0 Qi j > 0 Ri > 0

where  represents the predictive state;  rep-
resents the predictive input signal;  denotes the pre-
dictive  state  obtained  from  the  player j for ;

,  and  are weighting matrices with appro-
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Pi > 0
Ts ∈ Z+

ûi(k+ s|k) = Ki x̂i(k+ s|k)+ ĉi(k+ s|k) s ∈ Z[0,Ts−1]
c⃗i(k) = [ĉT

i (k|k) ĉT
i (k+1|k) · · · ĉT

i (k+Ts−1|k)]T

priate dimensions;  is the terminal penalty matrix to be
designed;  and  is  the  predictive  horizon.  In  addition,

 for  and
.

The  following  definitions  are  presented  which  would  be
used in the sequel.

Ξ1,i > 0 i ∈ {1,2, . . . ,N}
Ξ2,i = Ξ2,i(Ξ1,i) E{∥xi(k)∥} < Ξ2,i

E{∥xi(0)∥} ≤ Ξ1,i k ∈ Z≥0 (i ∈ V(r(k))) Ξ2,i(·)

C
[0,+∞)

Definition 1 [38]: System (1) is said to be mean-square uni-
formly  bounded  if,  for  any  ( ),  there
exists a constant  such that  for

 and  , where  is the
non-negative continuous functionals, mapping bounded sets in
the Banach space of continuous function  into bounded sets
in .

(x⃗ N∗
i (k), u⃗ N∗

i (k), x⃗ iN∗
−i (k))

𝟋(Xi, Ji,G(r(k))) x⃗ iN∗
−i (k)

εi

Definition 2 [39]:  is said to be the
ε-NE of the game  if, for every given ,
there exists a non-negative constant  such that
 

Ji(x⃗ N∗
i (k), u⃗ N∗

i (k), x⃗ iN∗
−i (k),r(k))

≤ Ji(x⃗ i(k), u⃗ i(k), x⃗ iN∗
−i (k),r(k))+εi, ∀i ∈ V(r(k)) (4)

∀x̂i(k+ s|k) ∈ Xi s ∈ Z[0,Ts] ∀ûi(k+ s|k) ∈
Ui s ∈ Z[0,Ts−1] Ji(x⃗ i(k), u⃗ i(k), x⃗ iN∗

−i (k),r(k))
x⃗ N∗

i (k)
x⃗ iN∗
−i (k)

holds  with  for  and 
 for ,  where  is

the  admissible  cost  of  the i-th  player;  is  the  optimal
strategy of  player i,  and  are  the  optimal  strategies  of
the neighbor of player i.

The  following  optimization  problem which  aims  to  find ε-
NE in presence of the state and control input constraints, dis-
turbances and Markovian jump graph is given as:

Prob 1:
 

(x⃗ N∗
i (k), u⃗ N∗

i (k)) = argminE{Ji(x⃗ i(k), u⃗ i(k), x⃗ iN∗
−i (k),r(k))}

(5)
s.t.

 

x̂i(k+ s+1|k) =Ai x̂i(k+ s|k)+Biûi(k+ s|k) (6)
 

x̂i(k+ s|k) ∈ X̂i(k+ s|k) (7)
 

ûi(k+ s|k) ∈ Ui (8)
s ∈ Z[0,Ts−1]for  where

 

X̂i(k+ s|k) =
{
x̂i(k+ s|k) : biT

x x̂i(k+ s|k)

≤ hi
x − ξ̃i(k+ s|k)

}
ξ̃i(k+ s|k) =maxbiT

x ei(k+ s|k), ωi(k+ s|k) ∈Wi

ei(k+ s+1|k) = Φiei(k+ s|k)+Diωi(k+ s|k)

ei(k+ s|k) = xi(k+ s|k)− x̂i(k+ s|k)
ωi(k+ s|k)

ei(k|k) = 0 x̂i(k|k) = xi(k)

where  only indicates the possible future situation of
the disturbance, not the prediction of the disturbance. Further-
more, we have  due to .

G(r(k))

𝟋(Xi, Ji,G(r(k)))

Towards  this  end,  the  design  objectives  of  this  paper  are
given as: 1) design an iterative algorithm for MPSs (1) under
(2) over the Markovian jump graph  such that the non-
cooperative  game  can  be  solved  in  a  distributed  manner;
2) establish sufficient conditions to guarantee that the nonco-
operative  game  at  each  time  step  converges
to  the ε-NE  in  (4);  and  3)  establish  sufficient  conditions  to
guarantee  that  the  MPSs  (1)  is  mean-square  uniformly

bounded under designed input signal (2).
Remark  1: The  motivation  of  organizing  this  paper  are:

1)  few studies  have  established  the  theoretical  conditions  for
the convergence of noncooperative games with constraints, so
we present a sufficient condition to ensure that the noncooper-
ative game can obtain the ε-NE solution under constraints and
disturbances; 2) few studies have obtained the ε-NE of nonco-
operative games only using the neighbors’ state information in
a  totally  distributed  way,  so  we  propose  a  totally  distributed
method  to  deal  with  the  noncooperative  game  by  only  using
the  neighbors’ state  information;  3)  few studies  have  consid-
ered the inevitable phenomenon in MPSs such as communica-
tion  delay,  link  failures,  packet  dropouts  and  node  failures
[33],  so  we  uses  Markov  jump  graph  to  model  these  phe-
nomenons and establish the closed-loop stability of the MPSs
in the noncooperative game.  

III.  Main Results
  

A.  Iterative Algorithm

𝟋(Xi, Ji,G(r(k)))

𝟋(Xi, Ji,G(r(k)))

Considering  the  dynamic  constraints  (6)−(8),  it  becomes
impossible to obtain the NE solution of game 
by  solving  the  traditional  fixed  point  equation  [40],  not  to
mention the case where all the players in game 
are governed by the Markovian jump graph. Therefore, in this
part,  we  turn  to  solve  Prob  1  by  designing  a  novel  iterative
algorithm that is fully distributed.

In this part, an iterative algorithm is proposed to solve Prob
1  such  that  each  player  can  achieve  the ε-NE  at  each  time
instant k. For illustration, we define Prob 2 to clearly show the
iterative algorithm that is designed for the purpose of obtain-
ing the solution of Prob 1.

t ∈ Z[0, t̄]
t̄ ∈ Z+ x⃗ ∗i (t,k) u⃗ ∗i (t,k) x⃗ i

−i(t,k) J∗i (t,k)
Denote  as  the  iterative  times  with  given constant

.  Let , ,  and  be  the  opti-
mal values and the optimal costs at the t-th iterative of Prob 2
at time step k.

Prob 2:
 

Ji(x⃗ ∗i (t,k), u⃗ ∗i (t,k), x⃗ i∗
−i(t−1,k),r(k))

=minE
{
Ji(x⃗ i(t,k), u⃗ i(t,k), x⃗ i∗

−i(t−1,k),r(k))
}

(9)

　　 s.t.
 

x̂i(k+ s+1|t,k)=Ai x̂i(k+ s|t,k)+Biûi(k+ s|t,k) (10)
 

x̂i(k+ s|t,k) ∈ X̂i(k+ s|t,k) (11)
 

ûi(k+ s|t,k) ∈ Ui

s ∈ Z[0,Ts−1] (12)
where
 

Ji(x⃗ i(t,k), u⃗ i(t,k), x⃗ i∗
−i(t−1,k),r(k))

=

Ts−1∑
s=0

{
∥x̂i(k+ s|t,k)∥2Qi

+ ∥ûi(k+ s|t,k)∥2Ri

}

+ ∥x̂i(k+Ts|t,k)∥2Pi
+

Ts−1∑
s=0

∑
j∈Ni(r(k))

ai j(r(k))

×∥x̂i(k+ s|t,k)− x̂ j(k+ s|t−1,k)∥2Qi j
(13)
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with
 

x⃗ i(t,k) = [x̂T
i (k|t,k) x̂T

i (k+1|t,k) · · · x̂T
i (k+Ts|t,k)]T

u⃗ i(t,k) = [ûT
i (k|t,k) ûT

i (k+1|t,k) · · · ûT
i (k+Ts−1|t,k)]T

c⃗i(t,k) = [ĉT
i (k|t,k) ĉT

i (k+1|t,k) · · · ĉT
i (k+Ts−1|t,k)]T

x⃗ j(t−1,k) = [x̂T
j (k|t−1,k) · · · x̂T

j (k+Ts−1|t−1,k)]T

X̂i(k+ s|t,k) ={
x̂i(k+ s|t,k) : biT

x x̂i(k+ s|t,k) ≤ hi
x − ξ̃i(k+ s|t,k)

}
ξ̃i(k+ s|t,k) =maxbiT

x ei(k+ s|t,k)

ei(k+ s+1|t,k) = Φiei(k+ s|t,k)+Diωi(k+ s|t,k)

ei(k+ s|t,k) = xi(k+ s|t,k)− x̂i(k+ s|t,k)

ωi(k+ s|t,k) ∈Wi, ei(k|t,k) = 0
i ∈ V(r(k)) j ∈ Ni(r(k)) s ∈ Z[0,Ts−1]for ,  and .

x̂i(k+ s|t,k) ûi(k+ s|t,k) ĉi(k+ s|t,k) X̂i(k+ s|t,k)
ξ̃i(k+ s|t,k) ei(k+ s|t,k) ωi(k+ s|t,k)

x̂i(k+ s|k) ûi(k+ s|k) ĉi(k+ s|k) X̂i(k+ s|k) ξ̃i(k+ s|k)
ei(k+ s|k) ωi(k+ s|k) t ∈ Z[0, t̄]
x⃗ ∗j(t−1,k) (t−1) x⃗ ∗j(k)

t ∈ Z[1, t̄] x⃗ ∗j(0,k) = x⃗ N∗
j (t,k−1) k ∈ Z+

x⃗ ∗j(t−1,0) = x⃗ ∗j(0) k = 0 x̂i(k|t,k) =
xi(k) ei(k|t,k) = 0 t ∈ Z[0, t̄]

Note that , , , ,
,  and  represent the t-th iter-

ative of , , , , ,
 and  of Prob 2 for , respectively.
 represents the -th iterative of  of Prob 2

for .  In  addition,  for ,
and  for .  Considering 

, we have  for .
It  should  be  noted  that  Prob  2  is  iteratively  solved  in  the

iterative algorithm, and the solution of Prob 2 is equivalent to
that of Prob 1 when the termination condition of the iterative
algorithm is satisfied. For simplicity, we denote
 

J∗i (t,k,r(k)) = Ji(x⃗ ∗i (t,k,r(k)), u⃗ ∗i (t,k), x⃗ i∗
−i(t−1,k),r(k)).

In  the  following,  we present  the  iteration algorithm for  the
noncooperative  game  of  the  MPSs  to  obtain  the  MPC  input
signals.  Notice  that  the  convergence  of  Algorithm  1  is  to  be
proven in Theorem 1.

Algorithm 1 The iterative algorithm for the noncooperative game

Initialization:
k = 0 x⃗ i

−i(0,0) = 0 t̄ ∈ Z+

J̄i > 0 i ∈ V(r(k))

x⃗ ∗i (0,0) k = k+1

1. At ,  set  for player i.  Set  and the iterative
accuracy  for  all .  Player i solves  Prob  2  to  obtain

. Set .
k ∈ Z+Iteration: At , the controller of player i executes the follow-

ing steps:
t = 02. Set the iterative step .

x⃗ ∗i (t,k−1)

x⃗ i∗
−i(t,k−1)

3.  Player i transmits  to  its  neighbors  and  obtains
.

t = t+1 xi(k) x⃗ i∗
−i(t−1,k−1)

x⃗ ∗i (t,k) J∗i (t,k)

4. Set . Player i uses  and  to solve Prob 2
such that the player i obtains  and .

t = t̄ |J∗i (t,k)− J∗i (t−1,k)| ≤ J̄i û∗i (t,k)

x⃗ ∗i (t,k)

x⃗ i∗
−i(t,k)

5.  If  or ,  player i sends  to  the
actuator.  Go  to  7.  Otherwise,  player i transmits  to  its  neigh-
bors, and obtains  from its neighbors.

t = t+1 xi(k) x⃗ i
−i∗(t−1,k)

x⃗ ∗i (t,k) J∗i (t,k)

6.  Set .  Player i uses  and  to  solve  Prob  2
such that the player i obtains  and . Go to 5.

k = k+17. Set . Go to 2.

The diagram of the proposed iterative algorithm is shown in
Fig. 1. In Fig. 1, the optimization process of player i at instant

−i ∈ Ni(m)k is  shown  in  detail.  represents  the  neighbors  of
player i.  At  each  iterative  step t,  player i and  its  neighbors
check  the  termination  conditions.  If  the  termination  condi-
tions are not satisfied, player i exchanges its information with
its  neighbors,  and  use  the  obtained  information  to  solve  the
optimization  problem.  If  the  termination  conditions  are  satis-
fied, then the algorithm is terminated.
 

xi
*(0,k − 1)

Communication
…

Communication

Endor

Solve optimization problems

Solve optimization problems

Solve optimization problems

End

… …

i

t = 0

t = 1

t = t − t = t −

t = t

i

−i ∈ Ni(m) −i ∈ Ni(m)

xi(k)
→ xi

*(0,k − 1)
xi(k)
→

xi
*(0,k − 1)→

xi*
xi
−i(k)

→
−i(0,k − 1)

xi
*(1,k)i

−i ∈ Ni(m)

xi(k)
| J*

i(t,k) − J*
i(t − 1,k) |≤ Ji

→

xi*
xi
−i(k)

→
−i(1,k)

xi
*(t,k)i

−i ∈ Ni(m)

xi(k)
→

xi*
xi
−i(k)

→
−i(t,k)

xi*
xi
−i(k)

→
−i(0,k − 1)

xi*→
−i(0,k − 1)

i

−i ∈ Ni(m)

xi
*(1,k)

xi(k)
→

xi
*(1,k)→

xi*
xi
−i(k)

→
−i(1,k)

xi*→
−i(1,k)

−

−

and
t ≠ t

| J*
i(t,k) − J*

i(t − 1,k) |> Ji
−

−

−

−

 
Fig. 1.     The diagram of the iterative algorithm.
 

A j B j Q j R j
( j ∈ Ni(r(k)))

Remark  2: From  Algorithm  1,  it  is  easy  to  find  that  the
player i only  uses  the  state  information  obtained  from  its
neighbors  without  requiring  any  knowledge  of  the  system
parameters  of  the  neighboring  players,  e.g., , , , 

 and  so  on.  The  advantage  of  this  is  that  it  is
more  in  line  with  the  actual  situation  of  online  optimization
and has less conservativeness.

t̄
Remark  3: The  polynomial  complexity  of  Algorithm  1

under the maximum number of iteration  is given as
 

O
(
E
{⃗
c∗i (t̄,k)

})
= O(t̄ni,max)

where
 

ni,1,max =max{2n3
uT 3

s q|N̄i(m)|, 2nunxT 3
s q|N̄i(m)|}

ni,2,max = 2T 2
s n2

unx, ni,3,max = 2n3
uT 4

s

ni,max =max{ni,1,max, ni,2,max, ni,3,max}
|N̄i(m)|with  being the number of player i’s neighbors.

In  the  following,  Lemma  1  is  proposed  to  prepare  for  the
convergence proof of Algorithm 1.

Lemma  1: Prob  2  is  equivalent  to  the  following  optimiza-
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tion problem:
 

Ji(x⃗ ∗i (t,k),u⃗ ∗i (t,k), x⃗ i∗
−i(t−1,k)(t−1,k),r(k))

=minE{Ji(zi(k|t,k), x⃗ i∗
−i(t−1,k)(t−1,k),r(k))}

=minE
{
∥zi(k|t,k)∥2

E
{
Q̂i(m)

}+ ∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)

× x⃗ ∗Tj (t−1,k)Q⃗i j x⃗
∗
j(t−1,k)−2

∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)

× zT
i (k|t,k)CT

i1Q⃗i j x⃗
∗
j(t−1,k)

}
, m ∈ M

(14)

gi(t,k, s) ≤ 0s.t.       where
 

x⃗ i(t,k) =Ci
xx x̂i(k|t,k)+Ci

xcc⃗i(t,k)

gi(t,k, s) = Bi
xuΨ

s
i zi(k|t,k)−Hi+ ξi(t, s)

ξi(t, s) = max
ωi(k+ f |t,k)∈Wi

Bi
ω

s−1∑
f=0

Φ
f
i Diωi(k+ f |t,k)

s.t. ωi(k+ s|k) ∈Wi, s ∈ Z[1,Ts−1]

ξi(t,0) = 0, zi(k|t,k) =
[
x̂T

i (k|t,k) c⃗T
i (t,k)

]T

Q⃗i j = diag{Qi j, . . . ,Qi j,0}, R⃗i = diag{Ri, . . . ,Ri}

Ci1 =
[
Ci

xx Ci
xc

]
, Ci2 =

[
Ci

uxC
i
xx Ci

uxC
i
xc+ I

]
Q⃗i = diag{Qi, . . . ,Qi,Pi}

Ψi =

 Φi BiEi

0Mi

 , Bi
xu =

 biT
x [I 0]

biT
u [Ki Ei]


Ei =

[
I 0 · · · 0

]
, Mi =

 0 I

0 0


Hi =

[
hiT

x hiT
u

]T
, Bi
ω =

[
bi

x KT
i bi

u

]T

Ci
ux =


Ki · · · 0 0
...
. . .

...
...

0 · · · Ki 0

 , Ci
xx =


I

Φi

...

Φ
Ts
i



Ci
xc =



0 · · · 0 0
Bi · · · 0 0
...

. . .
...

...

Φ
Ts−2
i Bi · · · Bi 0

Φ
Ts−1
i Bi · · · ΦiBi Bi


E{Q̂i(m)} =

∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)CT
i1Q⃗i jCi1

+CT
i2R⃗iCi2+CT

i1Q⃗iCi1. (15)

Proof: Substituting (10) into (13), (13) becomes
 

Ji(x⃗ i(t,k),u⃗ i(t,k), x⃗ i∗
−i(t−1,k),r(k))

= ∥Ci
ux(Ci

xx x̂i(k|t,k)+Ci
xcc⃗i(t,k))+ c⃗i(t,k)∥2

R⃗i

+ ∥Ci
xx x̂i(k|t,k)+Ci

xcc⃗i(t,k)∥2
Q⃗i
+

∑
j∈Ni(r(k))

ai j(r(k))

×∥Ci
xx x̂i(k|t,k)+Ci

xcc⃗i(t,k)− x⃗ ∗j(t−1,k)∥2
Q⃗i j (16)

x⃗ i(t,k) =Ci
xx x̂i(k|t,k)+Ci

xcc⃗i(t,k)
zi(k|t,k) = [x̂T

i (k|t,k) c⃗T
i (t,k)]T

with .  Then,  (16)  can  be
rewritten as (14) with . Consider
 

xi(k+ s|t,k) = x̂i(k+ s|t,k)+ ei(k+ s|t,k)

x̂i(k+ s+1|t,k) = Φi x̂i(k+ s|t,k)+Biĉi(k+ s|t,k)

ei(k+ s+1|t,k) = Φiei(k+ s|t,k)+Diωi(k+ s|t,k)

ei(k|t,k) = 0 x̂i(k|t,k) = xi(k)with  and . It is easy to obtain that
 

xi(k+ s|t,k) = [I 0]zi(k+ s|t,k)+ ei(k+ s|t,k)

ui(k+ s|t,k) = [Ki Ei]zi(k+ s|t,k)+Kiei(k+ s|t,k)

zi(k+ s+1|t,k) = Ψizi(k+ s|t,k).

Then, (11) and (12) are extended to
 

gi(t,k, s) =Bi
xuΨ

s
i zi(k|t,k)−Hi+ ξi(t, s), s ∈ Z[0,Ts−1]. ■

V(r(k))
V(r(k))

Remark  4: In  this  paper,  the  noncooperative  game  for  the
MPSs is considered. According to the proposed iterative algo-
rithm in Algorithm 1, the iteration would be terminated when
no  players  in  can  benefit  from  changing  its  action
while  other  players  in  keep  their  strategies
unchanged,  which  is  exactly  the  definition  of  NE.  Further-
more,  we  have  proven  that  the  noncooperative  game  can
finally  converge  to  the ε-NE.  In  the  framework  of  MPC,  the
state and input constraints are taken into consideration for the
noncooperative  game.  By  using  the  proposed  iterative  algo-
rithm,  we  do  not  have  to  obtain  NE  analytically,  which  is
actually impossible to acquire if the input/state constraints and
external disturbances are considered.  

B.  Convergence of the Iterative Algorithm

t→ +∞

The first  theorem provides the sufficient condition to guar-
antee that Algorithm 1 is convergent and the mean-square uni-
formly  bounded  stability  is  obtained  for  the  noncooperative
game at each time instant k as number of iteration .

PX(m) (∀m ∈ M)
Theorem  1: If  there  exists  a  positive  definite  symmetry

matrix  , such that
 

2ΦT
X(m)PX(m)ΦX(m)−PX(m) < 0 (17)

holds with
 

ΦX(m) =


0 Ã12(m) · · · Ã1N(m)

Ã21(m) 0 · · · Ã2N(m)
...

...
. . .

...

ÃN1(m) ÃN2(m) · · · 0


Ãi j(m) =

q∑
µ=1

πmµai j(m)Ci
xc

(
E{Q̂22

i (m)}
)−1

CiT
xcQ⃗i j

E{Q̂i(m)} =
 E{Q̂11

i (m)} E{Q̂12
i (m)}

E{Q̂21
i (m)} E{Q̂22

i (m)}

 , m ∈ M (18)

XU et al.: NONCOOPERATIVE MODEL PREDICTIVE GAME WITH MARKOV JUMP GRAPH 935 



E{Q̂i(m)} Q⃗i j Ci1

(x⃗ N∗
i (k), u⃗ N∗

i (k),
x⃗ iN∗
−i (k)) (i ∈ V(m)) 𝟋(Xi, Ji,G(r(k)))
εi = Li(Di

x +Di
u)

where ,  and  are given in Lemma 1, then Algo-
rithm  1  can  guarantee  that  the  noncooperative  game  of  the
MPSs  converge  to  the ε-NE.  Furthermore, 

  is  the ε-NE of  the  game 
with , where
 

Di
x = max

x1
i ,x

2
i ∈Xi

∥x1
i − x2

i ∥∞

Di
u = max

u1
i ,u

2
i ∈Ui

∥u1
i −u2

i ∥∞

i ∈ V(m)for .
E{Ji(x⃗ i(t,k), u⃗ i(t,k), x⃗ i∗

−i(t−1,k),r(k))}Proof: Rewrite  as
 

E
{
Ji(x⃗ i(t,k), u⃗ i(t,k), x⃗ i∗

−i(t−1,k),r(k))
}

=E

 ∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)x⃗ ∗Tj (t−1,k)Q⃗i j x⃗
∗
j(t−1,k)


−2E

 ∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)x̂T
i (k|t,k)CiT

xxQ⃗i j x⃗
∗
j(t−1,k)


−2E

 ∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)⃗cT
i (t,k)CiT

xcQ⃗i j x⃗
∗
j(t−1,k)


+E

{
x̂T

i (k|t,k)E{Q̂11
i (m)}x̂i(k|t,k)

}
+2E

{⃗
cT

i (t,k)E{Q̂21
i (m)}x̂i(k|t,k)

}
+E

{⃗
cT

i (t,k)E{Q̂22
i (m)}⃗ci(t,k)

}
(19)

with
 

E{Q̂i(m)} =
 E{Q̂11

i (m)} E{Q̂12
i (m)}

E{Q̂21
i (m)} E{Q̂22

i (m)}


E{Q̂12T

i (m)} = E{Q̂21
i (m)}

gi(t,k, s)
where .  Similarly,  we  can  rewrite

 as
 

gi(t,k, s) = Bi
xuΨ

s
i

[
x̂T

i (k|t,k) c⃗T
i (t,k)

]T −Hi+ ξi(t, s).

Fi(s) = Bi
xuΨ

s
i Fi(s) = [Fi1(s) Fi2(s)]Denote  and .  Then,  we

have
 

gi(t,k, s) = Fi1(s)x̂i(k|t,k)+Fi2(s)⃗ci(t,k)−Hi+ ξi(t, s). (20)

c⃗∗i (t,k)
According  to  the  Karush-Kuhn-Tucher  (KKT)  condition

[41], (14) suggests us to find a  satisfying the following
conditions:
 

c⃗∗i (t,k) = argminE
{
Li (⃗ci(t,k))

}
Li (⃗ci(t,k)) = Ji(x⃗ i(t,k), u⃗ i(t,k), x⃗ i∗

−i(t−1,k),r(k))

+

Ts−1∑
s=0

δTi (k+ s|t,k)gi(t,k, s)

gi(t,k, s) ≤ 0, δi(k+ s|t,k) ≥ 0 (21)
 

δTi (k+ s|t,k)gi(t,k, s) = 0 (22)
 

0 =
∂E

{
L̄i (⃗ci(t,k))

}
∂c⃗i(t,k)

(23)

s ∈ Z[0,Ts−1] δi(k+ s|t,k)for , where  is the decision variable.
From (19) and (23), we have

 

E{Q̂22
i (m)}E

{⃗
c∗i (t,k)

}
=−E

E{Q̂12
i (m)}x̂i(k|t,k)+

1
2

Ts−1∑
s=0

FT
i2(s)δi(k+ s|t,k)


+E

 ∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)CiT
xcQ⃗i j x⃗

∗
j(t−1,k)

 . (24)

Additionally,  (21)  and  (22)  are  equivalent  to  the  following
two cases:

δi(k+ s|t,k) = 0 gi(t,k, s) < 0 s ∈ Z[0,Ts−1]Case I:  and , .
δi(k+ s|t,k) ≥ 0 gi(t,k, s) = 0 s ∈ Z[0,Ts−1]Case II:  and , .

For Case I, (24) can be rewritten as
 

E{Q̂22
i (m)}E

{⃗
c∗i (t,k)

}
=E

 ∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)CiT
xcQ⃗i j x⃗

∗
j(t−1,k)


−E

{
E{Q̂21

i (m)}x̂i(k|t,k)
}
. (25)

For Case II, according to (20), we have
 

E
{
Fi2(s)⃗c∗i (t,k)

}
= E {Hi− ξi(t, s)−Fi1(s)x̂i(k|t,k)} (26)

s ∈ Z[0,Ts−1]for . Combining (24), (25) and (26), we have
 

Mi(x̂i(k|t,k), c⃗∗i (t,k), x⃗ i∗
−i(t−1,k),r(k) = m)

=E

1
2

Ts−1∑
s=0

FT
i2(s)δi(k+ s|t,k)


=E

 ∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)CiT
xcQ⃗i j x⃗

∗
j(t−1,k)

−E{Q̂22
i (m)}⃗c∗i (t,k)

}
−E

{
E{Q̂21

i (m)}x̂i(k|t,k)
}
.

E
{ 1

2
∑Ts−1

s=0 FT
i2(s)δi(k+ s|t,k)

}
The  norm  bound  of  can  be

obtained by
 

M∗i (t,k) =max
∥∥∥Mi(x̂i(k|t,k), c⃗∗i (t,k), x⃗ i∗

−i(t−1,k),r(k) = m)
∥∥∥

　s.t.
 

E
{
Fi2(s)⃗c∗i (t,k)

}
= E

{
Hi− ξi(t, s)−Fi1(s)x̂∗i (k|t,k)

}
b jT

x x̂∗j(k+ s|t−1,k) ≤ h j
x − ξ̃ j(k+ s|t−1,k)

biT
x x̂i(k|t,k) ≤ hi

x − ξ̃i(k|t,k)

j ∈ Ni(m), s ∈ Z[0,Ts−1].

Therefore, it is easy to obtain
 

E{Q̂22
i (m)}E

{⃗
c∗i (t,k)

}
=E

 ∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)CiT
xcQ⃗i j x⃗

∗
j(t−1,k)


−E

{
E{Q̂21

i (m)}x̂i(k|t,k)−ωi
x(t,k)

}
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where
 

ωi
x(t,k) ∈

E{1
2

Ts−1∑
s=0

FT
i2(s)δi(k+ s|t,k)

}
, 0

 .
Then, we have

 

E
{⃗
c∗i (t,k)

}
= E

{ ∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)

×
(
E{Q̂22

i (m)}
)−1

CiT
xcQ⃗i j x⃗

∗
j(t−1,k)

}
−E

{(
E{Q̂22

i (m)}
)−1
E{Q̂21

i (m)}x̂i(k|t,k)
}

−E
{(
E{Q̂22

i (m)}
)−1
ωi

x(t,k)
}
. (27)

From (15) and (27), it follows that:
 

E
{
x⃗ ∗i (t,k)

}
= E

{ ∑
j∈Ni(m)

Ãi j(m)x⃗ ∗j(t−1,k)

+Θi x̂i(k|t,k)+Γiω
i
x(t,k)

}
(28)

with
 

Ãi j(m) =
q∑
µ=1

πmµai j(m)Ci
xc

(
E{Q̂22

i (m)}
)−1

CiT
xcQ⃗i j

Θi(m) =Ci
xx −Ci

xc

(
E{Q̂22

i (m)}
)−1
E{Q̂21

i (m)}

Γi(m) =−Ci
xc

(
E{Q̂22

i (m)}
)−1
.

X(t,k) = [x⃗ T
1 (t,k) x⃗ T

2 (t,k) · · · x⃗ T
N(t,k)]TDenote .  Then,  we

have
 

E {X(t+1,k)}

= E
{
ΦX(m)X(t,k)+Θ̃(m)X(0,k)+Υ(m)W(t+1,k)

}
with
 

Υ(m) = diag{Γ1(m),Γ2(m), . . . ,ΓN(m)}
Θ̃(m) = diag{Θ1(m),Θ2(m), . . . ,ΘN(m)}

W(t,k) = [ω1T
x (t,k) ω2T

x (t,k) · · · ωNT
x (t,k)]T

ΦX(m)and  is given in (18). Denote
 

W̃(t,k) = Θ̃(m)X(0,k)+Υ(m)W(t+1,k).
Choose a Lyapunov candidate

 

VX(t,k) = XT (t,k)PX(m)X(t,k)
PX(m) ∆VX = E{VX(t+1,

k)−VX(t,k)}
with a positive definite matrix . Letting 

 and (17) hold, we have
 

E{VX(t+1,k)−VX(t,k)}

≤ E
{
XT (t,k)

(
2ΦT

X(m)PX(m)ΦX(m)−PX(m)
)
X(t,k)

}
+E

{
2W̃T (t,k)PX(m)W̃(t,k)

}
≤−E

{
α(m)

λ(PX(m))

}
E {VX(t,k)}+E

{
ϱ(m)∥W̃(t,k)∥2∞

}

where
 

ϱ(m) = 2λ(PX(m)), 0 < α(m) ≤min{ς(m),λ(PX(m))}

ς(m) = λ(PX(m)−2ΦT
X(m)PX(m)ΦX(m)).

Then, we have
 

E {VX(t+1,k)} ≤
(
1−E

{
α(m)

λ(PX(m))

})
E {VX(t,k)}

+E
{
ϱ(m)∥W̃(t,k)∥2∞

}
which yields
 

E {VX(t,k)} ≤
(
1−E

{
α(m)

λ(PX(m))

})t

E {VX(0,k)}

+E

λ(PX(m))ϱ(m)
α(m)

∥W̃(t,k)∥2∞
 .

Therefore, we have
 

E
{
∥X(t,k)∥2

}
≤ E

λ(PX(m))
λ(PX(m))

(
1− α(m)

λ(PX(m))

)t∥X(0,k)∥2

+E

 ϱ(m)λ(PX(m))
α(m)λ(PX(m))

∥W̃(t,k)∥2∞
 .

t→ +∞When , it can be obtained that
 

E
{
∥X(+∞,k)∥2

}
≤ E

 ϱ(m)λ(PX(m))
α(m)λ(PX(m))

∥W̃(t,k)∥2∞
 .

Therefore,  the  mean-square  uniformed  bounded  stability  is
proved  for  the  noncooperative  game  and  the  convergence  of
Algorithm 1 is proved.

𝟋(Conηi , Ji,G)
In  the  following,  the  proof  of  obtaining  the ε-NE  of  the

game  by Algorithm 1 is given.

t = t̄ |J∗i (t,k,r(k))− J∗i (t−1,k,r(k))| ≤ J̄i t ∈ Z[0, t̄]
x⃗ N∗

i (k) = x⃗ ∗i (t,k) u⃗ N∗
i (k) = u⃗ ∗i (t,k) x⃗ N∗

j (k) = x⃗ ∗j(t,k)
i ∈ V(r(k)) j ∈ Ni(r(k))

When  Algorithm  1  meets  the  termination  conditions,  i.e.,
 or  for ,  we

have ,  and 
for  and .

Rnx ×Rnx

Li > 0

Note  that  (13)  is  a  quadratic  function  and  its  value  is  lim-
ited on a compact subset of , it is concluded that (13)
is Lipschitz continuous [4] and there exists  such that
 

|Ji(x⃗ N∗
i (k), u⃗ N∗

i (k), x⃗ iN∗
−i (k),r(k))

− Ji(x⃗ i(t,k), u⃗ i(t,k), x⃗ iN∗
−i (k),r(k))|

≤ Li∥x⃗ N∗
i (k)− x⃗ i(t,k)∥∞+Li∥u⃗ N∗

i (k)− u⃗ i(t,k)∥∞ (29)
(x⃗ i(t,k), u⃗ i(t,k), x⃗ iN∗

−i (k))

Ji(x⃗ N∗
i (k), u⃗ N∗

i (k), x⃗ iN∗
−i (k),r(k))

𝟋(Xi, Ji,G(r(k)))

where  is the solution of Prob 2 when
the termination condition of Algorithm 1 is not satisfied; and

 is the ε-NE for the noncooper-
ative game .

i ∈ V Di
x =maxx1,x2∈Xi

∥x1− x2∥∞ Di
u =

maxu1
i ,u

2
i ∈Ui
∥u1

i −u2
i ∥∞

For ,  defining  and 
, we have

 

Ji(x⃗ N∗
i (k), u⃗ N∗

i (k), x⃗ iN∗
−i (k),r(k))

≤ Ji(x⃗ i(t,k), u⃗ i(t,k), x⃗ iN∗
−i (k),r(k))+εi

εi = Li(Di
x +Di

u)where .
(x⃗ i(t,k), u⃗ i(t,k))Note that  is also the admissible solution of
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x⃗ i(k) = x⃗ i(t,k) u⃗ i(k) = u⃗ i(t,k)
Prob 1 when the termination condition of  Algorithm 1 is  not
satisfied. We denote  and  which
gives rise to
 

Ji(x⃗ N∗
i (k), u⃗ N∗

i (k), x⃗ iN∗
−i (k),r(k))

≤ Ji(x⃗ i(k), u⃗ i(k), x⃗ iN∗
−i (k),r(k))+εi, ∀i ∈ V(r(k)).

𝟋(Xi, Ji,G(r(k)))As  such,  the ε-NE  of  the  game  can  be
obtained by Algorithm 1. ■

Qi Ri Qi j

Remark  5: In  [16],  [42]  and  [43],  the  iterative  algorithms
have  been  proposed  for  the  noncooperative  game  under  the
MPC  scheme.  However,  the  convergence  conditions  of  the
iterative algorithms have not been provided explicitly. In this
paper,  we  establish  the  convergence  condition  of  the  pro-
posed  iterative  algorithm  for  the  noncooperative  game  sub-
jected  to  state/input  constraints  and  disturbances  under  the
MPC scheme and Markov jump graph. Furthermore, we con-
sider  the  Markov  jump  graph  of  the  noncooperative  game,
which is also different from the results in [16], [42] and [43].
Note  that  condition  (17)  can  help  to  select  the  design  of  the
weight parameters ,  and  in cost function (3), which is
meaningful in engineering practice.

εi = Li(Di
x +Di

u)Remark 6: In Theorem 1, we have obtained .
It is easy to obtain
 

Di
x = max

x1
i ,x

2
i ∈Xi

∥x1
i − x2

i ∥∞, Di
u = max

u1
i ,u

2
i ∈Ui

∥u1
i −u2

i ∥∞

Li =max
{∥∥∥∥∥∂E {Ji(t,k)}

∂x̂i

∥∥∥∥∥∞ ,
∥∥∥∥∥∂E {Ji(t,k)}

∂ûi

∥∥∥∥∥∞
}

x̂i ∈ Xi, ûi ∈ Ui.

Li Li Qi Qi j
Ri Pi x̂i ûi i = 1,2,3,4 j ∈ Ni Di

x
Di

u x̂i ûi x̂i ûi

Xi = {xi : biT
x xi(k) ≤ hi

x} Ui = {ui : biT
u ui(k) ≤

hi
u} εi

Qi Ri Qi j Pi bi
x bi

u hi
x hi

u

εi (bi
x,h

i
x) (bi

u,h
i
u)

Xi Ui
Xi Ui

εi

By calculating , we can find that  is related with , ,
, ,  and  for  and .  Furthermore, 

and  are related with  and . It is obvious that  and  are
constrained by  and 

,  respectively.  Therefore,  the  accuracy  of  the ε-NE  is
related  with , , , , , ,  and  in  theory.
Besides,  the  larger  the  weighting  matrices,  the  greater  the
value of .  Moreover,  the  pairs  and  are  used
to  describe  the  range  of  the  constraints  and ,  respec-
tively.  The  larger  the  ranges  of  and ,  the  greater  the
value of .

t̃ t̃ ∈ Z[2, t̄]
xi(k) x⃗ j(t̃−1,k)

xi(k) x⃗ j(k) = x⃗ j(t̃−1,k)

Remark  7: When the  iterative  algorithm reaches  the  termi-
nation condition, it means that the termination condition is sat-
isfied at some iteration step  ( ). That is, player i uses

 and  as the inputs of Prob 2 to obtain the ε-NE
of the noncooperative game. Similarly, this means that player
i uses  and  as  the  inputs  of  Prob  1  to
obtain  the ε-NE  of  the  noncooperative  game.  Therefore,  the
solution of Prob 2 is equivalent to the solution of Prob 1 when
the termination condition of the iterative algorithm is satisfied.

Remark 8: It is known that the optimization problem in the
noncooperative  game  can  be  fragile.  Under  the  influence  of
disturbance, each player can not achieve the optimal cost, and
can only make the cost close to the optimal cost. ε-NE is used
to describe the degree to which the real cost deviates from the
optimal cost, and theoretically gives the cost in the worst case.
Actually, ε-NE has  been widely  used in  traffic  [44],  wireless
systems [45], electricity [46] and commodity markets [47].

Remark  9: In  this  paper,  the  optimization  problem of  each
player  is  a  convex  optimization  problem  with  the  strict  con-
vex  cost  function  and  convex  closed  constraints.  Therefore,
there must exist an optimal solution of the optimization prob-
lem for  each player.  Furthermore,  we have proved the  recur-
sively  feasibility  of  the  optimization  problem such  that  there
must exist a feasible solution of the optimization problem for
each player at each time step k. Considering the iterative algo-
rithm proposed in  the  paper,  each  player  solves  its  optimiza-
tion problem several times during each time instant k until the
termination  condition  is  satisfied.  It  should  be  noted  that  the
termination  condition  is  designed  by  considering  the  defini-
tion  of ε-NE  in  Definition  2.  Therefore,  combining  with  the
existence  of  the  optimal  solution  in  each  iteration  step t at
each time instant k and the termination condition designed by
the definition of ε-NE, it can be proved that the ε-NE solution
must exist of the noncooperative game.

Corollary  1: If  the  states  of  each  player  do  not  reach  the
constraint boundary, we have
 

E
{
x⃗ ∗i (t,k)

}
= E

{ ∑
j∈Ni(m)

Ãi j(m)x⃗ ∗j(t−1,k)

+Θi x̂i(k|t,k)
}

such that
 

E{X(t+1,k)} = E{ΦX(m)X(t,k)+Θ̃X(0,k)}
which indicates
 

E {X(t+n,k)}

= E
{
Φn

XX(t,k)+
(
Φn−1

X + · · ·+ I
)
Θ̃X(0,k)

}
, n ∈ Z+.

X(+∞,k) n→ +∞It is obvious that  is the NE as . Therefore,
in this case, the NE can be obtained by Algorithm 1.

Proof: The  proof  is  similar  to  that  in  Theorem 1,  and  it  is
omitted here. ■

Remark  10: In  Theorem  1,  the  sufficient  conditions  of
obtaining  the ε-NE  of  the  MPSs  are  established.  Comparing
Theorem 1 and Corollary 1, it can be found that the existence
of  input/state  constraints  and  disturbances  makes  the  MPSs
unable  to  obtain  the  pure  NE.  It  is  difficult  to  prove  that  the
traditional  concept  NE solution  must  exist  within  the  convex
closed  constraints.  Therefore,  in  this  paper,  the ε-NE  is  con-
sidered to describe the results of noncooperative game.  

C.  Feasibility and Mean-Square Uniform Bounded Stability
In  this  part,  we  present  the  recursive  feasibility  of  Prob  1

and the mean-square uniform bounded stability of the closed-
loop system. Firstly, the following lemma is given to demon-
strate the feasibility of Prob 1.

k+1

Lemma  2: If  the  Prob  1  has  a  feasible  solution  at  time
instant k,  then  it  also  has  a  feasible  solution  at  time  instant

.

k+1 ⃗̃ci(k+1) =

Proof: From Lemma 1, we arrive at the conclusion that Prob
1 is equivalent to the optimization problem (14). Therefore, if
feasibility of (14) holds, then the feasibility of (5) also holds.
Next, we aim to prove the feasibility of (14). Choose a candi-
date  input  sequence  for  player i at  step  as 
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Mic⃗∗i (k) such that we have
 

z̃i(k+1) =Ψiz∗i (k)+ D̄iωi(k), D̄i =
[

DT
i 0T

]T

z∗i (k) = [xT∗
i (k) c⃗T∗

i (k)]T

z̃i(k+1)
z∗i (k)

with  the  optimal  and  the  feasible
.  By using Theorem 3.1 in [48],  we can easily obtain

that, if  satisfies
 

Bi
xuΨ

s
i z
∗
i (k) ≤ Hi− ξi(s)

s ∈ Z[0,Ts−1] z̃i(k+1)for , then  satisfies
 

Bi
xuΨ

s
i z̃i(k+1) ≤ Hi− ξi(s)

s ∈ Z[0,Ts−1]for . Therefore, the feasibility of Prob 1 can be
guaranteed by that of (14). ■

In  the  following  theorem,  sufficient  conditions  are  estab-
lished  to  guarantee  the  mean-square  uniform boundedness  of
system (1) by using the proposed control input.

Ξi > 0 ΥiTheorem 2: If there exist  and  such that the linear
matrix inequality (LMI)
 

−Ξi ΞiAT
i +ΥiBT

i Υi Ξi

∗ −Ξi 0 0
∗ ∗ −R−1

i 0
∗ ∗ ∗ −Q−1

i

 < 0 (30)

Ki = Υ
T
i Ξ
−1
i

Si Si = {xi(k) : E{∥xi(k)∥2Qi
} ≤ σ̄i}

holds, then system (1) is mean-square uniformly bounded and
. Furthermore, the state of system (1) converges to

the set  with  where
 

σ̄i = λ̄(Pi)ω̄2
i (Ts)+

2λ̄(Pi)ω̄i(Ts)√
λ(bi

xbiT
x )
∥hi

x − ξ̄i(Ts)∥

+

Ts−1∑
s=1

λ̄(Qi)(ω̄i(s))2+
2λ̄(Qi)ω̄i(s)√
λ(bi

xbiT
x )
∥hi

x − ξ̄i(s)∥


+

Ts−1∑
s=1

∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)
(
h̃i

x(s)+ h̃ j
x(s)

)2

ξ̄i(s) =max
s−1∑
f=0

biT
x Φ

f
i Diωi( f ), ωi( f ) ∈Wi, ξ̄i(0) = 0

ω̄i(s) =max∥Φs
i Diωi(k)∥, ωi(k) ∈Wi, s ∈ Z[0,Ts−1]

h̃i
x(s) =

√
λ̄(Qi j)√
λ(bi

xbiT
x )
∥hi

x − ξ̄i(s)∥

h̃ j
x(s) =

√
λ̄(Qi j)√
λ(b j

xb jT
x )
∥h j

x − ξ̄ j(s)∥. (31)

Proof: Denote
 

V∗i (k,r(k) = m)

= Ji(x⃗ ∗i (k), u⃗ ∗i (k), x⃗ iN∗
−i (k),r(k) = m)

Ṽi(k+1,r(k+1)|r(k) = m)

= Ji(⃗̃xi(k+1), ⃗̃ui(k+1), ⃗̃xi
−i(k+1),r(k+1)|r(k) = m)

⃗̃xi(k+1) ⃗̃ui(k+1) ⃗̃xi
−i(k+1)

k+1 Ji(⃗̃xi(k+1), ⃗̃ui(k+1), ⃗̃xi
−i(k+1),r(k+1)|r(k) = m)

k+1 Ji(x⃗ ∗i (k), u⃗ ∗i (k), x⃗ iN∗
−i (k),r(k) =

m)

where ,  and  are  the  feasible  sequ-
ence  at ; 
is the feasible cost at ; and 

 is the optimal cost at k.
Denote

 

E {∆Vi(k)} = E
{
Ṽi(k+1,r(k+1)|r(k) = m)−V∗i (k,r(k) = m)

}
.

E{∆Vi(k)} = E{∆1}+E{∆2}+E{∆3}+E{∆4}Split  by
 

E{∆1} = E
Ts−1∑

s=1

{
∥x̃i(k+ s|k+1)∥2Qi

−∥x̂∗i (k+ s|k)∥2Qi

}
+E

Ts−1∑
s=1

{
∥ũi(k+ s|k+1)∥2Ri

−∥û∗i (k+ s|k)∥2Ri

}
E{∆2} = E

{
∥x̃i(k+Ts|k+1)∥2Qi

+ ∥ũi(k+Ts|k+1)∥2Ri

}
+E

{
∥x̃i(k+1+Ts|k+1)∥2Pi

−∥x̂∗i (k+Ts|k)∥2Pi

}
E{∆3} = −E{∥x̂∗i (k|k)∥2Qi

−∥û∗i (k|k)∥2Qi
}

E{∆4} = E


Ts−1∑
s=1

 ∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)

×∥x̃i(k+ s|k+1)− x̃ j(k+ s|k+1)∥2Qi j

−
∑

j∈Ni(m)

ai j(m)∥x̂∗i (k+ s|k)− x̂N∗
j (k+ s|k)∥2Qi j


 .

E{∆1} ũi(k+ s|k+1) = û∗i (k+ s|k) s ∈ Z[1,
Ts−1]

For ,  we  have  for 
 such that

 

∆1 = E

Ts−1∑
s=1

{
∥x̃i(k+ s|k+1)∥2Qi

−∥x̂N∗
i (k+ s|k)∥2Qi

}
= E

{Ts−1∑
s=1

(
∥x̃i(k+ s|k+1)∥Qi −∥x̂N∗

i (k+ s|k)∥Qi

)
×

(
∥x̃i(k+ s|k+1)∥Qi + ∥x̂N∗

i (k+ s|k)∥Qi

)}

≤ E
{Ts−1∑

s=1

∥Φs
i Diωi(k)∥Qi

×
(
∥Φs

i Diωi(k)∥Qi +2∥x̂∗i (k+ s|k)∥Qi

)}

≤ E


Ts−1∑
s=1

∥Φs
i Diωi(k)∥Qi×

∥Φs
i Diωi(k)∥Qi

+
2
√
λ̄(Qi)√
λ(bi

xbiT
x )
∥hi

x − ξ̃i(k+ s|k)∥




where
 

ξ̃i(k+ s|k) =max
s−1∑
f=0

biT
x Φ

f
i Diωi(k+ f |k)

ωi(k+ f |k) ∈Wi, s ∈ Z[1,Ts−1], ξ̃i(k|k) = 0.
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Denote
 

ξ̄i(s) =max
s−1∑
f=0

biT
x Φ

f
i Diωi( f ),

ωi( f ) ∈Wi, s ∈ Z[1,Ts−1], ξ̄i(0) = 0.
ω̄i(s) =max∥Φs

i Diωi(k)∥, ωi(k) ∈Wi, s ∈ Z[0,Ts−
1]

Denote 
. Then, we have

 

∆1 ≤
Ts−1∑
s=1

λ̄(Qi)(ω̄i(s))2+
2λ̄(Qi)ω̄i(s)√
λ(bi

xbiT
x )
∥hi

x − ξ̄i(s)∥

 .
∆2For , we have

 

∆2 = E
{
∥x̃i(k+Ts|k+1)∥2Qi

+ ∥ũi(k+Ts|k+1)∥2Ri

+∥x̃i(k+1+Ts|k+1)∥2Pi

}
−E

{
∥x̂N∗

i (k+Ts|k)∥2Pi

}
+E

{
∥x̃i(k+Ts|k+1)∥2Pi

−∥x̃i(k+Ts|k+1)∥2Pi

}
≤ E

{
∥x̃i(k+Ts|k+1)− x̂N∗

i (k+Ts|k)∥Pi

×
(
∥x̃i(k+Ts|k+1)∥Pi + ∥x̂N∗

i (k+Ts|k)∥Pi

)}
−E

{
∥x̃T

i (k+Ts|k+1)∥2Q̄i

}
≤ E

{(
∥ΦTs

i Diωi(Ts)∥Pi +2∥x̂N∗
i (k+Ts|k)∥Pi

)
×∥ΦTs

i Diωi(Ts)∥Pi −∥Φ
Ts
i Diωi(Ts)∥2Q̄i

}
≤ E


∥ΦTs

i Diωi(Ts)∥Pi +
2
√
λ̄(Pi)√
λ(bi

xbiT
x )
∥hi

x − ξ̄i(Ts)∥


×∥ΦTs

i Diωi(Ts)∥Pi

−E
{
∥ΦTs

i Diωi(Ts)∥2Q̄i

}

≤ λ̄(Pi)ω̄2
i (Ts)+

2λ̄(Pi)ω̄i(Ts)√
λ(bi

xbiT
x )
∥hi

x − ξ̄i(Ts)∥

−Q̄i = Φ
T
i PiΦi+Qi+KT

i RiKi−Piwhere .
∆3For , we have

 

∆3 ≤ −E
{
∥x̂N∗

i (k|k)∥2Qi

}
= −E

{
∥xi(k)∥2Qi

}
.

∆4For , we have
 

∆4 ≤ E
{Ts−1∑

s=1

∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)

×∥x̃i(k+ s|k+1)− x̃ j(k+ s|k+1)∥2Qi j

}

≤ E
{Ts−1∑

s=1

∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)

×
(
∥x̃i(k+ s|k+1)∥Qi j + ∥x̃ j(k+ s|k+1)∥Qi j

)2
}

≤
Ts−1∑
s=1

∑
j∈Ni(m)

q∑
µ=1

πmµai j(m)
(
h̃i

x(s)+ h̃ j
x(s)

)2

where
 

h̃i
x(s) =

√
λ̄(Qi j)√
λ(bi

xbiT
x )
∥hi

x − ξ̄i(s)∥

h̃ j
x(s) =

√
λ̄(Qi j)√
λ(b j

xb jT
x )
∥h j

x − ξ̄ j(s)∥.

Therefore, we have
 

E{∆Vi(k)} ≤ −E{∥x̂∗i (k|k)∥2Qi
}+ σ̄i

σ̄i
Si

with  given  in  (31),  which  suggests  that  the  states  would
converge  to  the  set ,  and  hence  system  (1)  is  mean-square
uniformly bounded. ■

Remark  11: In  this  paper,  the  distributed  MPC  method  is
studied for the noncooperative MPSs. Although the noncoop-
erative game based on MPC has been studied in [15], [16], the
proposed  method  in  this  paper  has  the  distinguishing  advan-
tages:  1)  the  proposed  distributed  stochastic  MPC  scheme  is
capable of handling the state/input constraints  which are per-
vasive in engineering practice; 2) the convergence of the pro-
posed iterative algorithm to obtain the ε-NE is proven; 3) the
feasibility  and  stability  of  the  MPSs  are  proven  under  the
Markov jump graph.

Qi+KT
i RiKi

Qi Ri

Qi Ri

Remark 12: In Theorem 2,  we obtain (30) to guarantee the
stability of the closed-loop system, which is a sufficient condi-
tion. On the one hand, the stability of the closed-loop system
can  be  guaranteed  if  (30)  holds.  Actually,  the  main  factor
affecting  the  conservatism  of  (30)  is  the  term .
The smaller  the weight  matrices  and ,  the easier  it  is  to
solve (30). Furthermore, (30) can still be applied to most con-
trol systems when the weight matrices  and  are selected
properly,  such  as  aircraft  systems  [49],  spacecraft  systems
[50], circuit systems [51] and so on.  

IV.  Numerical Example

V(r(k)) = {1,2,3,4}
A(r(k)) = [ai j(r(k))]
M = {1,2, . . . ,5}

In  this  part,  the  numerical  simulations  on  space  on-orbit
assembly are  carried out.  The goal  is  to  formulate  one virtue
spacecraft with 4 noncooperative spacecrafts. Consider a net-
work whose topology is represented by an undirected Markov
jump  graph  with  the  set  and  the  adja-
cency  matrix  is  given  as .  Furthermore,
the  finite  set M is  given  as  and  its  transition
rate matrix is given as
 

Π =


0.2 0.1 0.5 0.1 0.3
0.3 0.4 0.1 0.3 0.1
0.1 0.1 0.1 0.2 0.2
0.2 0.3 0.2 0.1 0.2
0.2 0.1 0.1 0.3 0.2


.

A(r(k))The corresponding weighted adjacency matrices  are
given as
 

A(r(k) = 1) =


0 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0
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A(r(k) = 2) =


0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0



A(r(k) = 3) =


0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0



A(r(k) = 4) =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0



A(r(k) = 5) =


0 0 1 1
0 0 0 0
1 0 0 1
1 0 1 0

 .
Therefore,  the  relative  motion  equations  of  4  spacecrafts

and their preset points can be established. Therefore, the rela-
tive  motion  equations  of  four  spacecrafts  and  their  preset
points can be established. Consider the C-W equation in [50]
as
 

Ẍi(t)−2ω̃iẎi(t) = ui,X(t)+ωi,X(t)

Ÿi(t)+2ω̃iẊi(t)−3ω̃2
i Yi(t) = ui,Y (t)+ωi,Y (t)

Z̈i(t)+ ω̃2
i zi(t) = ui,Z(t)+ωi,Z(t)

i = 1,2,3,4for . Therefore, we have
 

ẋi(t) = Ãixi(t)+ B̃iui(t)+ D̃iωi(t)

with
 

Ãi =



0 1 0 0 0 0
0 0 0 2ω̃i 0 0
0 0 0 1 0 0

0 0 −2ω̃i 3ω̃2
i 0 0

0 0 0 0 0 1

0 0 0 0 −ω̃2
i 0



B̃i = D̃i =



0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1


xi = [Xi Ẋi Yi Ẏi zi Żi]T , ωi(t) = [ωi,X ωi,Y ωi,Z]T

ui = [ui,X ui,Y ui,Z]T , Ã1 = Ã2 = Ã3 = Ã4.

Let
 

X1 = xi,1, Ẋi = xi,2, Yi = xi,3

Ẏi = xi,4, zi = xi,5, Żi = xi,6.

ω̃i = 7.2722×10−5

T = 0.01 s
Choose  [50].  Selecting  the  sampling

period , we obtain the discrete-time state-space rep-
resentation of the C-W functions as
 

xi(k+1) = Aixi(k)+Biui(k)+Diωi(k)
Ai = T Ãi+ I Bi = T B̃i Di = T D̃iwith ,  and . The constraints are

given as
 

−hi
x ≤ xi(k) ≤ hi

x, −hi
u ≤ ui(k) ≤ hi

u, −hi
ω ≤ ωi(k) ≤ hi

ω

hi
u = 100× [10 5 10 5 10 5]T , hi

ω = [10 5 10 5 10 5]T

hi
x = 100× [10 10 5 5 10 10 5 5 10 10 5 5]T .

Qi = I Ri = I Qi j = I ( j ∈ Ni(r(k)))Select ,  and   such that (17)
holds. According to (30), we have
 

KT
i =



−1.5094 −0.00006 0
−2.3856 −0.0001 0
0.00002 −1.5092 0
−0.0001 −2.3855 0

0 0 −1.5094
0 0 −2.3856


, i = 1,2,3,4

Ξi =


Ξ̃ 0 0
0 Ξ̃ 0
0 0 Ξ̃

 , Ξ̃ =
 0.0059 −0.0038
−0.0038 0.0065



Υi =



0.00008 0 0
−0.0099 0 0

0 0.00008 0
0 −0.0099 0
0 0 0.00008
0 0 −0.0099


, i = 1,2,3,4.

Select the initial states as
 

x1(0) = [600 0 200 0 500 0]T

x2(0) = −[700 0 200 0 600 0]T

x3(0) = [300 0 50 0 10 0]T

x4(0) = −[200 0 200 0 100 0]T .

t̄ = 50 J̄i = 0.0001 PX(m) = I
Furthermore, we choose the termination conditions of Algo-

rithm 1 as  and . By selecting , (17)
holds.

xi,s (s ∈ {1,2,3,4,5,6})
xi (i = 1,2,3,4)

J∗i (t,2)− J∗i (t−
1,2)

k = 2

𝟋(Xi, Ji,G(r(k)))

In  order  to  ensure  the  accuracy  of  the  results,  100  Monte
Carlo  simulations  are  carried  out  and  the  average  results  of
these  100  Monte  Carlo  simulations  are  shown.  Furthermore,

  is used to denote the s-th component of
.  The  corresponding  results  of  system i  are

shown  in Figs. 2−9.  Specifically, Figs. 2−5 plot  the  states  of
the four spacecraft  systems and Figs. 6−9 plot 

. Furthermore, Table I gives the cost error of the four sys-
tems in the iteration at . From Figs. 6−9 and Table I, it is
easy to find that the spacecraft obtains the optimal cost itera-
tively  at  each  time  instant  of  the  noncooperative  game

.  As a  result,  from Figs. 2−9 and Table I,  the
effectiveness of the proposed method is verified.  
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V.  Conclusion

This paper has studied the noncooperative game problem of
the  MPSs,  where  a  distributed  stochastic  MPC  scheme  has
been designed to cope with the state/input constraints and the
disturbances.  In  presence  of  the  considered  complexities,  the
noncooperative  game  problem  has  been  solved  by  using  an
iterative  algorithm  and  the ε-NE  has  been  obtained  in  a  dis-

tributed manner. Furthermore, sufficient conditions have been
provided  for  the  proposed  iterative  algorithm  such  that  each
player  could  converge  to  the ε-NE.  In  particular,  sufficient
conditions  have  been  established  to  guarantee  the  mean-
square  uniform boundedness  for  the  MPSs  by  using  the  pro-
posed  MPC  inputs.  Finally,  a  numerical  example  has  been
studied to verify the effectiveness of the proposed method.
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Fig. 2.     The states of System 1.
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Fig. 3.     The states of System 2.
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TABLE I 

k = 2The Iteration Error of Systems at 

System
Iteration

t = 1 t = 2 t = 3 t = 4
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