
 

A Fast Clustering Based Evolutionary
Algorithm for Super-Large-Scale Sparse

Multi-Objective Optimization
Ye Tian, Yuandong Feng, Xingyi Zhang, Senior Member, IEEE, and Changyin Sun

 
   Abstract—During  the  last  three  decades,  evolutionary  algo-
rithms  (EAs)  have  shown  superiority  in  solving  complex  opti-
mization  problems,  especially  those  with  multiple  objectives  and
non-differentiable  landscapes.  However,  due  to  the  stochastic
search strategies, the performance of most EAs deteriorates dras-
tically  when  handling  a  large  number  of  decision  variables.  To
tackle the curse of dimensionality, this work proposes an efficient
EA  for  solving  super-large-scale  multi-objective  optimization
problems with sparse optimal solutions.  The proposed algorithm
estimates the sparse distribution of optimal solutions by optimiz-
ing a binary vector for each solution, and provides a fast cluster-
ing  method  to  highly  reduce  the  dimensionality  of  the  search
space. More importantly, all the operations related to the decision
variables  only  contain  several  matrix  calculations,  which  can  be
directly accelerated by GPUs.  While existing EAs are capable of
handling  fewer  than  10 000 real  variables,  the  proposed  algo-
rithm  is  verified  to  be  effective in  handling  1 000 000  real  vari-
ables.  Furthermore,  since  the  proposed  algorithm  handles  the
large number of variables via accelerated matrix calculations, its
runtime can be reduced to less than 10% of the runtime of exist-
ing EAs.
    Index Terms—Evolutionary  computation,  fast  clustering,  sparse
multi-objective optimization, super-large-scale optimization.
  

I.  Introduction

MANY scientific  and engineering fields such as  artificial
intelligence  [1],  data  mining  [2],  software  engineering

[3],  bioinformatics  [4],  and  economics  [5]  include  complex
optimization  problems  with  multiple  conflicting  objectives
and  a  large  number  of  decision  variables,  which  are  collec-

tively known as large-scale multi-objective optimization prob-
lems  (LMOPs).  These  problems  are  generally  NP-hard  with
complicated  landscapes,  and  have  global  optima  which  are
hard to obtain by exact  methods;  by contrast,  multi-objective
evolutionary  algorithms  (MOEAs)  can  find  quasi-optimal
solutions for LMOPs in polynomial time [6].

Since the first MOEA was suggested for solving LMOPs in
2013 [7], a number of MOEAs have been proposed to handle
the  high-dimensional  search  space  using  various  techniques,
including decision variable grouping, decision variable analy-
sis, and decision space reduction. The decision variable group-
ing based MOEAs randomly divide the decision variables into
several groups and optimize each group of decision variables
alternately [7], [8], so that the LMOP can be split into small-
scale problems and solved easily. Since the random grouping
strategy may divide two interacting decision variables into dif-
ferent  groups  and  drive  the  population  into  local  optima,  the
decision  variable  analysis  based  MOEAs  divide  the  decision
variables  according to  their  correlations  to  the  other  decision
variables  and  the  objective  functions  [9],  [10],  which  can
improve both population diversity and the probability of find-
ing  global  optima.  The  decision  space  reduction  based
MOEAs  facilitate  the  solving  of  LMOPs  by  reducing  the
dimensions of the decision space, with the assistance of prob-
lem  transformation  [11]  and  dimensionality  reduction  [12]
techniques.

While conventional MOEAs are effective for problems with
less than 100 variables [13], the MOEAs tailored for LMOPs
have shown promising performance on problems with 1000 to
10  000  variables  [10],  [12],  [14].  Nevertheless,  they  are  not
applicable  to  the  problems  with  much  more  variables,  which
are  termed  super-large-scale  multi-objective  optimization
problems  (SLMOPs)  in  this  work.  SLMOPs  widely  exist  in
many  research  fields,  such  as  large-scale  feature  selection
tasks  with  about  45  000  candidate  features  [15],  deep  neural
network training tasks with more than 150 000 weights  [16],
and  time-varying  ratio  error  estimation  tasks  with  up  to
300 000 variables  [14].  For  decision  variable  grouping  based
MOEAs,  if  the  300 000 decision variables  of  an SLMOP are
randomly  divided  into  100  groups,  each  group  will  contain
3000 decision variables that  still  form an LMOP; if  the deci-
sion variables are divided into many more groups, the conver-
gence  speed  will  highly  deteriorate  as  the  large  number  of
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groups  need  to  be  optimized  in  sequence.  For  decision  vari-
able  analysis  based  MOEAs,  because  at  least  four  function
evaluations  are  required  to  detect  whether  two  decision  vari-
ables  interact,  function  evaluations  should  be  con-
sumed to detect interactions between all the 300 000 decision
variables, which is impractical for real-world applications. As
for  decision  space  reduction  based  MOEAs,  it  is  difficult  to
reduce  the  300 000-dimensional  decision  space  using  only
hundreds of solutions without losing the optimal regions.

More seriously, most operations in existing MOEAs are too
complex  to  be  parallelized  and  accelerated  by  hardware
devices, whose computational complexities increase consider-
ably with the number of decision variables. On the one hand,
the  reproduction  operators  (e.g.,  simulated  binary  crossover
(SBX)  [17]  and  polynomial  mutation  [18])  used  in  most
MOEAs  have  multiple  options  with  different  probabilities  to
be selected, where the generation of each decision variable of
each offspring is performed in different branches. On the other
hand,  for  decision  variable  grouping  and  decision  variable
analysis  based  MOEAs,  the  decision  variables  in  different
groups can only be optimized in sequence; while for decision
space  reduction  based  MOEAs,  it  is  very  time-consuming  to
calculate  the  correlations  between  the  massive  decision  vari-
ables for dimensionality reduction.

As  a  consequence,  for  an  LMOP  with  more  decision  vari-
ables,  existing  MOEAs  require  more  function  evaluations  to
approximate the global optima, and the generation of a single
solution  is  also  more  time-consuming.  To  improve  the  effi-
ciency  in  solving  SLMOPs,  this  paper  aims  to  develop  an
MOEA for reducing both the number of function evaluations
and the complexity of solution generation. We found that the
optimal solutions of many SLMOPs contain a large number of
zero  variables,  such  as  feature  selection  for  selecting  a  small
proportion of candidate features [19] and neural network train-
ing  for  finding a  sparse  architecture  [1].  Hence,  we focus  on
handling such sparse SLMOPs due to their prevalence in real-
world  applications.  Specifically,  this  paper  contains  the  fol-
lowing contributions:

1)  To  find  sparse  optimal  solutions  more  efficiently,  a  fast
clustering  method  is  proposed  to  divide  the  large  number  of
decision variables into multiple groups. For all the variables in
the same group, a single variable is used to represent them so
that  they  are  optimized,  hence  the  search  space  is  highly
reduced  and  the  convergence  speed  can  be  improved.  In  this
way,  sparse  optimal  solutions  can  be  approximated  by  using
fewer function evaluations.

2)  Based  on  the  fast  clustering  method,  an  evolutionary
algorithm  is  designed  for  solving  sparse  SLMOPs,  termed
super-large-scale  multi-objective  evolutionary  algorithm
(SLMEA). In contrast to complicated operations like decision
variable  division  and  decision  space  reduction,  all  the  opera-
tions  related  to  the  decision  variables  in  SLMEA  are  con-
verted  into  matrix  calculations,  which  can  be  easily  acceler-
ated by GPUs to reduce the complexity of solution generation.

3)  To  verify  the  efficiency  of  the  proposed  algorithm,  it  is
tested  on  a  variety  of  benchmark  problems  and  real-world

problems  with  up  to  one  million  decision  variables.  In  com-
parison  to  several  state-of-the-art  MOEAs  tailored  for
LMOPs, the proposed algorithm can exhibit significantly bet-
ter  performance  on  most  test  instances.  Moreover,  with  the
assistance  of  GPU  acceleration,  the  runtime  of  the  proposed
algorithm  is  less  than  10% of  the  runtime  of  the  other
MOEAs.

The rest of this paper is organized as follows. In Section II,
existing MOEAs for solving LMOPs and techniques for effi-
ciency  improvement  are  reviewed,  which  is  followed  by  the
motivation  of  this  work.  In  Section  III,  the  proposed  algo-
rithm and fast clustering method are elaborated upon. In Sec-
tion  IV,  the  experimental  results  are  presented  and  analyzed.
Lastly, conclusions are drawn in Section V.  

II.  Related Work and Motivation
  

A.  Large-Scale MOEAs
A multi-objective optimization problem is defined as

 

min
x

f (x) = ( f1(x), . . . , fM(x))

s.t. x = (x1, . . . , xD) ∈Ω (1)
x f

M ≥ 2
D ≥ 100

D ≥ 10 000

where  denotes  a  decision  vector  having D variables  and 
denotes  an  objective  vector  having  functions.  In  gen-
eral, a problem with  real variables is called an LMOP
[20],  and  a  problem  with  real  variables  is  called
an  SLMOP  in  this  work.  Besides,  sparse  SLMOPs  denote
those  having  sparse  optimal  solutions,  i.e.,  most  variables  in
these  solutions  are  zero.  For  most  metaheuristics  including
MOEAs, they do not need other information about these prob-
lems (e.g., gradients) due to their stochastic search strategies.
Accordingly, many more function evaluations should be con-
sumed to solve a problem with more variables, which greatly
hinders  the  search  efficiency  of  metaheuristics  [10].  In  order
to  alleviate  the  curse  of  dimensionality,  decision  variable
grouping,  decision  variable  analysis,  and  decision  space
reduction  techniques  have  been  developed  to  tackle  LMOPs
[21], [22].

A naive idea for solving LMOPs is to adopt the divide-and-
conquer  strategy.  By  randomly  dividing  the  decision  vari-
ables  into  a  predefined  number  of  groups  with  equal  size,
CCGDE3  [7]  alternately  optimizes  each  group  of  decision
variables  and  fixes  the  rest.  Similarly,  a  dynamic  grouping
strategy  is  suggested  in  MOEA/D-RDG  [23]  to  adjust  the
group  size.  However,  the  random  division  of  decision  vari-
ables does not consider the interactions between decision vari-
ables  and  thus  is  likely  to  trap  the  population  into  local
optima. Hence, some MOEAs adopt the differential grouping
strategy  to  detect  interactions  between  decision  variables,
where the variables interacting with each other are assigned to
the same group [24], [25]. This way, the global optimal solu-
tions will not be missed when optimizing each group of inter-
acting  variables  in  sequence.  While  the  differential  grouping
strategy only considers the convergence of the population, the
decision variable analysis strategies aim to enhance both con-
vergence and diversity performance. As one of the first  deci-
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sion  variable  analysis  based  MOEAs,  MOEA/DVA  [9]
divides  decision  variables  into  position  variables,  distance
variables,  and  mixed  variables  by  analyzing  their  control
properties.  It  optimizes  position  variables  via  differential
grouping  until  the  population  converges,  and  then  tunes  the
distance  and  mixed  variables  for  diversity  enhancement.  For
more robust search performance, LMEA [10] uses a decision
variable  clustering  strategy  to  divide  the  decision  variables
into  convergence-related  variables  and  diversity-related  vari-
ables,  then  alternately  optimizes  the  two  types  of  decision
variables via different  strategies for the improvement of both
convergence and diversity.  PEA [26] adopts a similar idea to
LMEA,  where  the  optimization  of  convergence-related  vari-
ables is parallelized. On the other hand, decision space reduc-
tion  strategies  aim  to  directly  reduce  the  number  of  decision
variables  without  division.  WOF  [11]  suggests  a  problem
transformation framework to  convert  an  LMOP into  a  small-
scale  optimization  problem,  where  the  decision  variables  are
divided into multiple groups and a single weight is optimized
instead  of  all  the  variables  in  each  group;  thus  the  decision
space can be naturally reduced. LSMOF [27] suggests a prob-
lem  reformulation  framework,  which  optimizes  only  two
weights for each solution along two search directions for bet-
ter  quality  of  the  whole  population.  ReMO  [28]  adopts  the
random  embedding  technique  to  handle  LMOPs  with  low
intrinsic dimensions, where the objectives are affected by only
a small proportion of all decision variables. In addition, DLS-
MOEA [29] uses a self-evaluation evolution based dual local
search mechanism, which generates offspring by Gaussian or
Cauchy mutation and evaluates offspring by a meta-model.

In spite of the promising performance of existing large-scale
MOEAs,  they  are  ineffective  for  solving  SLMOPs  as  dis-
cussed in Section I.  For decision variable grouping and deci-
sion  variable  analysis  based  MOEAs,  they  need  to  optimize
many  groups  of  variables  in  sequence;  besides,  the  function
evaluations consumed by differential grouping, decision vari-
able  analysis,  and  decision  variable  clustering  are  unafford-
able  [10].  Although  decision  space  reduction  based  MOEAs
do not require a large number of function evaluations, they are
likely  to  miss  global  optimal  solutions  since  the  population
cannot  provide  sufficient  samples  to  learn  an  optimal  sub-
space  in  the  high-dimensional  decision  space  [30].  On  the
other  hand,  existing  MOEAs  are  also  inefficient  in  solving
SLMOPs, since most of the decision variable grouping, deci-
sion  variable  analysis,  and  decision  space  reduction  tech-
niques require a large number of iterations that cannot be eas-
ily parallelized.  

B.  Sparse MOEAs
Many  LMOPs  in  real-world  applications  have  sparse  opti-

mal solutions, such as neural architecture search [31], commu-
nity detection [32],  pattern mining [33],  and power grid fault
diagnosis  [34],  hence  some  MOEAs  have  been  tailored  for
solving  such  LMOPs  in  recent  years.  As  the  first  generic
MOEA  for  finding  sparse  optimal  solutions,  SparseEA  [35]
suggests  a  bi-level  encoding  to  find  the  zero  decision  vari-

ables in optimal solutions efficiently.  By taking advantage of
the  sparse  nature  of  LMOPs,  SparseEA  can  approximate
sparse  optimal  solutions  by  using  fewer  function  evaluations
than  other  large-scale  MOEAs.  In  MOEA/PSL  [12],  a
restricted  Boltzmann  machine  and  a  denoising  autoencoder
are adopted to learn a sparse distribution and a compact repre-
sentation of the optimal solutions, which enable the algorithm
to  find  large-scale  sparse  solutions  in  the  learnt  subspace.  In
PM-MOEA [30],  an  evolutionary  pattern  mining  approach  is
developed to mine the sparse distribution of the optimal solu-
tions, which can provide different small-scale subspaces to be
exploited by the algorithm.

O(D2) O(NDEK) O(NDN′G′)

N′

G′

O(D2)
O(DK)

O(DN′)

O(ND)
O(D)

Although  the  above  sparse  MOEAs  significantly  improve
efficiency  in  finding  sparse  optimal  solutions,  they  are  still
inefficient  in  finding  sparse  optimal  solutions  of  SLMOPs.
This  is  mainly  due  to  the  high  complexities  of  the  strategies
for generating sparse solutions, where the non-dominated sort-
ing based fitness calculation in SparseEA, the neural network
based dimensionality reduction in MOEA/PSL, and the evolu-
tionary pattern mining in PM-MOEA hold a time complexity
of , , and , respectively, where D
is the number of decision variables, N is the population size, E
is the number of epochs for training neural networks, K is the
hidden layer size of the neural networks,  is the population
size  for  pattern  mining,  and  is  the  number  of  generations
for  pattern  mining.  In  addition,  SparseEA  requires  a  space
complexity  of  for  fitness  calculation,  MOEA/PSL
requires  a  space  complexity  of  to  store  neural  net-
works,  and  PM-MOEA  requires  a  space  complexity  of

 to  store  the  mined  sparse  distributions.  On  the  con-
trary, a much simpler but still effective search strategy is sug-
gested  in  the  proposed  algorithm  for  finding  sparse  optimal
solutions,  whose  time  complexity  is  as  low  as  and
space  complexity  is  just .  Moreover,  the  search  strate-
gies  in  SparseEA,  MOEA/PSL,  and  PM-MOEA contain  iter-
ated steps while the proposed search strategy consists of only
matrix calculations, which can be deployed on GPUs for a fur-
ther improvement of efficiency.  

C.  Parallel MOEAs
In order to improve search efficiency, some work has been

dedicated  to  the  parallelization  of  MOEAs  in  terms  of  the
algorithmic level,  iteration level,  and solution level [36].  The
algorithmic level parallelization employs master-slave models
[37],  [38]  or  island  models  [39],  [40]  to  optimize  multiple
populations  simultaneously,  where  the  populations  evolve
toward  different  parts  of  the  Pareto  front  and  share  useful
information with each other via migration. The iteration level
parallelization  is  performed on  the  generation  and  evaluation
of solutions in a single population [41], [42], which can easily
accelerate existing MOEAs like NSGA-II [43] and MOEA/D
[44]. The solution level parallelization is for the evaluation of
a  single  solution,  where  problem-dependent  strategies  are
developed  to  accelerate  calculation  of  objective  functions
[45], [46].

Although  these  parallel  MOEAs  are  efficient  for  solving
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small-scale  optimization  problems,  they  are  not  applicable  to
large-scale  optimization  since  the  operations  related  to  the
decision variables (e.g., reproduction operators) are not paral-
lelized.  Moreover,  their  frameworks  are  incompatible  with
existing large-scale MOEAs and sparse MOEAs, which means
that these parallel MOEAs are ineffective for solving LMOPs
as well as SLMOPs.  

D.  Motivation of This Work
According  to  the  above  analysis,  it  can  be  determined  that

existing  large-scale  MOEAs  and  sparse  MOEAs  are  ineffi-
cient to solve SLMOPs, and existing parallel MOEAs are inef-
fective  in  solving  SLMOPs.  Besides,  it  is  difficult  to  take
advantage  of  all  three  types  of  MOEAs  by  combing  their
strategies.  In  order  to  better  handle  the  sparse  SLMOPs  that
widely exist in the real world, the motivation of this work is to
develop  new  techniques  for  the  improvement  of  both  effec-
tiveness  and  efficiency.  New  techniques  should  take  much
fewer  function  evaluations  compared  to  existing  MOEAs for
finding sparse optimal solutions for SLMOPs, and they should
be  able  to  be  parallelized  and  accelerated.  It  is  worth  noting
that although some evolutionary algorithms have already been
developed for solving specific problems with millions [16] or
even  billions  of  variables  [47],  the  core  techniques  in  these
algorithms are heavily customized for specific objective func-
tions  and  datasets,  which  cannot  be  used  to  solve  different
SLMOPs.

On the contrary, this work proposes a problem-independent
MOEA for solving sparse SLMOPs. By suggesting a fast clus-
tering based search strategy, the proposed algorithm can use a
relatively  small  number  of  function  evaluations  to  approxi-
mate  the  sparse  optimal  solutions  of  SLMOPs.  More  impor-
tantly,  the  main  operations  in  the  proposed  algorithm consist
of  only  matrix  calculations  rather  than  iterated  steps,  which
can  be  deployed  on  GPUs  for  a  significant  improvement  of
efficiency.  The  detailed  procedure  of  the  proposed  algorithm
is presented in the next section.  

III.  The Proposed Algorithm
  

A.  General Procedure of SLMEA

x = (x1, . . . , xD) ∈Ω r = (r1, . . . ,rD) ∈
Ω b = (b1, . . . ,bD) ∈ {0,1}D

xi xi = ri×bi

ri
bi ri bi = 0

The general procedure of the proposed SLMEA is shown in
Fig. 1,  where  the  mating  selection,  offspring  generation,  and
environmental selection are iteratively performed until the ter-
mination  criterion  is  satisfied.  By  following  the  bi-level
encoding in SparseEA, the proposed SLMEA represents each
solution  by  a  real  vector 

 and  a  binary  vector ,  where  each
decision variable  is  determined by .  In  this  way,
the optimization of the real vector r can find the optimal deci-
sion  vectors  and  the  optimization  of  the  binary  vector b can
determine the real variables that should be optimized. Owing
to  the  multiplication  of  real  variables  and  binary  variables

,  all  the  whose  corresponding  do  not  need  to  be
optimized,  and  thus  the  decision  space  Ω  can  be  highly
reduced.  While  the  optimization  of  the  binary  vector b addi-
tionally introduces a D-dimensional binary search space, a fast
clustering  method  is  suggested  for  dimensionality  reduction.

As depicted in Fig. 1, the core contributions of SLMEA lie in
two aspects, i.e., updating an archive for binary variable clus-
tering, and generating offspring in the reduced search space.

x

⌈rand×D⌉

rand [0,1]

Group
2N

The pseudocode of the main procedure of SLMEA is given
in Algorithm 1. To begin with, a population P with size N and
an empty archive A are initialized (Lines 1 and 2), and the ini-
tial  values  of  the  parameters K and ρ are  set  to  5  and  0.5
(Lines 3 and 4),  respectively. To initialize solutions with dif-
ferent  sparsity,  for  each  solution  in  the  initial  population,
SLMEA sets  its  real  vector r to  a  random vector  and sets  its
binary  vector b to  a  vector  of  zeros.  Then,  vari-
ables in the binary vector are randomly selected and flipped to
one,  where  denotes  a  random  number  within .  In
each  generation,  SLMEA  first  updates  the  archive  (Line  6)
and  uses  it  to  divide  the  decision  variables  into  several  sets

 for dimensionality reduction (Line 7).  Then, the algo-
rithm selects  parents from the population for generating N
offsprings,  where  each  parent  is  selected  via  binary  tourna-
ment selection (Line 8). After generating the offsprings (Line
9), the parameters K and ρ are automatically updated (Line 10)
and  the  offsprings  are  combined  with  the  population  (Line
11),  among which N solutions  survive  to  the  next  generation
(Lines 12–16).  For  simplicity,  the mating selection and envi-
ronmental  selection  adopt  the  same  selection  criteria  to
NSGA-II  [43],  where  solutions  with  smaller  non-dominated
front  numbers  and  larger  crowding  distance  values  are  pre-
ferred.  To  handle  problems  with  more  than  three  objectives,
the  mating  selection  and  environmental  selection  in  many-
objective  evolutionary  algorithms  [48]  can  also  be  adopted.
The  core  components  of  SLMEA  are  elaborated  in  the  next
three subsections, including decision variables clustering, off-
spring generation, and parameter adaptation.

 

Random initialization of 
population

Archive update and
variable clustering

Mating
selection

Generating offsprings in 
the reduced space

Generating offsprings in 
the original space

Combination of
offsprings and population

Environmental
selection

Terminated?

End

N

Y

Start

Final population

 
Fig. 1.     Procedure  of  SLMEA,  where  the  core  contributions  are  shown  in
dark color.
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Algorithm 1 Procedure of SLMEA

NAInput: N (population size),  (archive size)
Output: P (final population)

P← Initialization(N) Initial population1 ;　　//  
A← ∅ Initial archive2 ;　　//  
K← 5 Initial number of groups3 ;　　//    
ρ← 0.5 Initial parameter4 ;　　//  

5 while termination criterion is not fulfilled do
A← U pdateArchive(A,P,NA) Algorithm 26　       ;　　//
Group←Clustering(A,K) Algorithm 37　       ;　　//
P′← 2N8　 　  Select  parents  via  binary  tournament  selection

according to the non-dominated front number and crowding distance
of solutions in P;

O← Variation(P′,Group,ρ) Algorithm 49　  　 ;　　//
[K,ρ]← ParaAdapt(O,K,ρ) Algorithm 710　　 ;　　//
P← P∪O11　　 ;
[F1,F2, . . .]←12　　  Perform non-dominated sorting on P;
CrowdDis←

F1,F2, . . .

13　　  Calculate the crowding distance for each solu-
tion in ;

l← |F1 ∪ · · ·∪Fl | ≥ N14　 　  Minimum value s.t. ;
|F1 ∪ · · ·∪Fl | −N Fl

CrowdDis

15　　Delete  solutions from  with the smallest
;
P← F1 ∪ · · ·∪Fl16　　 ;

17 return P.
  

B.  Fast Clustering Based Dimensionality Reduction

NA NA

In order  to divide the decision variables  for  dimensionality
reduction, the proposed SLMEA updates an archive A to store
useful  information  about  the  relations  between  variables.  As
shown in Algorithm 2,  the archive is  first  combined with the
current  population P,  and  only  the  non-dominated  solutions
remain. If the number of non-dominated solutions exceeds the
archive  size ,  solutions  with  larger  crowding  distance
values are remained. Then, the binary vectors of the solutions
in the archive are used to divide the decision variables into K
groups. As illustrated in Fig. 2, the sparsity of each variable is
calculated  as  its  mean  value  among  the  binary  vectors  of  all
solutions in the archive
 

S parsityi =
1
|A|

|A|∑
j=1

B ji (2)

B ji

Group1
Group2

K −2

where  denotes the value of the ith binary variable of the jth
solution in A. Afterwards, the variables with a sparsity of 1 are
assigned to the first  group ,  the variables with a spar-
sity of 0 are assigned to the second group , and all the
other variables are grouped into  groups via a fast  clus-
tering method. Specifically, the variable whose sparsity is the
closest  to  0.5  is  selected  as  the  reference  variable c,  and  the
similarity between each variable b and c is calculated by
 

S imbc =
N(b=0,c=1)+N(b=1,c=0)

N(b=0,c=1)+N(b=1,c=0)+N(b=1,c=1)
(3)

N(b=0,c=1)

(D− |Group1| − |Group2|)/(K −2)
Group3

(D− |Group1| − |Group2|)/(K −2)
Group4

where  denotes  the  number  of  solutions  in A whose
bth binary variable is 0 and cth binary variable is 1. Lastly, the
variables are sorted according to their similarities to the refer-
ence variable, where the first 
variables  are  assigned  to  the  group ,  the  second

 variables are assigned to the
group ,  and  so  on.  In  Section  IV-D,  the  proposed  fast
clustering method is empirically verified to be more effective
than some other clustering methods.

U pdateArchive(A,P,NA)Algorithm 2 

NAInput: A (current  archive), P (current  population),  (archive
size)

Output: A (updated archive)
A← A∪P1 ;
A←2  The non-dominated solutions in A;
|A| > NA3 if  then

CrowdDis←4  Calculate the crowding distance for each solution in
A;

|A| > NA CrowdDis5 Delete  solutions from A with the smallest ;
6 return A.

The  pseudocode  of  the  proposed  fast  clustering  method  is
given in Algorithm 3. Since most of the operations are related
to a large number of binary variables, a binary matrix B is first
constituted  by  the  binary  vector  of  all  the  solutions  in  the
archive (Line 1). Then, all the operations are performed based
on B without any iterated steps (Lines 2–9), which can be eas-
ily accelerated by GPUs since they are all matrix calculations.
Lastly,  the  decision  variables  are  divided  into  several  groups
according to the rank of similarities (Lines 11 and 12), where
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Fig. 2.     Illustration of the fast clustering method in SLMEA.
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the  number  of  iterations K is  very  small.  As  a  consequence,
the  proposed  clustering  method  is  much  faster  than  conven-
tional  clustering  methods  (e.g., k-means  and  DBSCAN  [49])
that  should repeatedly calculate  the distances between nodes,
which  hold  very  high  computational  complexities  due  to  the
large  number  of  variables.  The  groups  of  variables  are  then
used to reduce the search space in offspring generation, which
is described in the next subsection.

Clustering(A,K)Algorithm 3 

Input: A (current archive), K (number of groups)
GroupOutput:  (groups of variables)

B← |A| ×D

denotes the number of variables

1  A  matrix  containing  the  binary  vectors  of  all  solu-
tions in A;　　//D     

S parsity← sum(B) sum of each column of2 ;　　//      B
c← argminb |S parsityb −0.5|3 ;
B′← repmat(B·c,D) Repeat the th column of for columns4 ;　　//   c-    B  D 
S im← sum

(
(1−B)·B′+B·(1−B′)

(1−B)·B′+B·(1−B′)+B·B′
)

5 ;
rank← sort(S im) Rank of variables in S im6 ;　　//     
Group1← {b|S parsityb = 1}7 ;
Group2← {b|S parsityb = 0}8 ;
rank← rank \Group1 \Group29 ;

l←
⌈ |rank|

K−2

⌉
10 ;

i = 311 for  to K do
Groupi←

{
rank1+(i−3)l, . . . ,rankmin(|rank|,(i−2)l)

}
12 ;

Group13 return .
  

C.  Offspring Generation

Group
r = (r1, . . . ,rD)

r∗ = (r∗1, . . . ,r
∗
K)

The proposed SLMEA generates the real vector of each off-
spring  by  using  SBX  [17]  and  polynomial  mutation  [18],
while  generates  the  binary  vector  of  each  offspring  by  using
uniform  crossover  and  bit-flip  mutation.  Moreover,  both  the
real  vectors and binary vectors of offsprings are generated in
the reduced space according to . To be specific, for the
real  vector  of  each  parent,  it  is  shortened  to

 by  representing  all  the  variables  in  the  same
group by a single real value, where
 

r∗i =
1

|Groupi|
∑

j∈Groupi

r j. (4)

b = (b1, . . . ,bD)
b∗ = (b∗1, . . . ,b

∗
K)

Similarly, for the binary vector  of each par-
ent,  it  is  shortened to  by representing all  the
variables in the same group by a single binary value, where
 

p(b∗i = 1|Groupi) =
1

|Groupi|
∑

j∈Groupi

b j (5)

b∗i
[0,1]

r∗ b∗

and the value of  is sampled by comparing the probability p
with a uniformly distributed random value within . After
generating the reduced real  vector  and binary vector  of
each offspring, they can be recovered to r and b by
 

r j = r∗i
b j = b∗i (6)

j ∈Groupi i ∈ {1, . . . ,K}for  all  and .  Therefore,  the  search
space can be highly reduced from D to the number of groups
K.

PR
PB

OR OB
PR PB

PR PB
PR∗ PB∗

The  pseudocode  of  generating  offspring  is  presented  in
Algorithm 4. In order to accelerate the operations via GPUs, a
real matrix  consisting of the real vectors of all the parents
(Line 2) and a binary matrix  consisting of the binary vec-
tors of all the parents (Line 5) are constructed, where the real
matrix  and binary matrix  of the offsprings are gener-
ated  based  on  several  matrix  calculations  on  and 
(Lines  12–17),  respectively.  To  strike  a  balance  between
exploration and exploitation, some offsprings are generated in
the  reduced  search  space  while  others  are  generated  in  the
original  search  space.  That  is,  the  real  matrix  and  binary
matrix  of  the  parents  are  divided  into  two  parts,  where  the
matrices  and  are used to generate offspring in the orig-
inal search space while the matrices  and  are used to
generate offspring in the reduced search space.

Variation(P′,Group,ρ)Algorithm 4 

P′ GroupInput:  (parent population),  (groups of variables), ρ (ratio
of offspring generated in the reduced space)

Output: O (offspring population)
index← rand1×|P′ | > ρ 1× |P′ |1 ;  //Indexes  of  the  elements  in  a  ran-

dom vector that are larger than ρ
PR← |index| ×D

P′ index

2  A  matrix containing the real vectors of all solu-
tions in  whose indexes are in ;

PR′← (|P′ | − |index|)×D

P′ index

3  A  matrix containing the real vectors of all
solutions in  whose indexes are not in ;

PR∗← (|P′ | − |index|)× |Group|4  A  matrix of zeros;
PB← |index| ×D

P′ index

5  A  matrix  containing  the  binary  vectors  of  all
solutions in  whose indexes are in ;

PB′← (|P′ | − |index|)×D

P′ index

6  A  matrix containing the binary vectors of
all solutions in  whose indexes are not in ;

PB∗← (|P′ | − |index|)× |Group|7  A  matrix of zeros;
i = 1 |Group|8 for  to  do

PR∗·i←mean(PR′·Groupi
) th PR∗

Groupi th of PR′
9 ;　　//i  column of  is set to the mean

of  columns  
PB∗·i←mean(PB′·Groupi

) th PB∗

Groupi th of PB′
10 ;　　//i  column of  is set to the mean

of  columns  
PB∗← PB∗ > rand(|P′ |−|index|)×|Group|11 ;　 //“>” is  the  element  wise

logical operator of “greater than”
OR← RealOperators(PR) Algorithm 512 ;　　//
OR∗← RealOperators(PR∗) Algorithm 513 ;　　//
OR′← (|P′ | − |index|)×D14  A  matrix of zeros;
OB← BinaryOperators(PB) Algorithm 615 ;　　//
OB∗← BinaryOperators(PB∗) Algorithm 616 ;　　//
OB′← (|P′ | − |index|)×D17  A  matrix of zeros;

i = 1 |Group|18 for  to  do
OR′·Groupi

← OR∗·i Groupi th OR′

th OR∗
19　　 ;　　 //  columns  of  are  set  to

the same as i  column of 
OB′·Groupi

← OB∗·i Groupi th OB′

th of OB∗
20　　 ;　　 //  columns  of  are  set  to

the same as i  column  
O← OR∪OR′ OB∪OB′21  Use the real matrix  and binary matrix  to

generate an offspring population;
22 return O.

TIAN et al.: A FAST CLUSTERING BASED EA FOR SUPER-LARGE-SCALE SPARSE MULTI-OBJECTIVE OPTIMIZATION 1053 



for-end
if-else

for-end if-else

1/D

It  is  worth  noting  that  the  adopted  crossover  and  mutation
operators  are  performed  on  a  single  decision  variable,  which
cannot handle the real and binary matrices directly. In particu-
lar,  the  widely  used  SBX  contains  two  blocks  and
three  blocks  for  generating  a  number  of  offsprings
[17]. To address this issue, we convert all the operations of the
crossover  and mutation  operators  into  matrix  calculations,  so
that the generation of offspring can be deployed on GPUs. As
shown  in  Algorithm  5,  the  adopted  SBX  and  polynomial
mutation  consist  of  several  matrix  calculations  on  the  real
matrix  without  any  or  block,  where  the
crossover probability is set to 1, the mutation probability is set
to ,  and  the  distribution  index  is  set  to η.  Similarly,  the
adopted  uniform  crossover  and  bit-flip  mutation  also  consist
of only matrix calculations as shown in Algorithm 6.

RealOperators(PR)Algorithm 5 

PRInput:  (real matrix of parents)
OROutput:  (real matrix of offsprings)

Simulated binary crossover　//   
PR1← PR Set of first parents for generating

each offspring

1  The upper half of ;　　//      
 
PR2← PR Set of second parents for

generating each offspring

2  The  lower  half  of ;　　 //     
  

M← PR1 Each

element is randomly sampled in [0,1]

3  A  random  matrix  with  the  same  size  as ;　　 //
     

R1← PR14  A random matrix with the same size as ;
R2← PR15  A random matrix with the same size as ;
T1← M < 0.5 is the element wise logical operator of less

than

6 ;　　//“<”   -     “
”
T2← sign(R1 −0.5) sign is the element wise signum function7 ;　　//“ ”   -   
T3← R2 < 0.58 ;
B1← (2×M)

1
η+1 The power operator works on each element of

the matrix

9 ;　　//        
 

B2← (2−2×M)−
1
η+110 ;

B← T1 ·B1 + (1−T1) ·B2 The multiplication operator works on

each element of the matrix

11 ;　　//     
    

B← T2 ·B12 ;
B← (1−T3) ·B+T313 ;
OR← 0.5[(1+B) ·PR1+ (1−B) ·PR2]14 ;
Polynomial mutation　//  

M← OR15  A random matrix with the same size as ;
R← OR16  A random matrix with the same size as ;
n← OR17  Number of rows (i.e., number of offsprings) in ;
L← repmat(Lower,n) Repeat the lower bounds Lower of the

problem for rows

18 ;　　 //       
  n 

U ← repmat(U pper,n) Repeat the upper bounds U pper of the

problem for rows

19 ;　　//       
  n 

S ← R < 1
D20 ;

T ← M < 0.521 ;
T1← S ·T22 ;
T2← S · (1−T )23 
C1← [2 ·M+ (1−2 ·M) · (1− OR−L

U−L )η+1]
1
η+1 −124 ;

C2← 1− [2 · (1−M)+2 · (M−0.5) · (1− U−O
U−L )η+1]

1
η+125 ;

OR← OR+ (U −L) · (C1 ·T1 +C2 ·T2)26 ;
OR27 return .

BinaryOperators(PB)Algorithm 6 

PBInput:  (binary matrix of parents)
OBOutput:  (binary matrix of offsprings)

Uniform crossover　//  
PB1← PB Set of first parents for

generating each offspring

1  The  upper  half  of ;　 　 //     
  

PB2← PB Set of second parents for

generating each offspring

2  The  lower  half  of ;　　 //     
  

M← PB1 Each

element is randomly sampled in [0,1]

3  A  random  matrix  with  the  same  size  as ;　　 //
     

T ← M < 0.5 is the element wise logical operator of less

than

4 ;　　//“<”   -     “
”
OB← PB1 ·T +PB2 · (1−T ) The multiplication operator works

on each element of the matrix

5 ;　　 //    
     

Bit flip mutation// -  
M← OB Each

element is randomly sampled in [0,1]

6  A  random  matrix  with  the  same  size  as ;　　 //
     

T ← M < 1
D7 ;

OB← OB · (1−T )+ (1−OB) ·T8 ;
OB9 return .

  

D.  Parameter Adaptation

,

The proposed SLMEA adaptively adjusts two parameters K
and ρ to control the generation of offspring, where K denotes
the number  of  groups (i.e.,  dimensions of  the reduced search
space)  and ρ denotes  the  ratio  of  offsprings  generated  in  the
reduced search space. Intuitively, if many solutions generated
in  the  reduced  search  space  are  promising,  i.e.,  the  reduced
search space benefits the evolution of population, the parame-
ters K and ρ should become larger to take better advantage of
the  reduction  of  search  space.  By  contrast,  if  few  solutions
generated  in  the  reduced  search  space  are  promising  the
parameters K and ρ should become smaller. For this purpose,
the parameter K is updated by
 

Kt+1 = Kt × e
1

Kt
(

ns1,t
s1,t
− ns1,t−1

s1,t−1
) (7)

Kt s1,t

ns1,t

ns1,t
s1,t

ns1,t
s1,t
− ns1,t−1

s1,t−1

where  denotes  the  value  of K at  the tth  generation, 
denotes  the  number  of  offsprings  generated  in  the  reduced
search space at the tth generation, and  denotes the num-
ber  of  non-dominated  offsprings  generated  in  the  reduced
search  space  at  the tth  generation.  Obviously,  a  larger 
indicates  that  more solutions generated in  the reduced search
space are promising, and a positive  indicates that
the  ratio  of  promising  solutions  generated  in  the  reduced
search  space  is  increased.  Thus,  the  value  of K becomes
larger.

On the other hand, the parameter ρ is updated by
 

ρt+1 = 0.5×
(
ρt +

s2,t ×ns1,t

s2,t ×ns1,t + s1,t ×ns2,t

)
(8)

s2,t
ns2,t

s2,t×ns1,t
s2,t×ns1,t+s1,t×ns2,t

where  denotes  the  number  of  offsprings  generated  in  the
original  search  space  at  the tth  generation,  and  denotes
the number of non-dominated offsprings generated in the orig-
inal  search  space  at  the tth  generation.  Since  a  larger

 indicates that the ratio of non-dominated solu-

 1054 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 4, APRIL 2023



tions  generated  in  the  reduced  search  space  is  larger  than  in
the  original  search  space,  it  is  positively  related  to ρ so  that
more solutions can be generated in the reduced search space at
the next generation. To summarize, the pseudocode of param-
eter adaptation is given in Algorithm 7.

ParaAdapt(O,K,ρ)Algorithm 7 

K, ρInput: O (offspring population),  (parameters)
K, ρOutput:  (updated parameters)

s1,t ←1  The  number  of  solutions  in O whose  binary  vectors  are
generated in the reduced search space;

s2,t ←2  The  number  of  solutions  in O whose  binary  vectors  are
generated in the original search space;

F1←3  Determine the non-dominated solutions in O;
ns1,t ← F14  The  number  of  solutions  in  whose  binary  vectors  are

generated in the reduced search space;
ns2,t ← F15  The  number  of  solutions  in  whose  binary  vectors  are

generated in the original search space;
K←6  Update K according to (7);
ρ←7  Update ρ according to (8);

K, ρ8 return .
  

E.  Time Complexity of SLMEA

O(MN2)

O(ND)
O(ND) O(D log D)

O(ND)
PR PB

M≪ log D≪ N
O(ND)

O(D2)

According  to  Algorithm  1,  the  mating  selection,  environ-
mental selection, and archive update of SLMEA use the same
strategies  to  NSGA-II,  which  hold  a  time  complexity  of

 [50],  where M is  the number of  objectives and N is
the  population  size.  For  the  fast  clustering  method,  the  time
complexities  of  calculating  the  sparsity  of  binary  variables,
calculating  similarities  between  each  binary  variable  and  the
reference  variable,  and  sorting  the  similarities  are ,

,  and ,  respectively, where D is the number
of decision variables. For the generation of offspring, it holds
a time complexity of  since all  the operations are per-
formed on the real matrix  and the binary matrix . Con-
sidering  that ,  the  total  time  complexity  of
SLMEA is  for one generation,  which equals the time
complexity of many classical MOEAs such as NSGA-II [43],
SPEA2 [51],  and  MOEA/D [44].  By  contrast,  the  time  com-
plexity of existing large-scale MOEAs and sparse MOEAs is
up  to ,  since  they  divide  the  decision  variables  by
detecting the interaction between each two variables [9], [10],
or reduce the decision space by learning the relations between
variables  [12],  [52].  Moreover,  with  the  assistance  of  GPU
accelerated  matrix  calculations,  the  runtime  of  SLMEA  is
much  less  than  existing  MOEAs  as  indicated  in  the  experi-
mental results.  

IV.  Experimental Results

To  verify  the  performance  of  the  proposed  SLMEA  on
SLMOPs,  it  is  compared  to  six  state-of-the-art  MOEAs  (i.e.,
NSGA-II  [43],  CCGDE3  [7],  LMOCSO [20],  WOF-SMPSO
[11],  SparseEA [35],  and MOEA/PSL [12]),  where  NSGA-II
is a classical MOEA that holds the same selection strategies to
SLMEA;  CCGDE3,  LMOCSO,  and  WOF-SMPSO are  state-
of-the-art  MOEAs  for  solving  LMOPs;  SparseEA  and

MOEA/PSL  are  state-of-the-art  MOEAs  for  solving  sparse
LMOPs.  These MOEAs are  tested on eight  benchmark prob-
lems and three real-world applications with 10 000 to 1 000 000
decision variables, where all the experiments are conducted on
PlatEMO [53].  

A.  Parameter Settings

1/D

CR

[0,1]

1) Algorithms: The parameters in the compared MOEAs are
set  as  suggested  in  their  original  papers.  In  CCGDE3,  the
number of groups is  set  to 2 and the size of each subpopula-
tion is set to 40. In WOF-SMPSO, the number of groups is set
to 4, the number of evaluations for the original problem is set
to 1000, the number of evaluations for the transformed prob-
lem is  set  to  500,  the  number  of  chosen solutions  for  weight
optimization  is  set  to  3,  and  the  fraction  of  evaluations  for
weight optimization is set to 0.5. In SLMEA, the archive size
is set to the same as the population size. As for the reproduc-
tion operators, NSGA-II, SparseEA, MOEA/PSL, and the pro-
posed  SLMEA  adopt  SBX  and  polynomial  mutation  for  real
variables  and  uniform  crossover  and  bit-flip  mutation  for
binary  variables,  where  the  crossover  probability  is  set  to  1,
the  mutation  probability  is  set  to  (D is  the  number  of
decision  variables),  and  the  distribution  index η is  set  to  20.
CCGDE3  adopts  the  differential  evolution,  where  both  the
learning rate F and crossover rate  are set to 0.5. LMOCSO
adopts  the  competitive  swarm  optimizer  and  WOF-SMPSO
adopts the particle swarm optimization, where the polynomial
mutation  is  tailed  after  the  particles  are  updated.  When  han-
dling  binary  variables,  CCGDE3,  LMOCSO,  and  WOF-
SMPSO  optimize  the  same  number  of  real  variables  within

 and round them before calculating the objective values.
2)  Benchmark  Problems: The  eight  benchmark  problems

SMOP1–SMOP8  [35]  are  characterized  by  various  land-
scapes  with  different  difficulties,  including  low  intrinsic
dimensionality, epistasis, deception, and multi-modality. More
importantly,  all  the  optimal  solutions  of  SMOP1–SMOP8
have adjustable sparsity. For all the eight problems, the num-
ber of objectives is set to 2, the number of decision variables
is  varied from 10 000 to 1 000 000,  and the sparsity of  opti-
mal solutions (i.e.,  ratio of nonzero variables in each optimal
solution) is set to 0.1.

3)  Real-World  Problems: Three  types  of  sparse  SLMOPs
are  taken  from  real-world  applications,  including  feature
selection [54], pattern mining [2], and neural network training
[55]. The feature selection problem aims to select a small pro-
portion of features from a training set for minimizing the clas-
sification  error  and  number  of  selected  features,  the  pattern
mining problem aims to select some items from a transaction
dataset  for  maximizing  the  frequency  and  occupancy  rate  of
the selected items in the dataset, and the neural network train-
ing  problem aims  to  optimize  all  the  weights  for  minimizing
the classification error and network complexity. Detailed defi-
nitions are referred to in [35]. For each problem, three datasets
are  adopted  to  form  three  test  instances  as  listed  in Table I,
where the number of  objectives is  2 and the number of  deci-
sion variables is varied from 9712 to 100 000.
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4) Population Size and Termination Criterion: For fairness,
all  the  compared MOEAs evolve  a  population with  the  same
size for the same number of function evaluations. For solving
the benchmark problems, the population size is set to 100 for
10 000 and 100 000 decision variables; since the MOEAs with
a population size of 100 will run out of memory for 1 000 000
decision variables, the population size is set to 50 in this case.
The  maximum  number  of  function  evaluations  is  set  to
100 000,  300 000,  and  1 000 000  for  10 000,  100 000,  and
1 000 000  decision  variables,  respectively.  To  solve  the  real-
world problems, the population size is always set to 100, and
the maximum number of function evaluations is set to 50 000,
100 000,  and  150 000  for  approximately  10 000,  50 000,  and
100 000  decision  variables.  It  is  worth  noting  that  some
MOEAs may be extremely time-consuming for problems with
1 000 000  decision  variables,  hence  each  MOEA is  executed
for at most three days, even if the maximum number of func-
tion evaluations is not reached.

(1,1)

5)  Assessment  Criteria: Since  the  true  Pareto  front  of  the
benchmark problems are known, the inverted generational dis-
tance  (IGD)  [57]  is  employed  to  assess  the  quality  of  each
population obtained by the compared MOEAs, where 10 000
reference  points  are  sampled  on  each  true  Pareto  front  by
using  the  methods  suggested  in  [58].  On  the  other  hand,  the
true  Pareto  front  of  the  real-world  problems  are  unknown,
hence  the  hypervolume  (HV)  [59]  is  employed  to  assess  the
quality of each population, where the reference point is set to
the  worst  objective  values  of  the  problems,  i.e., .  For
each MOEA on each problem,  the  mean and standard  devia-
tion  of  the  indicator  values  over  30  independent  runs  are
recorded.  In  addition,  the Friedman test  with Bonferroni  cor-
rection  [60]  at  a  significance  level  of  0.05  is  adopted,  where
“+”, “−”,  and “≈” indicate  that  the  indicator  values  obtained
by an MOEA are significantly better, significantly worse, and
statistically similar to those obtained by the proposed SLMEA
on a problem, respectively.  

B.  Comparisons on Benchmark Problems
The  IGD  values  obtained  by  seven  MOEAs  on  SMOP1–

SMOP8 are  listed in Table II.  Generally,  the  proposed SLM-
EA  achieves  the  best  IGD  values  on  18  out  of  24  test  ins-
tances,  which  is  followed  by  MOEA/PSL  gaining  the  best
IGD values on the remaining six test instances. In terms of the
statistical  test,  the  proposed  SLMEA  significantly  outper-
forms  MOEA/PSL  on  18  test  instances  and  outperforms  the
other  five  MOEAs  on  all  the  24  test  instances.  In  short,  the
proposed SLMEA exhibits obviously better performance than
existing MOEAs for solving benchmark SLMOPs.

For  visual  observation, Fig. 3 plots  the  populations  with
median  IGD  values  obtained  by  seven  MOEAs  on  SMOP3,
SMOP5, and SMOP7 with 1 000 000 decision variables. It can
be  found  that  the  populations  obtained  by  the  proposed
SLMEA have the best convergence, which is attributed to the
bi-level encoding scheme and the fast clustering based dimen-
sionality  reduction  method.  The  populations  obtained  by
MOEA/PSL  have  the  second  best  convergence,  since  it  also
uses the bi-level encoding scheme and a dimensionality reduc-
tion method. The populations obtained by WOF-SMPSO have
the  third  best  performance,  which  is  mainly  due  to  its  prob-
lem transformation framework that can quickly converge to a
local  optimum.  Besides,  the  populations  obtained  by  NSGA-
II,  CCGDE3,  LMOCSO,  and  SparseEA  have  the  worst  con-
vergence, which implies that they are not suitable for solving
SLMOPs.

In  terms  of  efficiency, Fig. 4 presents  the  average  runtime
consumed  by  seven  MOEAs  on  SMOP1–SMOP8  with
10 000,  100 000,  and  1 000 000  decision  variables.  It  can  be
clearly  observed  that  the  GPU  accelerated  SLMEA  is  much
more  efficient  than  the  other  MOEAs,  where  its  superiority
becomes more significant  with the increase of  the number of
decision  variables.  In  particular,  the  runtime  of  SLMEA  is
approximately  1/14  of  the  runtime  of  WOF-SMPSO,
SparseEA,  and  MOEA/PSL  on  the  problems  with  1 000 000
decision  variables;  in  fact,  WOF-SMPSO,  SparseEA,  and
MOEA/PSL run  for  three  days  before  the  maximum number
of  function  evaluations  is  reached.  It  should  be  noted  that
NSGA-II,  CCGDE3,  and  LMOCSO  can  be  accelerated  by

 

TABLE I 

Datasets of Three Sparse Slmops in Real-world Applications

Feature selection No. of variables Dataset No. of samples No. of features No. of classes

FS1 9712 nci91 60 9712 9

FS2 45 151 DGLA_BRA_1801 180 45 151 4

FS3 100 000 Synthetic2 100 100 000 2

Pattern mining No. of variables Dataset No. of transactions No. of items Avg. length of transactions

PM1 10 000 Synthetic [56] 5000 10 000 500

PM2 50 000 Synthetic [56] 25 000 50 000 2500

PM3 100 000 Synthetic [56] 50 000 100 000 5000

Neural network training No. of variables Dataset No. of samples No. of features No. of classes

NN1 10 041 Madelon1 2600 500 2

NN2 40 041 colon1 62 2000 2

NN3 97 281 BASEHOCK1 1993 4862 2

1. https://jundongl.github.io/scikit-feature/datasets.html
2. https://scikit-learn.org/stable/
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GPUs  if  the  matrix  calculation  based  reproduction  operators
(i.e.,  Algorithms 5 and 6) are adopted, which will  become as
efficient as SLMEA; nevertheless,  these MOEAs are ineffec-
tive  for  solving  SLMOPs.  By contrast,  although MOEA/PSL
exhibits  the  second  best  performance  on  the  benchmark
SLMOPs,  it  cannot  be  fully  accelerated  by  GPUs  since  it
requires many iterations to train neural networks. As a conse-
quence, only SLMEA can strike a balance between effective-
ness and efficiency in solving SLMOPs.  

C.  Comparisons on Real-World Problems
The HV values obtained by seven MOEAs on the real-world

problems  FS1–FS3,  PM1–PM3,  and  NN1–NN3  are  listed  in
Table III.  It  can  be  seen  from  the  table  that  the  proposed
SLMEA obtains the best results on all the nine test instances,
and its HV values are significantly better than those obtained
by all the other MOEAs. Besides, Table IV presents the spar-
sity  of  the  solutions  obtained  by  seven  MOEAs,  where
SLMEA obtains the sparsest  solutions on six out  of  nine test
instances. Hence, it is confirmed that the proposed SLMEA is
effective in finding sparse solutions, and the tested real-world
problems  are  indeed  sparse  SLMOPs.  Furthermore, Fig. 5
plots  the  populations  with  median  HV  values  obtained  by
seven  MOEAs  on  FS3,  PM3,  and  NN3  with  approximately
100 000 decision variables. For the feature selection problem,
both  WOF-SMPSO  and  SLMEA  can  obtain  a  set  of  diverse

solutions,  while  NSGA-II,  CCGDE3,  LMOCSO,  SparseEA,
and  MOEA/PSL  can  only  obtain  several  poorly  converged
solutions; clearly, the solutions obtained by SLMEA are supe-
rior to those obtained by WOF-SMPSO. For the patter mining
problem,  the  solutions  obtained  by  SLMEA  also  have  better
convergence  and  diversity  than  those  obtained  by  WOF-
SMPSO and MOEA/PSL, and the other four MOEAs can only
obtain  a  single  solution.  As  for  the  neural  network  training
problem, the solutions obtained by SLMEA have lower error
rates  and  much  lower  network  complexities  than  those
obtained by the other MOEAs.

To  summarize,  SLMEA  is  more  effective  than  existing
MOEAs  for  solving  SLMOPs  with  sparse  optimal  solutions.
In  comparison  to  large-scale  MOEAs  such  as  CCGDE3,
LMOCSO, and WOF-SMPSO, the proposed SLMEA adopts a
bi-level  encoding  scheme,  which  can  easily  find  sparse  solu-
tions  and  directly  handle  binary  decision  variables.  While
SparseEA  also  adopts  a  bi-level  encoding  scheme,  the  pro-
posed SLMEA suggests a fast clustering method to reduce the
dimensionality  of  the  search  space,  hence  the  convergence
speed can be highly accelerated. Compared to the neural net-
work based dimensionality  reduction method in MOEA/PSL,
the fast clustering method in SLMEA does not train models or
suffer from the lack of training samples, which is more effec-
tive  in  reducing  the  high-dimensional  search  spaces  of
SLMOPs.  Moreover,  SLMEA is  more  efficient  than  existing
MOEAs for solving SLMOPs, since all the operations related
to the decision variables can be converted into matrix calcula-
tions and accelerated by GPUs. On the other hand, regarding
the  limitations  of  SLMEA,  it  will  be  even  less  efficient  than
existing MOEAs if the number of decision variables is small,
since  the  acceleration  provided  by  GPUs  becomes  insignifi-
cant  while  the  time  consumed  by  the  communication  with
GPUs  is  considerable.  Besides,  SLMEA  is  not  effective  for
solving  SLMOPs  whose  optimal  solutions  are  not  sparse,
since the core components in SLMEA are tailored for generat-
ing sparse solutions.  

D.  Performance Verification of the Components in SLMEA
Lastly, the effectiveness of the core components in SLMEA

is verified, including the fast clustering method and parameter
adaptation  strategies.  For  this  aim,  the  original  SLMEA  is
compared  to  several  variants  on  the  SMOP8  with  5000  real
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variables  and the  feature  selection  problem with  2000 binary
variables  (i.e.,  the  dataset  used  in  NN2). Fig. 6 depicts  the
convergence  profiles  of  SLMEA  with  three  clustering  meth-
ods, including the proposed fast clustering, the random group-
ing,  and  the  ordered  grouping.  The  random grouping  divides
the binary variables into K groups randomly, and the ordered
grouping divides the binary variables into K groups according
to their sparsity calculated by (2), where both of them are pop-
ular clustering methods that do not require a large number of
function  evaluations  to  detect  interactions  between  variables
[7],  [11].  As  can  be  observed  from  the  figure,  the  original
SLMEA  has  a  better  convergence  speed  than  the  variants
based on random grouping and ordered grouping, which veri-
fies the effectiveness of the proposed fast clustering method.

10, 50, 100

K = 10

0.1,0.5,1

ρ = 0.1

Fig. 7 draws the convergence profiles  of  SLMEA with dif-
ferent  settings  of K,  where K is  adaptively  updated by (7)  or
fixed  to .  It  is  obvious  that  the  SLMEA  with  an
adaptive K exhibits  the  best  overall  performance,  having  the
best convergence speed on SMOP8 and a slightly worse con-
vergence  speed  than  the  SLMEA with  on  the  feature
selection  problem.  Besides, Fig. 8 depicts  the  convergence
profiles of SLMEA with different settings of initial K,  where
the performance of SLMEA is very similar when using differ-
ent  initial  values  of K.  Moreover, Fig. 9 shows  the  conver-
gence profiles of SLMEA with different settings of ρ, where ρ
is  adaptively  updated  by  (6)  or  fixed  to .  It  can  be
determined  that  the  SLMEA  with  an  adaptive ρ outperforms
the SLMEA with a fixed ρ on SMOP8, and exhibits competi-
tive performance compared to the SLMEA with . As a
result, the effectiveness of the parameter adaptation strategies
in SLMEA can be verified.  

V.  Conclusions

Existing MOEAs have successfully  solved various LMOPs
with  less  than  10  000  variables,  but  they  showed  low  effec-
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tiveness and efficiency in solving SLMOPs with hundreds of
thousands  of  variables.  Therefore,  this  paper  serves  as  a  first
attempt  to  solve  SLMOPs  with  sparse  optimal  solutions,
where  a  fast  clustering  based  MOEA  has  been  proposed  to
address the curse of dimensionality. The proposed MOEA can
reduce  the  high-dimensional  search  space  by  grouping  the
massive  decision  variables,  which  has  been  verified  to  be
effective for solving SLMOPs with up to 1 000 000 variables.
More  importantly,  all  the  operations  related  to  decision  vari-
ables  can  be  converted  into  matrix  calculations  and  acceler-
ated by GPUs, where the runtime of the proposed MOEA has
been  reduced  to  less  than  a  tenth  of  the  runtime  of  existing
MOEAs.

In the future, it is desirable to further enhance the proposed
MOEA by taking full advantage of the objective functions of
specific  SLMOPs.  In  terms  of  the  efficiency,  the  objective
functions  can  be  converted  into  those  consisting  of  only
matrix calculations, such that the procedure of function evalu-
ations is considerably accelerated; furthermore, solution level
parallelization  strategies  [45],  [46]  can  also  be  adopted  to
accelerate  the  evaluation  of  each  solution.  In  terms  of  its
effectiveness,  detailed  information  about  the  objective  func-
tions  (e.g.,  datasets  involved  in  the  functions  [61]  and  gradi-
ents of the functions [1]) can be considered in the generation
of  offspring,  which  highly  improves  the  convergence  of  the
population.
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