

A Fast Clustering Based Evolutionary
Algorithm for Super-Large-Scale Sparse

Multi-Objective Optimization
Ye Tian, Yuandong Feng, Xingyi Zhang, Senior Member, IEEE, and Changyin Sun

 Abstract—During the last three decades, evolutionary algo-
rithms (EAs) have shown superiority in solving complex opti-
mization problems, especially those with multiple objectives and
non-differentiable landscapes. However, due to the stochastic
search strategies, the performance of most EAs deteriorates dras-
tically when handling a large number of decision variables. To
tackle the curse of dimensionality, this work proposes an efficient
EA for solving super-large-scale multi-objective optimization
problems with sparse optimal solutions. The proposed algorithm
estimates the sparse distribution of optimal solutions by optimiz-
ing a binary vector for each solution, and provides a fast cluster-
ing method to highly reduce the dimensionality of the search
space. More importantly, all the operations related to the decision
variables only contain several matrix calculations, which can be
directly accelerated by GPUs. While existing EAs are capable of
handling fewer than 10 000 real variables, the proposed algo-
rithm is verified to be effective in handling 1 000 000 real vari-
ables. Furthermore, since the proposed algorithm handles the
large number of variables via accelerated matrix calculations, its
runtime can be reduced to less than 10% of the runtime of exist-
ing EAs.
 Index Terms—Evolutionary computation, fast clustering, sparse
multi-objective optimization, super-large-scale optimization.

I. Introduction

MANY scientific and engineering fields such as artificial
intelligence [1], data mining [2], software engineering

[3], bioinformatics [4], and economics [5] include complex
optimization problems with multiple conflicting objectives
and a large number of decision variables, which are collec-

tively known as large-scale multi-objective optimization prob-
lems (LMOPs). These problems are generally NP-hard with
complicated landscapes, and have global optima which are
hard to obtain by exact methods; by contrast, multi-objective
evolutionary algorithms (MOEAs) can find quasi-optimal
solutions for LMOPs in polynomial time [6].

Since the first MOEA was suggested for solving LMOPs in
2013 [7], a number of MOEAs have been proposed to handle
the high-dimensional search space using various techniques,
including decision variable grouping, decision variable analy-
sis, and decision space reduction. The decision variable group-
ing based MOEAs randomly divide the decision variables into
several groups and optimize each group of decision variables
alternately [7], [8], so that the LMOP can be split into small-
scale problems and solved easily. Since the random grouping
strategy may divide two interacting decision variables into dif-
ferent groups and drive the population into local optima, the
decision variable analysis based MOEAs divide the decision
variables according to their correlations to the other decision
variables and the objective functions [9], [10], which can
improve both population diversity and the probability of find-
ing global optima. The decision space reduction based
MOEAs facilitate the solving of LMOPs by reducing the
dimensions of the decision space, with the assistance of prob-
lem transformation [11] and dimensionality reduction [12]
techniques.

While conventional MOEAs are effective for problems with
less than 100 variables [13], the MOEAs tailored for LMOPs
have shown promising performance on problems with 1000 to
10 000 variables [10], [12], [14]. Nevertheless, they are not
applicable to the problems with much more variables, which
are termed super-large-scale multi-objective optimization
problems (SLMOPs) in this work. SLMOPs widely exist in
many research fields, such as large-scale feature selection
tasks with about 45 000 candidate features [15], deep neural
network training tasks with more than 150 000 weights [16],
and time-varying ratio error estimation tasks with up to
300 000 variables [14]. For decision variable grouping based
MOEAs, if the 300 000 decision variables of an SLMOP are
randomly divided into 100 groups, each group will contain
3000 decision variables that still form an LMOP; if the deci-
sion variables are divided into many more groups, the conver-
gence speed will highly deteriorate as the large number of

Manuscript received August 19, 2021; revised September 3, 2021; accepted

September 30, 2021. This work was supported in part by the National Key
Research and Development Program of China (2018AAA0100100), the
National Natural Science Foundation of China (61822301, 61876123,
61906001), the Collaborative Innovation Program of Universities in Anhui
Province (GXXT-2020-051), the Hong Kong Scholars Program (XJ2019035),
and Anhui Provincial Natural Science Foundation (1908085QF271).
Recommended by Associate Editor Shangce Gao. (Corresponding author:
Xingyi Zhang.)

Citation: Y. Tian, Y. D. Feng, X. Y. Zhang, and C. Y. Sun, “A fast
clustering based evolutionary algorithm for super-large-scale sparse multi-
objective optimization,” IEEE/CAA J. Autom. Sinica, vol. 10, no. 4, pp.
1048–1063, Apr. 2023.

Y. Tian is with the Key Laboratory of Intelligent Computing and Signal
Processing of Ministry of Education, Institutes of Physical Science and
Information Technology, Anhui University, Hefei 230601, China (e-mail:
field910921@gmail.com).

Y. D. Feng is with the School of Computer Science and Technology, Anhui
University, Hefei 230601, China (e-mail: yuandongfeng@stu.ahu.edu.cn).

X. Y. Zhang is with the School of Artificial Intelligence, Anhui University,
Hefei 230601, China (e-mail: xyzhanghust@gmail.com).

C. Y. Sun is with the School of Automation, Southeast University, Nanjing
210096, China (e-mail: cysun@seu.edu.cn).

Digital Object Identifier 10.1109/JAS.2022.105437

1048 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 4, APRIL 2023

https://doi.org/10.1109/JAS.2022.105437

1.8×1011

groups need to be optimized in sequence. For decision vari-
able analysis based MOEAs, because at least four function
evaluations are required to detect whether two decision vari-
ables interact, function evaluations should be con-
sumed to detect interactions between all the 300 000 decision
variables, which is impractical for real-world applications. As
for decision space reduction based MOEAs, it is difficult to
reduce the 300 000-dimensional decision space using only
hundreds of solutions without losing the optimal regions.

More seriously, most operations in existing MOEAs are too
complex to be parallelized and accelerated by hardware
devices, whose computational complexities increase consider-
ably with the number of decision variables. On the one hand,
the reproduction operators (e.g., simulated binary crossover
(SBX) [17] and polynomial mutation [18]) used in most
MOEAs have multiple options with different probabilities to
be selected, where the generation of each decision variable of
each offspring is performed in different branches. On the other
hand, for decision variable grouping and decision variable
analysis based MOEAs, the decision variables in different
groups can only be optimized in sequence; while for decision
space reduction based MOEAs, it is very time-consuming to
calculate the correlations between the massive decision vari-
ables for dimensionality reduction.

As a consequence, for an LMOP with more decision vari-
ables, existing MOEAs require more function evaluations to
approximate the global optima, and the generation of a single
solution is also more time-consuming. To improve the effi-
ciency in solving SLMOPs, this paper aims to develop an
MOEA for reducing both the number of function evaluations
and the complexity of solution generation. We found that the
optimal solutions of many SLMOPs contain a large number of
zero variables, such as feature selection for selecting a small
proportion of candidate features [19] and neural network train-
ing for finding a sparse architecture [1]. Hence, we focus on
handling such sparse SLMOPs due to their prevalence in real-
world applications. Specifically, this paper contains the fol-
lowing contributions:

1) To find sparse optimal solutions more efficiently, a fast
clustering method is proposed to divide the large number of
decision variables into multiple groups. For all the variables in
the same group, a single variable is used to represent them so
that they are optimized, hence the search space is highly
reduced and the convergence speed can be improved. In this
way, sparse optimal solutions can be approximated by using
fewer function evaluations.

2) Based on the fast clustering method, an evolutionary
algorithm is designed for solving sparse SLMOPs, termed
super-large-scale multi-objective evolutionary algorithm
(SLMEA). In contrast to complicated operations like decision
variable division and decision space reduction, all the opera-
tions related to the decision variables in SLMEA are con-
verted into matrix calculations, which can be easily acceler-
ated by GPUs to reduce the complexity of solution generation.

3) To verify the efficiency of the proposed algorithm, it is
tested on a variety of benchmark problems and real-world

problems with up to one million decision variables. In com-
parison to several state-of-the-art MOEAs tailored for
LMOPs, the proposed algorithm can exhibit significantly bet-
ter performance on most test instances. Moreover, with the
assistance of GPU acceleration, the runtime of the proposed
algorithm is less than 10% of the runtime of the other
MOEAs.

The rest of this paper is organized as follows. In Section II,
existing MOEAs for solving LMOPs and techniques for effi-
ciency improvement are reviewed, which is followed by the
motivation of this work. In Section III, the proposed algo-
rithm and fast clustering method are elaborated upon. In Sec-
tion IV, the experimental results are presented and analyzed.
Lastly, conclusions are drawn in Section V.

II. Related Work and Motivation

A. Large-Scale MOEAs
A multi-objective optimization problem is defined as

min
x

f (x) = (f1(x), . . . , fM(x))

s.t. x = (x1, . . . , xD) ∈Ω (1)
x f

M ≥ 2
D ≥ 100

D ≥ 10 000

where denotes a decision vector having D variables and
denotes an objective vector having functions. In gen-
eral, a problem with real variables is called an LMOP
[20], and a problem with real variables is called
an SLMOP in this work. Besides, sparse SLMOPs denote
those having sparse optimal solutions, i.e., most variables in
these solutions are zero. For most metaheuristics including
MOEAs, they do not need other information about these prob-
lems (e.g., gradients) due to their stochastic search strategies.
Accordingly, many more function evaluations should be con-
sumed to solve a problem with more variables, which greatly
hinders the search efficiency of metaheuristics [10]. In order
to alleviate the curse of dimensionality, decision variable
grouping, decision variable analysis, and decision space
reduction techniques have been developed to tackle LMOPs
[21], [22].

A naive idea for solving LMOPs is to adopt the divide-and-
conquer strategy. By randomly dividing the decision vari-
ables into a predefined number of groups with equal size,
CCGDE3 [7] alternately optimizes each group of decision
variables and fixes the rest. Similarly, a dynamic grouping
strategy is suggested in MOEA/D-RDG [23] to adjust the
group size. However, the random division of decision vari-
ables does not consider the interactions between decision vari-
ables and thus is likely to trap the population into local
optima. Hence, some MOEAs adopt the differential grouping
strategy to detect interactions between decision variables,
where the variables interacting with each other are assigned to
the same group [24], [25]. This way, the global optimal solu-
tions will not be missed when optimizing each group of inter-
acting variables in sequence. While the differential grouping
strategy only considers the convergence of the population, the
decision variable analysis strategies aim to enhance both con-
vergence and diversity performance. As one of the first deci-

TIAN et al.: A FAST CLUSTERING BASED EA FOR SUPER-LARGE-SCALE SPARSE MULTI-OBJECTIVE OPTIMIZATION 1049

sion variable analysis based MOEAs, MOEA/DVA [9]
divides decision variables into position variables, distance
variables, and mixed variables by analyzing their control
properties. It optimizes position variables via differential
grouping until the population converges, and then tunes the
distance and mixed variables for diversity enhancement. For
more robust search performance, LMEA [10] uses a decision
variable clustering strategy to divide the decision variables
into convergence-related variables and diversity-related vari-
ables, then alternately optimizes the two types of decision
variables via different strategies for the improvement of both
convergence and diversity. PEA [26] adopts a similar idea to
LMEA, where the optimization of convergence-related vari-
ables is parallelized. On the other hand, decision space reduc-
tion strategies aim to directly reduce the number of decision
variables without division. WOF [11] suggests a problem
transformation framework to convert an LMOP into a small-
scale optimization problem, where the decision variables are
divided into multiple groups and a single weight is optimized
instead of all the variables in each group; thus the decision
space can be naturally reduced. LSMOF [27] suggests a prob-
lem reformulation framework, which optimizes only two
weights for each solution along two search directions for bet-
ter quality of the whole population. ReMO [28] adopts the
random embedding technique to handle LMOPs with low
intrinsic dimensions, where the objectives are affected by only
a small proportion of all decision variables. In addition, DLS-
MOEA [29] uses a self-evaluation evolution based dual local
search mechanism, which generates offspring by Gaussian or
Cauchy mutation and evaluates offspring by a meta-model.

In spite of the promising performance of existing large-scale
MOEAs, they are ineffective for solving SLMOPs as dis-
cussed in Section I. For decision variable grouping and deci-
sion variable analysis based MOEAs, they need to optimize
many groups of variables in sequence; besides, the function
evaluations consumed by differential grouping, decision vari-
able analysis, and decision variable clustering are unafford-
able [10]. Although decision space reduction based MOEAs
do not require a large number of function evaluations, they are
likely to miss global optimal solutions since the population
cannot provide sufficient samples to learn an optimal sub-
space in the high-dimensional decision space [30]. On the
other hand, existing MOEAs are also inefficient in solving
SLMOPs, since most of the decision variable grouping, deci-
sion variable analysis, and decision space reduction tech-
niques require a large number of iterations that cannot be eas-
ily parallelized.

B. Sparse MOEAs
Many LMOPs in real-world applications have sparse opti-

mal solutions, such as neural architecture search [31], commu-
nity detection [32], pattern mining [33], and power grid fault
diagnosis [34], hence some MOEAs have been tailored for
solving such LMOPs in recent years. As the first generic
MOEA for finding sparse optimal solutions, SparseEA [35]
suggests a bi-level encoding to find the zero decision vari-

ables in optimal solutions efficiently. By taking advantage of
the sparse nature of LMOPs, SparseEA can approximate
sparse optimal solutions by using fewer function evaluations
than other large-scale MOEAs. In MOEA/PSL [12], a
restricted Boltzmann machine and a denoising autoencoder
are adopted to learn a sparse distribution and a compact repre-
sentation of the optimal solutions, which enable the algorithm
to find large-scale sparse solutions in the learnt subspace. In
PM-MOEA [30], an evolutionary pattern mining approach is
developed to mine the sparse distribution of the optimal solu-
tions, which can provide different small-scale subspaces to be
exploited by the algorithm.

O(D2) O(NDEK) O(NDN′G′)

N′

G′

O(D2)
O(DK)

O(DN′)

O(ND)
O(D)

Although the above sparse MOEAs significantly improve
efficiency in finding sparse optimal solutions, they are still
inefficient in finding sparse optimal solutions of SLMOPs.
This is mainly due to the high complexities of the strategies
for generating sparse solutions, where the non-dominated sort-
ing based fitness calculation in SparseEA, the neural network
based dimensionality reduction in MOEA/PSL, and the evolu-
tionary pattern mining in PM-MOEA hold a time complexity
of , , and , respectively, where D
is the number of decision variables, N is the population size, E
is the number of epochs for training neural networks, K is the
hidden layer size of the neural networks, is the population
size for pattern mining, and is the number of generations
for pattern mining. In addition, SparseEA requires a space
complexity of for fitness calculation, MOEA/PSL
requires a space complexity of to store neural net-
works, and PM-MOEA requires a space complexity of

 to store the mined sparse distributions. On the con-
trary, a much simpler but still effective search strategy is sug-
gested in the proposed algorithm for finding sparse optimal
solutions, whose time complexity is as low as and
space complexity is just . Moreover, the search strate-
gies in SparseEA, MOEA/PSL, and PM-MOEA contain iter-
ated steps while the proposed search strategy consists of only
matrix calculations, which can be deployed on GPUs for a fur-
ther improvement of efficiency.

C. Parallel MOEAs
In order to improve search efficiency, some work has been

dedicated to the parallelization of MOEAs in terms of the
algorithmic level, iteration level, and solution level [36]. The
algorithmic level parallelization employs master-slave models
[37], [38] or island models [39], [40] to optimize multiple
populations simultaneously, where the populations evolve
toward different parts of the Pareto front and share useful
information with each other via migration. The iteration level
parallelization is performed on the generation and evaluation
of solutions in a single population [41], [42], which can easily
accelerate existing MOEAs like NSGA-II [43] and MOEA/D
[44]. The solution level parallelization is for the evaluation of
a single solution, where problem-dependent strategies are
developed to accelerate calculation of objective functions
[45], [46].

Although these parallel MOEAs are efficient for solving

 1050 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 4, APRIL 2023

small-scale optimization problems, they are not applicable to
large-scale optimization since the operations related to the
decision variables (e.g., reproduction operators) are not paral-
lelized. Moreover, their frameworks are incompatible with
existing large-scale MOEAs and sparse MOEAs, which means
that these parallel MOEAs are ineffective for solving LMOPs
as well as SLMOPs.

D. Motivation of This Work
According to the above analysis, it can be determined that

existing large-scale MOEAs and sparse MOEAs are ineffi-
cient to solve SLMOPs, and existing parallel MOEAs are inef-
fective in solving SLMOPs. Besides, it is difficult to take
advantage of all three types of MOEAs by combing their
strategies. In order to better handle the sparse SLMOPs that
widely exist in the real world, the motivation of this work is to
develop new techniques for the improvement of both effec-
tiveness and efficiency. New techniques should take much
fewer function evaluations compared to existing MOEAs for
finding sparse optimal solutions for SLMOPs, and they should
be able to be parallelized and accelerated. It is worth noting
that although some evolutionary algorithms have already been
developed for solving specific problems with millions [16] or
even billions of variables [47], the core techniques in these
algorithms are heavily customized for specific objective func-
tions and datasets, which cannot be used to solve different
SLMOPs.

On the contrary, this work proposes a problem-independent
MOEA for solving sparse SLMOPs. By suggesting a fast clus-
tering based search strategy, the proposed algorithm can use a
relatively small number of function evaluations to approxi-
mate the sparse optimal solutions of SLMOPs. More impor-
tantly, the main operations in the proposed algorithm consist
of only matrix calculations rather than iterated steps, which
can be deployed on GPUs for a significant improvement of
efficiency. The detailed procedure of the proposed algorithm
is presented in the next section.

III. The Proposed Algorithm

A. General Procedure of SLMEA

x = (x1, . . . , xD) ∈Ω r = (r1, . . . ,rD) ∈
Ω b = (b1, . . . ,bD) ∈ {0,1}D

xi xi = ri×bi

ri
bi ri bi = 0

The general procedure of the proposed SLMEA is shown in
Fig. 1, where the mating selection, offspring generation, and
environmental selection are iteratively performed until the ter-
mination criterion is satisfied. By following the bi-level
encoding in SparseEA, the proposed SLMEA represents each
solution by a real vector

 and a binary vector , where each
decision variable is determined by . In this way,
the optimization of the real vector r can find the optimal deci-
sion vectors and the optimization of the binary vector b can
determine the real variables that should be optimized. Owing
to the multiplication of real variables and binary variables

, all the whose corresponding do not need to be
optimized, and thus the decision space Ω can be highly
reduced. While the optimization of the binary vector b addi-
tionally introduces a D-dimensional binary search space, a fast
clustering method is suggested for dimensionality reduction.

As depicted in Fig. 1, the core contributions of SLMEA lie in
two aspects, i.e., updating an archive for binary variable clus-
tering, and generating offspring in the reduced search space.

x

⌈rand×D⌉

rand [0,1]

Group
2N

The pseudocode of the main procedure of SLMEA is given
in Algorithm 1. To begin with, a population P with size N and
an empty archive A are initialized (Lines 1 and 2), and the ini-
tial values of the parameters K and ρ are set to 5 and 0.5
(Lines 3 and 4), respectively. To initialize solutions with dif-
ferent sparsity, for each solution in the initial population,
SLMEA sets its real vector r to a random vector and sets its
binary vector b to a vector of zeros. Then, vari-
ables in the binary vector are randomly selected and flipped to
one, where denotes a random number within . In
each generation, SLMEA first updates the archive (Line 6)
and uses it to divide the decision variables into several sets

 for dimensionality reduction (Line 7). Then, the algo-
rithm selects parents from the population for generating N
offsprings, where each parent is selected via binary tourna-
ment selection (Line 8). After generating the offsprings (Line
9), the parameters K and ρ are automatically updated (Line 10)
and the offsprings are combined with the population (Line
11), among which N solutions survive to the next generation
(Lines 12–16). For simplicity, the mating selection and envi-
ronmental selection adopt the same selection criteria to
NSGA-II [43], where solutions with smaller non-dominated
front numbers and larger crowding distance values are pre-
ferred. To handle problems with more than three objectives,
the mating selection and environmental selection in many-
objective evolutionary algorithms [48] can also be adopted.
The core components of SLMEA are elaborated in the next
three subsections, including decision variables clustering, off-
spring generation, and parameter adaptation.

Random initialization of
population

Archive update and
variable clustering

Mating
selection

Generating offsprings in
the reduced space

Generating offsprings in
the original space

Combination of
offsprings and population

Environmental
selection

Terminated?

End

N

Y

Start

Final population

Fig. 1. Procedure of SLMEA, where the core contributions are shown in
dark color.

TIAN et al.: A FAST CLUSTERING BASED EA FOR SUPER-LARGE-SCALE SPARSE MULTI-OBJECTIVE OPTIMIZATION 1051

Algorithm 1 Procedure of SLMEA

NAInput: N (population size), (archive size)
Output: P (final population)

P← Initialization(N) Initial population1 ;　　//
A← ∅ Initial archive2 ;　　//
K← 5 Initial number of groups3 ;　　//
ρ← 0.5 Initial parameter4 ;　　//

5 while termination criterion is not fulfilled do
A← U pdateArchive(A,P,NA) Algorithm 26　 ;　　//
Group←Clustering(A,K) Algorithm 37　 ;　　//
P′← 2N8　 　 Select parents via binary tournament selection

according to the non-dominated front number and crowding distance
of solutions in P;

O← Variation(P′,Group,ρ) Algorithm 49　 　 ;　　//
[K,ρ]← ParaAdapt(O,K,ρ) Algorithm 710　　 ;　　//
P← P∪O11　　 ;
[F1,F2, . . .]←12　　 Perform non-dominated sorting on P;
CrowdDis←

F1,F2, . . .

13　　 Calculate the crowding distance for each solu-
tion in ;

l← |F1 ∪ · · ·∪Fl | ≥ N14　 　 Minimum value s.t. ;
|F1 ∪ · · ·∪Fl | −N Fl

CrowdDis

15　　Delete solutions from with the smallest
;
P← F1 ∪ · · ·∪Fl16　　 ;

17 return P.

B. Fast Clustering Based Dimensionality Reduction

NA NA

In order to divide the decision variables for dimensionality
reduction, the proposed SLMEA updates an archive A to store
useful information about the relations between variables. As
shown in Algorithm 2, the archive is first combined with the
current population P, and only the non-dominated solutions
remain. If the number of non-dominated solutions exceeds the
archive size , solutions with larger crowding distance
values are remained. Then, the binary vectors of the solutions
in the archive are used to divide the decision variables into K
groups. As illustrated in Fig. 2, the sparsity of each variable is
calculated as its mean value among the binary vectors of all
solutions in the archive

S parsityi =
1
|A|

|A|∑
j=1

B ji (2)

B ji

Group1
Group2

K −2

where denotes the value of the ith binary variable of the jth
solution in A. Afterwards, the variables with a sparsity of 1 are
assigned to the first group , the variables with a spar-
sity of 0 are assigned to the second group , and all the
other variables are grouped into groups via a fast clus-
tering method. Specifically, the variable whose sparsity is the
closest to 0.5 is selected as the reference variable c, and the
similarity between each variable b and c is calculated by

S imbc =
N(b=0,c=1)+N(b=1,c=0)

N(b=0,c=1)+N(b=1,c=0)+N(b=1,c=1)
(3)

N(b=0,c=1)

(D− |Group1| − |Group2|)/(K −2)
Group3

(D− |Group1| − |Group2|)/(K −2)
Group4

where denotes the number of solutions in A whose
bth binary variable is 0 and cth binary variable is 1. Lastly, the
variables are sorted according to their similarities to the refer-
ence variable, where the first
variables are assigned to the group , the second

 variables are assigned to the
group , and so on. In Section IV-D, the proposed fast
clustering method is empirically verified to be more effective
than some other clustering methods.

U pdateArchive(A,P,NA)Algorithm 2

NAInput: A (current archive), P (current population), (archive
size)

Output: A (updated archive)
A← A∪P1 ;
A←2 The non-dominated solutions in A;
|A| > NA3 if then

CrowdDis←4 Calculate the crowding distance for each solution in
A;

|A| > NA CrowdDis5 Delete solutions from A with the smallest ;
6 return A.

The pseudocode of the proposed fast clustering method is
given in Algorithm 3. Since most of the operations are related
to a large number of binary variables, a binary matrix B is first
constituted by the binary vector of all the solutions in the
archive (Line 1). Then, all the operations are performed based
on B without any iterated steps (Lines 2–9), which can be eas-
ily accelerated by GPUs since they are all matrix calculations.
Lastly, the decision variables are divided into several groups
according to the rank of similarities (Lines 11 and 12), where

Group1 Group2Group3
_Groupk

Binary variable
Solution

Sparsity

Reference variable

1
1

2

1

3

1

4

1
1

1

5

1

6

1

7

1

8

1

1
1
1

1
1

1
1
1
1
1

0
1
0

0
1

0
0
0
1
0

0
0
1

0
0

0
0
0
0
1

0
0
0

0
0

1
0
0
0
0

0
0
1

0
0

0
0
0
0
0

0.10.10.20.30.40.50.60.70.80.80.9

0
0
0

0
0

0
0
0
0
0

0

0
0
0

0
0

0
0
0
0
0

0

0
0
0

0
0

0
0
0
0
0

0

1
0
1

1
0

0
1
0
1
0

0
1
0

0
1

1
0
1
0
1

1
1
0

0
1

1
0
1
0
1

1
1
0

1
1

0
1
1
0
1

1
0
1

0
1

1
1
1
1
1

1
1
1

1
0

1
1
0
1
1

1
1
0

1
1

1
1
1
1
1

9

1

10
1
2
3
4
5
6
7
8
9

10

1

11 12 13 14 15 16

Fig. 2. Illustration of the fast clustering method in SLMEA.

 1052 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 4, APRIL 2023

the number of iterations K is very small. As a consequence,
the proposed clustering method is much faster than conven-
tional clustering methods (e.g., k-means and DBSCAN [49])
that should repeatedly calculate the distances between nodes,
which hold very high computational complexities due to the
large number of variables. The groups of variables are then
used to reduce the search space in offspring generation, which
is described in the next subsection.

Clustering(A,K)Algorithm 3

Input: A (current archive), K (number of groups)
GroupOutput: (groups of variables)

B← |A| ×D

denotes the number of variables

1 A matrix containing the binary vectors of all solu-
tions in A;　　//D

S parsity← sum(B) sum of each column of2 ;　　// B
c← argminb |S parsityb −0.5|3 ;
B′← repmat(B·c,D) Repeat the th column of for columns4 ;　　// c- B D
S im← sum

(
(1−B)·B′+B·(1−B′)

(1−B)·B′+B·(1−B′)+B·B′
)

5 ;
rank← sort(S im) Rank of variables in S im6 ;　　//
Group1← {b|S parsityb = 1}7 ;
Group2← {b|S parsityb = 0}8 ;
rank← rank \Group1 \Group29 ;

l←
⌈ |rank|

K−2

⌉
10 ;

i = 311 for to K do
Groupi←

{
rank1+(i−3)l, . . . ,rankmin(|rank|,(i−2)l)

}
12 ;

Group13 return .

C. Offspring Generation

Group
r = (r1, . . . ,rD)

r∗ = (r∗1, . . . ,r
∗
K)

The proposed SLMEA generates the real vector of each off-
spring by using SBX [17] and polynomial mutation [18],
while generates the binary vector of each offspring by using
uniform crossover and bit-flip mutation. Moreover, both the
real vectors and binary vectors of offsprings are generated in
the reduced space according to . To be specific, for the
real vector of each parent, it is shortened to

 by representing all the variables in the same
group by a single real value, where

r∗i =
1

|Groupi|
∑

j∈Groupi

r j. (4)

b = (b1, . . . ,bD)
b∗ = (b∗1, . . . ,b

∗
K)

Similarly, for the binary vector of each par-
ent, it is shortened to by representing all the
variables in the same group by a single binary value, where

p(b∗i = 1|Groupi) =
1

|Groupi|
∑

j∈Groupi

b j (5)

b∗i
[0,1]

r∗ b∗

and the value of is sampled by comparing the probability p
with a uniformly distributed random value within . After
generating the reduced real vector and binary vector of
each offspring, they can be recovered to r and b by

r j = r∗i
b j = b∗i (6)

j ∈Groupi i ∈ {1, . . . ,K}for all and . Therefore, the search
space can be highly reduced from D to the number of groups
K.

PR
PB

OR OB
PR PB

PR PB
PR∗ PB∗

The pseudocode of generating offspring is presented in
Algorithm 4. In order to accelerate the operations via GPUs, a
real matrix consisting of the real vectors of all the parents
(Line 2) and a binary matrix consisting of the binary vec-
tors of all the parents (Line 5) are constructed, where the real
matrix and binary matrix of the offsprings are gener-
ated based on several matrix calculations on and
(Lines 12–17), respectively. To strike a balance between
exploration and exploitation, some offsprings are generated in
the reduced search space while others are generated in the
original search space. That is, the real matrix and binary
matrix of the parents are divided into two parts, where the
matrices and are used to generate offspring in the orig-
inal search space while the matrices and are used to
generate offspring in the reduced search space.

Variation(P′,Group,ρ)Algorithm 4

P′ GroupInput: (parent population), (groups of variables), ρ (ratio
of offspring generated in the reduced space)

Output: O (offspring population)
index← rand1×|P′ | > ρ 1× |P′ |1 ; //Indexes of the elements in a ran-

dom vector that are larger than ρ
PR← |index| ×D

P′ index

2 A matrix containing the real vectors of all solu-
tions in whose indexes are in ;

PR′← (|P′ | − |index|)×D

P′ index

3 A matrix containing the real vectors of all
solutions in whose indexes are not in ;

PR∗← (|P′ | − |index|)× |Group|4 A matrix of zeros;
PB← |index| ×D

P′ index

5 A matrix containing the binary vectors of all
solutions in whose indexes are in ;

PB′← (|P′ | − |index|)×D

P′ index

6 A matrix containing the binary vectors of
all solutions in whose indexes are not in ;

PB∗← (|P′ | − |index|)× |Group|7 A matrix of zeros;
i = 1 |Group|8 for to do

PR∗·i←mean(PR′·Groupi
) th PR∗

Groupi th of PR′
9 ;　　//i column of is set to the mean

of columns
PB∗·i←mean(PB′·Groupi

) th PB∗

Groupi th of PB′
10 ;　　//i column of is set to the mean

of columns
PB∗← PB∗ > rand(|P′ |−|index|)×|Group|11 ;　 //“>” is the element wise

logical operator of “greater than”
OR← RealOperators(PR) Algorithm 512 ;　　//
OR∗← RealOperators(PR∗) Algorithm 513 ;　　//
OR′← (|P′ | − |index|)×D14 A matrix of zeros;
OB← BinaryOperators(PB) Algorithm 615 ;　　//
OB∗← BinaryOperators(PB∗) Algorithm 616 ;　　//
OB′← (|P′ | − |index|)×D17 A matrix of zeros;

i = 1 |Group|18 for to do
OR′·Groupi

← OR∗·i Groupi th OR′

th OR∗
19　　 ;　　 // columns of are set to

the same as i column of
OB′·Groupi

← OB∗·i Groupi th OB′

th of OB∗
20　　 ;　　 // columns of are set to

the same as i column
O← OR∪OR′ OB∪OB′21 Use the real matrix and binary matrix to

generate an offspring population;
22 return O.

TIAN et al.: A FAST CLUSTERING BASED EA FOR SUPER-LARGE-SCALE SPARSE MULTI-OBJECTIVE OPTIMIZATION 1053

for-end
if-else

for-end if-else

1/D

It is worth noting that the adopted crossover and mutation
operators are performed on a single decision variable, which
cannot handle the real and binary matrices directly. In particu-
lar, the widely used SBX contains two blocks and
three blocks for generating a number of offsprings
[17]. To address this issue, we convert all the operations of the
crossover and mutation operators into matrix calculations, so
that the generation of offspring can be deployed on GPUs. As
shown in Algorithm 5, the adopted SBX and polynomial
mutation consist of several matrix calculations on the real
matrix without any or block, where the
crossover probability is set to 1, the mutation probability is set
to , and the distribution index is set to η. Similarly, the
adopted uniform crossover and bit-flip mutation also consist
of only matrix calculations as shown in Algorithm 6.

RealOperators(PR)Algorithm 5

PRInput: (real matrix of parents)
OROutput: (real matrix of offsprings)

Simulated binary crossover　//
PR1← PR Set of first parents for generating

each offspring

1 The upper half of ;　　//

PR2← PR Set of second parents for

generating each offspring

2 The lower half of ;　　 //

M← PR1 Each

element is randomly sampled in [0,1]

3 A random matrix with the same size as ;　　 //

R1← PR14 A random matrix with the same size as ;
R2← PR15 A random matrix with the same size as ;
T1← M < 0.5 is the element wise logical operator of less

than

6 ;　　//“<” - “
”
T2← sign(R1 −0.5) sign is the element wise signum function7 ;　　//“ ” -
T3← R2 < 0.58 ;
B1← (2×M)

1
η+1 The power operator works on each element of

the matrix

9 ;　　//

B2← (2−2×M)−
1
η+110 ;

B← T1 ·B1 + (1−T1) ·B2 The multiplication operator works on

each element of the matrix

11 ;　　//

B← T2 ·B12 ;
B← (1−T3) ·B+T313 ;
OR← 0.5[(1+B) ·PR1+ (1−B) ·PR2]14 ;
Polynomial mutation　//

M← OR15 A random matrix with the same size as ;
R← OR16 A random matrix with the same size as ;
n← OR17 Number of rows (i.e., number of offsprings) in ;
L← repmat(Lower,n) Repeat the lower bounds Lower of the

problem for rows

18 ;　　 //
 n

U ← repmat(U pper,n) Repeat the upper bounds U pper of the

problem for rows

19 ;　　//
 n

S ← R < 1
D20 ;

T ← M < 0.521 ;
T1← S ·T22 ;
T2← S · (1−T)23
C1← [2 ·M+ (1−2 ·M) · (1− OR−L

U−L)η+1]
1
η+1 −124 ;

C2← 1− [2 · (1−M)+2 · (M−0.5) · (1− U−O
U−L)η+1]

1
η+125 ;

OR← OR+ (U −L) · (C1 ·T1 +C2 ·T2)26 ;
OR27 return .

BinaryOperators(PB)Algorithm 6

PBInput: (binary matrix of parents)
OBOutput: (binary matrix of offsprings)

Uniform crossover　//
PB1← PB Set of first parents for

generating each offspring

1 The upper half of ;　 　 //

PB2← PB Set of second parents for

generating each offspring

2 The lower half of ;　　 //

M← PB1 Each

element is randomly sampled in [0,1]

3 A random matrix with the same size as ;　　 //

T ← M < 0.5 is the element wise logical operator of less

than

4 ;　　//“<” - “
”
OB← PB1 ·T +PB2 · (1−T) The multiplication operator works

on each element of the matrix

5 ;　　 //

Bit flip mutation// -
M← OB Each

element is randomly sampled in [0,1]

6 A random matrix with the same size as ;　　 //

T ← M < 1
D7 ;

OB← OB · (1−T)+ (1−OB) ·T8 ;
OB9 return .

D. Parameter Adaptation

,

The proposed SLMEA adaptively adjusts two parameters K
and ρ to control the generation of offspring, where K denotes
the number of groups (i.e., dimensions of the reduced search
space) and ρ denotes the ratio of offsprings generated in the
reduced search space. Intuitively, if many solutions generated
in the reduced search space are promising, i.e., the reduced
search space benefits the evolution of population, the parame-
ters K and ρ should become larger to take better advantage of
the reduction of search space. By contrast, if few solutions
generated in the reduced search space are promising the
parameters K and ρ should become smaller. For this purpose,
the parameter K is updated by

Kt+1 = Kt × e
1

Kt
(

ns1,t
s1,t
− ns1,t−1

s1,t−1
) (7)

Kt s1,t

ns1,t

ns1,t
s1,t

ns1,t
s1,t
− ns1,t−1

s1,t−1

where denotes the value of K at the tth generation,
denotes the number of offsprings generated in the reduced
search space at the tth generation, and denotes the num-
ber of non-dominated offsprings generated in the reduced
search space at the tth generation. Obviously, a larger
indicates that more solutions generated in the reduced search
space are promising, and a positive indicates that
the ratio of promising solutions generated in the reduced
search space is increased. Thus, the value of K becomes
larger.

On the other hand, the parameter ρ is updated by

ρt+1 = 0.5×
(
ρt +

s2,t ×ns1,t

s2,t ×ns1,t + s1,t ×ns2,t

)
(8)

s2,t
ns2,t

s2,t×ns1,t
s2,t×ns1,t+s1,t×ns2,t

where denotes the number of offsprings generated in the
original search space at the tth generation, and denotes
the number of non-dominated offsprings generated in the orig-
inal search space at the tth generation. Since a larger

 indicates that the ratio of non-dominated solu-

 1054 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 4, APRIL 2023

tions generated in the reduced search space is larger than in
the original search space, it is positively related to ρ so that
more solutions can be generated in the reduced search space at
the next generation. To summarize, the pseudocode of param-
eter adaptation is given in Algorithm 7.

ParaAdapt(O,K,ρ)Algorithm 7

K, ρInput: O (offspring population), (parameters)
K, ρOutput: (updated parameters)

s1,t ←1 The number of solutions in O whose binary vectors are
generated in the reduced search space;

s2,t ←2 The number of solutions in O whose binary vectors are
generated in the original search space;

F1←3 Determine the non-dominated solutions in O;
ns1,t ← F14 The number of solutions in whose binary vectors are

generated in the reduced search space;
ns2,t ← F15 The number of solutions in whose binary vectors are

generated in the original search space;
K←6 Update K according to (7);
ρ←7 Update ρ according to (8);

K, ρ8 return .

E. Time Complexity of SLMEA

O(MN2)

O(ND)
O(ND) O(D log D)

O(ND)
PR PB

M≪ log D≪ N
O(ND)

O(D2)

According to Algorithm 1, the mating selection, environ-
mental selection, and archive update of SLMEA use the same
strategies to NSGA-II, which hold a time complexity of

 [50], where M is the number of objectives and N is
the population size. For the fast clustering method, the time
complexities of calculating the sparsity of binary variables,
calculating similarities between each binary variable and the
reference variable, and sorting the similarities are ,

, and , respectively, where D is the number
of decision variables. For the generation of offspring, it holds
a time complexity of since all the operations are per-
formed on the real matrix and the binary matrix . Con-
sidering that , the total time complexity of
SLMEA is for one generation, which equals the time
complexity of many classical MOEAs such as NSGA-II [43],
SPEA2 [51], and MOEA/D [44]. By contrast, the time com-
plexity of existing large-scale MOEAs and sparse MOEAs is
up to , since they divide the decision variables by
detecting the interaction between each two variables [9], [10],
or reduce the decision space by learning the relations between
variables [12], [52]. Moreover, with the assistance of GPU
accelerated matrix calculations, the runtime of SLMEA is
much less than existing MOEAs as indicated in the experi-
mental results.

IV. Experimental Results

To verify the performance of the proposed SLMEA on
SLMOPs, it is compared to six state-of-the-art MOEAs (i.e.,
NSGA-II [43], CCGDE3 [7], LMOCSO [20], WOF-SMPSO
[11], SparseEA [35], and MOEA/PSL [12]), where NSGA-II
is a classical MOEA that holds the same selection strategies to
SLMEA; CCGDE3, LMOCSO, and WOF-SMPSO are state-
of-the-art MOEAs for solving LMOPs; SparseEA and

MOEA/PSL are state-of-the-art MOEAs for solving sparse
LMOPs. These MOEAs are tested on eight benchmark prob-
lems and three real-world applications with 10 000 to 1 000 000
decision variables, where all the experiments are conducted on
PlatEMO [53].

A. Parameter Settings

1/D

CR

[0,1]

1) Algorithms: The parameters in the compared MOEAs are
set as suggested in their original papers. In CCGDE3, the
number of groups is set to 2 and the size of each subpopula-
tion is set to 40. In WOF-SMPSO, the number of groups is set
to 4, the number of evaluations for the original problem is set
to 1000, the number of evaluations for the transformed prob-
lem is set to 500, the number of chosen solutions for weight
optimization is set to 3, and the fraction of evaluations for
weight optimization is set to 0.5. In SLMEA, the archive size
is set to the same as the population size. As for the reproduc-
tion operators, NSGA-II, SparseEA, MOEA/PSL, and the pro-
posed SLMEA adopt SBX and polynomial mutation for real
variables and uniform crossover and bit-flip mutation for
binary variables, where the crossover probability is set to 1,
the mutation probability is set to (D is the number of
decision variables), and the distribution index η is set to 20.
CCGDE3 adopts the differential evolution, where both the
learning rate F and crossover rate are set to 0.5. LMOCSO
adopts the competitive swarm optimizer and WOF-SMPSO
adopts the particle swarm optimization, where the polynomial
mutation is tailed after the particles are updated. When han-
dling binary variables, CCGDE3, LMOCSO, and WOF-
SMPSO optimize the same number of real variables within

 and round them before calculating the objective values.
2) Benchmark Problems: The eight benchmark problems

SMOP1–SMOP8 [35] are characterized by various land-
scapes with different difficulties, including low intrinsic
dimensionality, epistasis, deception, and multi-modality. More
importantly, all the optimal solutions of SMOP1–SMOP8
have adjustable sparsity. For all the eight problems, the num-
ber of objectives is set to 2, the number of decision variables
is varied from 10 000 to 1 000 000, and the sparsity of opti-
mal solutions (i.e., ratio of nonzero variables in each optimal
solution) is set to 0.1.

3) Real-World Problems: Three types of sparse SLMOPs
are taken from real-world applications, including feature
selection [54], pattern mining [2], and neural network training
[55]. The feature selection problem aims to select a small pro-
portion of features from a training set for minimizing the clas-
sification error and number of selected features, the pattern
mining problem aims to select some items from a transaction
dataset for maximizing the frequency and occupancy rate of
the selected items in the dataset, and the neural network train-
ing problem aims to optimize all the weights for minimizing
the classification error and network complexity. Detailed defi-
nitions are referred to in [35]. For each problem, three datasets
are adopted to form three test instances as listed in Table I,
where the number of objectives is 2 and the number of deci-
sion variables is varied from 9712 to 100 000.

TIAN et al.: A FAST CLUSTERING BASED EA FOR SUPER-LARGE-SCALE SPARSE MULTI-OBJECTIVE OPTIMIZATION 1055

4) Population Size and Termination Criterion: For fairness,
all the compared MOEAs evolve a population with the same
size for the same number of function evaluations. For solving
the benchmark problems, the population size is set to 100 for
10 000 and 100 000 decision variables; since the MOEAs with
a population size of 100 will run out of memory for 1 000 000
decision variables, the population size is set to 50 in this case.
The maximum number of function evaluations is set to
100 000, 300 000, and 1 000 000 for 10 000, 100 000, and
1 000 000 decision variables, respectively. To solve the real-
world problems, the population size is always set to 100, and
the maximum number of function evaluations is set to 50 000,
100 000, and 150 000 for approximately 10 000, 50 000, and
100 000 decision variables. It is worth noting that some
MOEAs may be extremely time-consuming for problems with
1 000 000 decision variables, hence each MOEA is executed
for at most three days, even if the maximum number of func-
tion evaluations is not reached.

(1,1)

5) Assessment Criteria: Since the true Pareto front of the
benchmark problems are known, the inverted generational dis-
tance (IGD) [57] is employed to assess the quality of each
population obtained by the compared MOEAs, where 10 000
reference points are sampled on each true Pareto front by
using the methods suggested in [58]. On the other hand, the
true Pareto front of the real-world problems are unknown,
hence the hypervolume (HV) [59] is employed to assess the
quality of each population, where the reference point is set to
the worst objective values of the problems, i.e., . For
each MOEA on each problem, the mean and standard devia-
tion of the indicator values over 30 independent runs are
recorded. In addition, the Friedman test with Bonferroni cor-
rection [60] at a significance level of 0.05 is adopted, where
“+”, “−”, and “≈” indicate that the indicator values obtained
by an MOEA are significantly better, significantly worse, and
statistically similar to those obtained by the proposed SLMEA
on a problem, respectively.

B. Comparisons on Benchmark Problems
The IGD values obtained by seven MOEAs on SMOP1–

SMOP8 are listed in Table II. Generally, the proposed SLM-
EA achieves the best IGD values on 18 out of 24 test ins-
tances, which is followed by MOEA/PSL gaining the best
IGD values on the remaining six test instances. In terms of the
statistical test, the proposed SLMEA significantly outper-
forms MOEA/PSL on 18 test instances and outperforms the
other five MOEAs on all the 24 test instances. In short, the
proposed SLMEA exhibits obviously better performance than
existing MOEAs for solving benchmark SLMOPs.

For visual observation, Fig. 3 plots the populations with
median IGD values obtained by seven MOEAs on SMOP3,
SMOP5, and SMOP7 with 1 000 000 decision variables. It can
be found that the populations obtained by the proposed
SLMEA have the best convergence, which is attributed to the
bi-level encoding scheme and the fast clustering based dimen-
sionality reduction method. The populations obtained by
MOEA/PSL have the second best convergence, since it also
uses the bi-level encoding scheme and a dimensionality reduc-
tion method. The populations obtained by WOF-SMPSO have
the third best performance, which is mainly due to its prob-
lem transformation framework that can quickly converge to a
local optimum. Besides, the populations obtained by NSGA-
II, CCGDE3, LMOCSO, and SparseEA have the worst con-
vergence, which implies that they are not suitable for solving
SLMOPs.

In terms of efficiency, Fig. 4 presents the average runtime
consumed by seven MOEAs on SMOP1–SMOP8 with
10 000, 100 000, and 1 000 000 decision variables. It can be
clearly observed that the GPU accelerated SLMEA is much
more efficient than the other MOEAs, where its superiority
becomes more significant with the increase of the number of
decision variables. In particular, the runtime of SLMEA is
approximately 1/14 of the runtime of WOF-SMPSO,
SparseEA, and MOEA/PSL on the problems with 1 000 000
decision variables; in fact, WOF-SMPSO, SparseEA, and
MOEA/PSL run for three days before the maximum number
of function evaluations is reached. It should be noted that
NSGA-II, CCGDE3, and LMOCSO can be accelerated by

TABLE I

Datasets of Three Sparse Slmops in Real-world Applications

Feature selection No. of variables Dataset No. of samples No. of features No. of classes

FS1 9712 nci91 60 9712 9

FS2 45 151 DGLA_BRA_1801 180 45 151 4

FS3 100 000 Synthetic2 100 100 000 2

Pattern mining No. of variables Dataset No. of transactions No. of items Avg. length of transactions

PM1 10 000 Synthetic [56] 5000 10 000 500

PM2 50 000 Synthetic [56] 25 000 50 000 2500

PM3 100 000 Synthetic [56] 50 000 100 000 5000

Neural network training No. of variables Dataset No. of samples No. of features No. of classes

NN1 10 041 Madelon1 2600 500 2

NN2 40 041 colon1 62 2000 2

NN3 97 281 BASEHOCK1 1993 4862 2

1. https://jundongl.github.io/scikit-feature/datasets.html
2. https://scikit-learn.org/stable/

 1056 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 4, APRIL 2023

https://jundongl.github.io/scikit-feature/datasets.html
https://scikit-learn.org/stable/

TA
B

LE
 II

IG
D

 V
a

lu
es

 O
bt

a
in

ed
 b

y
 N

SG
A

-I
I,

 C
C

G
D

E
3,

 L
M

O
C

SO
, W

O
F

-S
M

PS
O

, S
pa

rs
eE

A
, M

O
E

A
/P

SL
, a

n
d

 t
h

e
Pr

op
os

ed
 S

L
M

E
A

 o
n

 S
M

O
P1

–S
M

O
P8

,
W

h
er

e
th

e
B

es
t

R
es

u
lt

 in
 E

a
ch

 R
ow

 is
 S

h
ow

n
 in

 B
ol

d

Pr
ob

le
m

D
N

SG
A

-I
I

C
C

G
D

E3
LM

O
C

SO
W

O
F-

SM
PS

O
Sp

ar
se

EA
M

O
EA

/P
SL

SL
M

EA

10
 0

00
8.

52
55

E–
1

(2
.1

1E
–2

)−
1.

11
39

E+
0

(4
.9

7E
–2

)−
7.

10
73

E–
1

(1
.5

3E
–2

)−
2.

20
35

E–
1

(3
.0

9E
–2

)−
3.

84
54

E–
1

(1
.2

3E
–2

)−
2.

28
36

E–
2

(2
.5

4E
–3

)−
1.

77
55

E
–2

 (5
.5

6E
–3

)

SM
O

P1
10

0
00

0
1.

33
35

E+
0

(4
.9

0E
–3

)−
1.

14
03

E+
0

(1
.0

4E
–2

)−
7.

26
15

E–
1

(1
.1

9E
–2

)−
3.

26
90

E–
1

(1
.9

0E
–2

)−
6.

51
67

E–
1

(7
.3

9E
–3

)−
3.

03
30

E
–2

 (4
.6

4E
–3

)+
3.

82
69

E–
2

(1
.0

7E
–2

)

1
00

0
00

0
1.

60
88

E+
0

(9
.9

9E
–4

)−
1.

16
64

E+
0

(0
.0

0E
+0

)−
7.

38
40

E–
1

(0
.0

0E
+0

)−
2.

82
02

E–
1

(6
.7

8E
–3

)−
8.

18
68

E–
1

(4
.5

5E
–4

)−
4.

83
56

E–
2

(8
.4

6E
–3

)−
3.

31
65

E
–2

 (4
.5

7E
–3

)

10
 0

00
1.

67
23

E+
0

(6
.5

7E
–3

)−
2.

12
14

E+
0

(6
.6

9E
–2

)−
2.

03
03

E+
0

(4
.0

6E
–3

)−
3.

44
87

E–
1

(1
.3

4E
–1

)−
8.

19
88

E–
1

(1
.1

4E
–2

)−
1.

01
95

E–
1

(1
.3

9E
–3

)−
8.

58
80

E
–2

 (3
.3

8E
–2

)

SM
O

P2
10

0
00

0
2.

04
83

E+
0

(5
.2

6E
–3

)−
2.

10
93

E+
0

(3
.3

5E
–3

)−
2.

03
65

E+
0

(1
.2

4E
–2

)−
1.

01
49

E+
0

(2
.3

4E
–1

)−
1.

05
85

E+
0

(2
.9

0E
–3

)−
1.

05
25

E
–1

 (5
.8

4E
–3

)+
1.

22
44

E–
1

(1
.0

9E
–2

)

1
00

0
00

0
2.

21
75

E+
0

(1
.0

1E
–3

)−
2.

14
89

E+
0

(0
.0

0E
+0

)−
2.

02
89

E+
0

(0
.0

0E
+0

)−
1.

05
16

E+
0

(1
.0

7E
–1

)−
1.

16
51

E+
0

(0
.0

0E
+0

)−
1.

21
54

E
–1

 (8
.5

5E
–3

)+
1.

47
65

E–
1

(3
.5

4E
–3

)

10
 0

00
2.

06
04

E+
0

(1
.8

2E
–2

)−
2.

14
04

E+
0

(3
.9

7E
–2

)−
1.

75
61

E+
0

(1
.4

4E
–2

)−
7.

03
53

E–
1

(2
.0

6E
–3

)−
2.

58
00

E+
0

(1
.4

1E
–2

)−
4.

76
20

E–
2

(7
.7

4E
–3

)−
3.

12
26

E
–2

 (1
.6

5E
–2

)

SM
O

P3
10

0
00

0
2.

42
74

E+
0

(3
.4

1E
–3

)−
2.

11
63

E+
0

(3
.1

3E
–3

)−
1.

76
35

E+
0

(3
.9

5E
–3

)−
7.

01
14

E–
1

(2
.2

4E
–4

)−
2.

81
56

E+
0

(3
.1

8E
–3

)−
4.

82
19

E–
1

(8
.6

7E
–2

)−
3.

48
58

E
–2

 (1
.1

1E
–2

)

1
00

0
00

0
2.

58
06

E+
0

(3
.9

5E
–4

)−
2.

13
67

E+
0

(0
.0

0E
+0

)−
1.

76
73

E+
0

(0
.0

0E
+0

)−
7.

00
95

E–
1

(1
.0

2E
–6

)−
2.

90
37

E+
0

(3
.4

7E
–4

)−
5.

18
37

E–
2

(8
.8

3E
–3

)−
2.

67
45

E
–2

 (1
.4

9E
–3

)

10
 0

00
8.

22
80

E–
1

(3
.5

7E
–3

)−
1.

04
83

E+
0

(4
.5

6E
–2

)−
1.

03
78

E+
0

(1
.6

0E
–2

)−
2.

82
48

E–
2

(3
.9

8E
–2

)−
2.

61
16

E–
1

(4
.8

6E
–3

)−
4.

78
53

E
–3

 (6
.1

0E
–5

)+
5.

36
71

E–
3

(7
.4

3E
–4

)

SM
O

P4
10

0
00

0
1.

00
69

E+
0

(3
.7

9E
–3

)−
1.

06
06

E+
0

(1
.3

7E
–3

)−
1.

03
21

E+
0

(1
.5

4E
–2

)−
3.

40
81

E–
1

(5
.8

2E
–2

)−
3.

77
65

E–
1

(2
.2

3E
–3

)−
4.

97
29

E
–3

 (2
.3

2E
–4

)+
5.

93
32

E–
3

(1
.4

7E
–3

)

1
00

0
00

0
1.

09
12

E+
0

(8
.2

3E
–4

)−
1.

08
29

E+
0

(0
.0

0E
+0

)−
1.

04
47

E+
0

(0
.0

0E
+0

)−
3.

57
33

E–
1

(0
.0

0E
+0

)−
4.

26
00

E–
1

(3
.2

4E
–5

)−
9.

70
73

E–
3

(5
.8

1E
–4

)−
9.

39
05

E
–3

 (4
.7

2E
–4

)

10
 0

00
6.

08
86

E–
1

(4
.2

5E
–3

)−
6.

82
27

E–
1

(2
.2

8E
–2

)−
4.

59
92

E–
1

(5
.4

4E
–4

)−
3.

54
39

E–
1

(2
.9

9E
–3

)−
2.

29
60

E–
1

(4
.3

2E
–3

)−
8.

32
91

E–
3

(1
.9

4E
–4

)−
7.

48
29

E
–3

 (1
.5

5E
–3

)

SM
O

P5
10

0
00

0
9.

11
17

E–
1

(3
.2

7E
–3

)−
6.

81
36

E–
1

(3
.4

2E
–3

)−
4.

61
35

E–
1

(3
.7

0E
–4

)−
3.

64
32

E–
1

(2
.4

0E
–3

)−
3.

88
80

E–
1

(4
.0

4E
–3

)−
9.

48
41

E–
3

(2
.9

0E
–4

)−
6.

58
88

E
–3

 (1
.3

9E
–3

)

1
00

0
00

0
1.

09
34

E+
0

(9
.9

9E
–4

)−
7.

04
71

E–
1

(0
.0

0E
+0

)−
4.

62
70

E–
1

(0
.0

0E
+0

)−
9.

70
12

E–
2

(0
.0

0E
+0

)−
4.

94
11

E–
1

(4
.0

1E
–4

)−
1.

61
88

E–
2

(3
.5

9E
–4

)−
1.

55
29

E
–2

 (4
.7

0E
–3

)

10
 0

00
2.

56
03

E–
1

(3
.5

4E
–3

)−
3.

53
05

E–
1

(2
.2

7E
–2

)−
2.

20
85

E–
1

(1
.6

8E
–3

)−
5.

84
57

E–
2

(1
.2

7E
–2

)−
1.

01
91

E–
1

(2
.3

1E
–3

)−
1.

16
92

E–
2

(5
.9

5E
–4

)−
7.

35
31

E
–3

 (1
.3

5E
–3

)

SM
O

P6
10

0
00

0
4.

11
37

E–
1

(2
.8

7E
–3

)−
3.

48
31

E–
1

(2
.7

1E
–3

)−
2.

25
44

E–
1

(2
.1

9E
–3

)−
9.

73
41

E–
2

(4
.8

4E
–4

)−
1.

85
29

E–
1

(1
.4

2E
–3

)−
1.

37
94

E–
2

(3
.9

6E
–4

)−
5.

22
52

E
–3

 (7
.7

6E
–4

)

1
00

0
00

0
4.

93
67

E–
1

(5
.6

2E
–4

)−
3.

63
37

E–
1

(0
.0

0E
+0

)−
2.

30
02

E–
1

(0
.0

0E
+0

)−
1.

98
22

E–
1

(2
.8

0E
–3

)−
2.

33
08

E–
1

(0
.0

0E
+0

)−
2.

23
86

E
–2

 (9
.9

6E
–4

)+
2.

76
21

E–
2

(3
.6

7E
–3

)

10
 0

00
1.

61
26

E+
0

(8
.3

1E
–2

)−
1.

78
15

E+
0

(5
.9

9E
–2

)−
8.

38
12

E–
1

(6
.2

5E
–2

)−
8.

16
14

E–
2

(8
.8

7E
–3

)−
9.

39
92

E–
1

(5
.2

8E
–3

)−
1.

26
39

E–
1

(1
.4

1E
–2

)−
4.

85
63

E
–2

 (4
.2

5E
–2

)

SM
O

P7
10

0
00

0
2.

46
72

E+
0

(4
.2

9E
–2

)−
1.

85
51

E+
0

(2
.7

3E
–2

)−
8.

41
47

E–
1

(2
.2

5E
–2

)−
2.

15
84

E–
1

(1
.0

2E
–2

)−
1.

52
16

E+
0

(1
.2

4E
–2

)−
2.

40
75

E–
1

(6
.6

4E
–3

)−
1.

02
16

E
–2

 (3
.6

9E
–3

)

1
00

0
00

0
3.

03
33

E+
0

(5
.1

1E
–3

)−
1.

90
36

E+
0

(0
.0

0E
+0

)−
8.

64
88

E–
1

(0
.0

0E
+0

)−
5.

44
22

E–
1

(1
.7

7E
–2

)−
1.

89
54

E+
0

(1
.6

1E
–3

)−
1.

04
46

E–
1

(4
.8

6E
–3

)−
5.

39
54

E
–2

 (6
.1

7E
–3

)

10
 0

00
3.

09
12

E+
0

(3
.3

5E
–2

)−
3.

62
89

E+
0

(4
.7

2E
–2

)−
3.

07
09

E+
0

(1
.0

5E
–1

)−
5.

71
41

E–
1

(2
.3

5E
–2

)−
2.

19
75

E+
0

(2
.0

9E
–2

)−
3.

44
12

E–
1

(6
.3

5E
–2

)−
3.

01
89

E
–1

 (3
.3

6E
–2

)

SM
O

P8
10

0
00

0
3.

52
33

E+
0

(8
.9

9E
–3

)−
3.

62
59

E+
0

(3
.9

0E
–3

)−
3.

10
02

E+
0

(4
.9

2E
–2

)−
6.

49
38

E–
1

(1
.3

1E
–1

)−
2.

71
64

E+
0

(7
.0

9E
–3

)−
3.

88
08

E–
1

(8
.6

0E
–2

)−
3.

35
33

E
–1

 (2
.0

6E
–2

)

1
00

0
00

0
3.

70
57

E+
0

(9
.9

2E
–4

)−
3.

67
43

E+
0

(0
.0

0E
+0

)−
3.

20
62

E+
0

(0
.0

0E
+0

)−
4.

23
63

E–
1

(0
.0

0E
+0

)−
2.

88
73

E+
0

(4
.2

4E
–3

)−
4.

55
37

E–
1

(7
.9

7E
–3

)−
4.

53
56

E
–1

 (7
.2

2E
–3

)

+
/
−
/
≈

0/
24

/0
0/

24
/0

0/
24

/0
0/

24
/0

0/
24

/0
6/

18
/0

TIAN et al.: A FAST CLUSTERING BASED EA FOR SUPER-LARGE-SCALE SPARSE MULTI-OBJECTIVE OPTIMIZATION 1057

GPUs if the matrix calculation based reproduction operators
(i.e., Algorithms 5 and 6) are adopted, which will become as
efficient as SLMEA; nevertheless, these MOEAs are ineffec-
tive for solving SLMOPs. By contrast, although MOEA/PSL
exhibits the second best performance on the benchmark
SLMOPs, it cannot be fully accelerated by GPUs since it
requires many iterations to train neural networks. As a conse-
quence, only SLMEA can strike a balance between effective-
ness and efficiency in solving SLMOPs.

C. Comparisons on Real-World Problems
The HV values obtained by seven MOEAs on the real-world

problems FS1–FS3, PM1–PM3, and NN1–NN3 are listed in
Table III. It can be seen from the table that the proposed
SLMEA obtains the best results on all the nine test instances,
and its HV values are significantly better than those obtained
by all the other MOEAs. Besides, Table IV presents the spar-
sity of the solutions obtained by seven MOEAs, where
SLMEA obtains the sparsest solutions on six out of nine test
instances. Hence, it is confirmed that the proposed SLMEA is
effective in finding sparse solutions, and the tested real-world
problems are indeed sparse SLMOPs. Furthermore, Fig. 5
plots the populations with median HV values obtained by
seven MOEAs on FS3, PM3, and NN3 with approximately
100 000 decision variables. For the feature selection problem,
both WOF-SMPSO and SLMEA can obtain a set of diverse

solutions, while NSGA-II, CCGDE3, LMOCSO, SparseEA,
and MOEA/PSL can only obtain several poorly converged
solutions; clearly, the solutions obtained by SLMEA are supe-
rior to those obtained by WOF-SMPSO. For the patter mining
problem, the solutions obtained by SLMEA also have better
convergence and diversity than those obtained by WOF-
SMPSO and MOEA/PSL, and the other four MOEAs can only
obtain a single solution. As for the neural network training
problem, the solutions obtained by SLMEA have lower error
rates and much lower network complexities than those
obtained by the other MOEAs.

To summarize, SLMEA is more effective than existing
MOEAs for solving SLMOPs with sparse optimal solutions.
In comparison to large-scale MOEAs such as CCGDE3,
LMOCSO, and WOF-SMPSO, the proposed SLMEA adopts a
bi-level encoding scheme, which can easily find sparse solu-
tions and directly handle binary decision variables. While
SparseEA also adopts a bi-level encoding scheme, the pro-
posed SLMEA suggests a fast clustering method to reduce the
dimensionality of the search space, hence the convergence
speed can be highly accelerated. Compared to the neural net-
work based dimensionality reduction method in MOEA/PSL,
the fast clustering method in SLMEA does not train models or
suffer from the lack of training samples, which is more effec-
tive in reducing the high-dimensional search spaces of
SLMOPs. Moreover, SLMEA is more efficient than existing
MOEAs for solving SLMOPs, since all the operations related
to the decision variables can be converted into matrix calcula-
tions and accelerated by GPUs. On the other hand, regarding
the limitations of SLMEA, it will be even less efficient than
existing MOEAs if the number of decision variables is small,
since the acceleration provided by GPUs becomes insignifi-
cant while the time consumed by the communication with
GPUs is considerable. Besides, SLMEA is not effective for
solving SLMOPs whose optimal solutions are not sparse,
since the core components in SLMEA are tailored for generat-
ing sparse solutions.

D. Performance Verification of the Components in SLMEA
Lastly, the effectiveness of the core components in SLMEA

is verified, including the fast clustering method and parameter
adaptation strategies. For this aim, the original SLMEA is
compared to several variants on the SMOP8 with 5000 real

0
0

1

1

2

2

3

3

4

4

5

5

 f 2

(a) SMOP3

NSGA-II
CCGDE3
LMOCSO
WOF-SMPSO
SparseEA
MOEA/PSL
SLMEA

 f1

 f 2

NSGA-II
CCGDE3
LMOCSO
WOF-SMPSO
SparseEA
MOEA/PSL
SLMEA

 f1

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) SMOP5

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

 f 2

 f1

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

(c) SMOP7

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

NSGA-II
CCGDE3
LMOCSO
WOF-SMPSO
SparseEA
MOEA/PSL
SLMEA

Fig. 3. Populations with median IGD values obtained by NSGA-II, CCGDE3, LMOCSO, WOF-SMPSO, SparseEA, MOEA/PSL, and the proposed SLMEA
on SMOP3, SMOP5, and SMOP7 with 1 000 000 decision variables.

NS
GA

-II
CC

GD
E3

LM
OC

SO
W

OF
Sp

ar
se

EA
M

OE
A/

PS
L

SL
M

EA

(a) 10 000 variables

0

200

400

600

800

1000

1200

1400

1600

R
un

tim
e

(s
)

NS
GA

-II
CC

GD
E3

LM
OC

SO
W

OF
Sp

ar
se

EA
M

OE
A/

PS
L

SL
M

EA

(b) 100 000 variables

0

0.5

1.0

1.5

2.0

2.5
×104

NS
GA

-II
CC

GD
E3

LM
OC

SO
W

OF
Sp

ar
se

EA
M

OE
A/

PS
L

SL
M

EA

×105

(c) 1 000 000 variables

0

0.5

1.0

1.5

2.0

2.5

Fig. 4. Average runtime (in second) of NSGA-II, CCGDE3, LMOCSO,
WOF-SMPSO, SparseEA, MOEA/PSL, and the proposed SLMEA on
SMOP1–SMOP8 with 10 000, 100 000, and 1 000 000 decision variables.

 1058 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 4, APRIL 2023

TA
B

LE
 II

I
H

V
 V

a
lu

es
 O

bt
a

in
ed

 b
y

 N
SG

A
-I

I,
 C

C
G

D
E

3,
 L

M
O

C
SO

, W
O

F
-S

M
PS

O
, S

pa
rs

eE
A

, M
O

E
A

/P
SL

, a
n

d
 t

h
e

Pr
op

os
ed

 S
L

M
E

A
 o

n
 F

S1
–F

S3
, P

M
1–

PM
3,

 N
N

1–
N

N
3,

W
h

er
e

th
e

B
es

t
R

es
u

lt
 in

 E
a

ch
 R

ow
 is

 S
h

ow
n

 in
 B

ol
d

Pr
ob

le
m

D
N

SG
A

-I
I

C
C

G
D

E3
LM

O
C

SO
W

O
F-

SM
PS

O
Sp

ar
se

EA
M

O
EA

/P
SL

SL
M

EA

FS
1

97
12

3.
63

49
E–

1
(0

.0
0E

+0
)−

3.
60

02
E–

1
(0

.0
0E

+0
)−

3.
33

87
E–

1
(0

.0
0E

+0
)−

6.
35

92
E–

1
(0

.0
0E

+0
)−

3.
27

77
E–

1
(0

.0
0E

+0
)−

6.
63

56
E–

1
(5

.4
4E

–2
)−

8.
17

91
E

–1
 (0

.0
0E

+0
)

FS
2

45
 1

51
4.

24
21

E–
1

(0
.0

0E
+0

)−
4.

14
10

E–
1

(0
.0

0E
+0

)−
4.

28
59

E–
1

(0
.0

0E
+0

)−
7.

77
76

E–
1

(0
.0

0E
+0

)−
3.

99
63

E–
1

(0
.0

0E
+0

)−
7.

24
52

E–
1

(7
.7

6E
–3

)−
8.

58
56

E
–1

 (0
.0

0E
+0

)

FS
3

10
0

00
0

4.
35

76
E–

1
(0

.0
0E

+0
)−

4.
17

68
E–

1
(0

.0
0E

+0
)−

5.
10

29
E–

1
(0

.0
0E

+0
)−

8.
99

74
E–

1
(0

.0
0E

+0
)−

3.
97

09
E–

1
(0

.0
0E

+0
)−

7.
17

71
E–

1
(2

.7
2E

–2
)−

9.
63

59
E

–1
 (0

.0
0E

+0
)

PM
1

10
 0

00
8.

26
45

E–
3

(0
.0

0E
+0

)−
8.

26
45

E–
3

(0
.0

0E
+0

)−
8.

26
45

E–
3

(0
.0

0E
+0

)−
9.

52
34

E–
2

(8
.7

0E
–4

)−
8.

26
45

E–
3

(0
.0

0E
+0

)−
9.

54
58

E–
2

(9
.6

9E
–4

)−
1.

02
72

E
–1

 (1
.6

3E
–3

)

PM
2

50
 0

00
8.

26
45

E–
3

(0
.0

0E
+0

)−
8.

26
45

E–
3

(0
.0

0E
+0

)−
8.

26
45

E–
3

(0
.0

0E
+0

)−
9.

19
05

E–
2

(1
.6

2E
–4

)−
8.

26
45

E–
3

(0
.0

0E
+0

)−
7.

09
69

E–
2

(4
.1

8E
–2

)−
9.

38
69

E
–2

 (2
.9

1E
–4

)

PM
3

10
0

00
0

8.
26

45
E–

3
(0

.0
0E

+0
)−

8.
26

45
E–

3
(0

.0
0E

+0
)−

8.
26

45
E–

3
(0

.0
0E

+0
)−

9.
14

56
E–

2
(0

.0
0E

+0
)−

8.
26

45
E–

3
(0

.0
0E

+0
)−

9.
13

21
E–

2
(2

.2
1E

–5
)−

9.
28

60
E

–2
 (0

.0
0E

+0
)

N
N

1
10

 0
41

2.
59

27
E–

1
(6

.9
5E

–3
)−

5.
98

08
E–

2
(2

.7
8E

–3
)−

2.
58

47
E–

1
(1

.1
4E

–2
)−

2.
58

25
E–

1
(7

.4
1E

–3
)−

3.
50

55
E–

1
(9

.5
5E

–3
)−

6.
75

42
E–

1
(3

.1
5E

–2
)−

7.
22

18
E

–1
 (1

.9
5E

–2
)

N
N

2
40

 0
41

3.
84

02
E–

1
(1

.3
8E

–2
)−

9.
05

74
E–

2
(8

.3
5E

–4
)−

3.
64

45
E–

1
(8

.2
2E

–3
)−

3.
72

71
E–

1
(1

.9
1E

–2
)−

4.
55

92
E–

1
(2

.9
7E

–3
)−

9.
21

79
E–

1
(1

.6
8E

–2
)−

9.
77

08
E

–1
 (9

.0
1E

–3
)

N
N

3
97

 2
81

2.
83

23
E–

1
(1

.7
8E

–2
)−

7.
99

08
E–

2
(2

.8
0E

–3
)−

2.
78

93
E–

1
(5

.6
5E

–3
)−

2.
83

47
E–

1
(5

.0
4E

–3
)−

4.
11

81
E–

1
(2

.2
7E

–3
)−

8.
60

65
E–

1
(1

.2
0E

–1
)−

9.
97

43
E

–1
 (0

.0
0E

+0
)

+
/
−
/
≈

0/
9/

0
0/

9/
0

0/
9/

0
0/

9/
0

0/
9/

0
0/

9/
0

TA
B

LE
 IV

Sp
a

rs
it

y
 (i

.e
.,

R
a

ti
o

of
 N

on
ze

ro
 V

a
ri

a
bl

es
) o

f
th

e
So

lu
ti

on
s

O
bt

a
in

ed
 b

y
 N

SG
A

-I
I,

 C
C

G
D

E
3,

 L
M

O
C

SO
, W

O
F

-S
M

PS
O

, S
pa

rs
eE

A
, M

O
E

A
/P

SL
, a

n
d

 t
h

e
Pr

op
os

ed
 S

L
M

E
A

 o
n

F
S1

–F
S3

, P
M

1–
PM

3,
 N

N
1–

N
N

3,
 W

h
er

e
th

e
B

es
t

R
es

u
lt

 in
 E

a
ch

 R
ow

 I
s

Sh
ow

n
 in

 B
ol

d

Pr
ob

le
m

D
N

SG
A

-I
I

C
C

G
D

E3
LM

O
C

SO
W

O
F-

SM
PS

O
Sp

ar
se

EA
M

O
EA

/P
SL

SL
M

EA

FS
1

97
12

3.
66

97
E–

1
(0

.0
0E

+0
)−

9.
99

28
E–

1
(0

.0
0E

+0
)−

9.
67

62
E–

1
(0

.0
0E

+0
)−

9.
82

11
E–

1
(0

.0
0E

+0
)−

4.
44

19
E–

1
(0

.0
0E

+0
)−

5.
60

72
E–

3
(2

.2
8E

–3
)−

6.
17

79
E

–4
 (0

.0
0E

+0
)

FS
2

45
 1

51
4.

44
82

E–
1

(0
.0

0E
+0

)−
9.

99
66

E–
1

(0
.0

0E
+0

)−
8.

76
75

E–
1

(0
.0

0E
+0

)−
9.

96
65

E–
1

(0
.0

0E
+0

)−
4.

76
86

E–
1

(0
.0

0E
+0

)−
3.

17
53

E–
2

(1
.1

5E
–2

)−
1.

50
90

E
–4

 (0
.0

0E
+0

)

FS
3

10
0

00
0

4.
56

99
E–

1
(0

.0
0E

+0
)−

9.
99

92
E–

1
(0

.0
0E

+0
)−

8.
75

93
E–

1
(0

.0
0E

+0
)−

9.
94

13
E–

1
(0

.0
0E

+0
)−

4.
85

08
E–

1
(0

.0
0E

+0
)−

9.
72

97
E–

2
(2

.4
8E

–2
)−

3.
50

00
E

–4
 (0

.0
0E

+0
)

PM
1

10
 0

00
2.

81
70

E–
3

(8
.8

8E
–5

)−
9.

48
00

E–
1

(7
.1

1E
–4

)−
2.

02
50

E–
3

(2
.8

7E
–4

)−
9.

51
00

E–
1

(1
.0

9E
–2

)−
4.

99
43

E–
1

(3
.8

0E
–3

)−
5.

82
89

E
–4

 (1
.3

5E
–4

)+
1.

16
64

E–
3

(2
.9

0E
–5

)

PM
2

50
 0

00
6.

99
95

E–
4

(3
.6

3E
–5

)−
9.

34
28

E–
1

(7
.6

4E
–4

)−
3.

45
00

E–
4

(6
.6

1E
–5

)≈
9.

63
67

E–
1

(4
.0

7E
–2

)−
5.

01
67

E–
1

(2
.3

7E
–3

)−
3.

18
06

E–
2

(6
.3

3E
–2

)≈
3.

05
05

E
–4

 (3
.0

1E
–5

)

PM
3

10
0

00
0

4.
30

10
E–

4
(2

.5
7E

–5
)−

9.
30

54
E–

1
(0

.0
0E

+0
)−

2.
15

00
E–

4
(3

.0
0E

–5
)−

9.
88

56
E–

1
(0

.0
0E

+0
)−

4.
99

81
E–

1
(7

.2
5E

–4
)−

6.
00

32
E

–5
 (2

.7
1E

–6
)+

1.
80

90
E–

4
(0

.0
0E

+0
)

N
N

1
10

 0
41

7.
60

70
E–

1
(2

.3
0E

–2
)−

9.
99

80
E–

1
(9

.3
4E

–5
)−

8.
05

66
E–

1
(1

.8
1E

–2
)−

8.
86

86
E–

1
(1

.7
4E

–2
)−

5.
59

13
E–

1
(1

.4
0E

–2
)−

3.
26

49
E

–2
 (1

.6
2E

–2
)≈

6.
17

30
E–

2
(4

.5
9E

–2
)

N
N

2
40

 0
41

9.
85

55
E–

1
(6

.6
5E

–3
)−

9.
99

92
E–

1
(4

.3
3E

–5
)−

8.
17

72
E–

1
(3

.0
6E

–3
)−

9.
82

55
E–

1
(3

.9
5E

–3
)−

5.
93

86
E–

1
(1

.2
0E

–2
)−

3.
25

57
E–

2
(1

.8
1E

–2
)≈

1.
67

76
E

–2
 (1

.4
2E

–2
)

N
N

3
97

 2
81

9.
20

39
E–

1
(5

.6
3E

–2
)−

9.
99

97
E–

1
(9

.8
4E

–6
)−

8.
18

75
E–

1
(4

.2
3E

–2
)−

8.
84

39
E–

1
(5

.0
0E

–2
)−

6.
09

58
E–

1
(1

.1
0E

–3
)−

1.
16

16
E–

1
(4

.8
0E

–2
)−

1.
63

15
E

–2
 (8

.5
0E

–3
)

+
/
−
/
≈

0/
9/

0
0/

9/
0

0/
8/

1
0/

9/
0

0/
9/

0
2/

4/
3

TIAN et al.: A FAST CLUSTERING BASED EA FOR SUPER-LARGE-SCALE SPARSE MULTI-OBJECTIVE OPTIMIZATION 1059

variables and the feature selection problem with 2000 binary
variables (i.e., the dataset used in NN2). Fig. 6 depicts the
convergence profiles of SLMEA with three clustering meth-
ods, including the proposed fast clustering, the random group-
ing, and the ordered grouping. The random grouping divides
the binary variables into K groups randomly, and the ordered
grouping divides the binary variables into K groups according
to their sparsity calculated by (2), where both of them are pop-
ular clustering methods that do not require a large number of
function evaluations to detect interactions between variables
[7], [11]. As can be observed from the figure, the original
SLMEA has a better convergence speed than the variants
based on random grouping and ordered grouping, which veri-
fies the effectiveness of the proposed fast clustering method.

10, 50, 100

K = 10

0.1,0.5,1

ρ = 0.1

Fig. 7 draws the convergence profiles of SLMEA with dif-
ferent settings of K, where K is adaptively updated by (7) or
fixed to . It is obvious that the SLMEA with an
adaptive K exhibits the best overall performance, having the
best convergence speed on SMOP8 and a slightly worse con-
vergence speed than the SLMEA with on the feature
selection problem. Besides, Fig. 8 depicts the convergence
profiles of SLMEA with different settings of initial K, where
the performance of SLMEA is very similar when using differ-
ent initial values of K. Moreover, Fig. 9 shows the conver-
gence profiles of SLMEA with different settings of ρ, where ρ
is adaptively updated by (6) or fixed to . It can be
determined that the SLMEA with an adaptive ρ outperforms
the SLMEA with a fixed ρ on SMOP8, and exhibits competi-
tive performance compared to the SLMEA with . As a
result, the effectiveness of the parameter adaptation strategies
in SLMEA can be verified.

V. Conclusions

Existing MOEAs have successfully solved various LMOPs
with less than 10 000 variables, but they showed low effec-

lg(ratio of selected features)

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Er

ro
r r

at
e

(a) Feature selection

NSGA-II
CCGDE3
LMOCSO
WOF-SMPSO
SparseEA
MOEA/PSL
SLMEA

−5 −4 −3 −2 −1
lg(1-frequency)

0.992
0.993
0.994
0.995
0.996
0.997
0.998
0.999
1.000

Er
ro

r r
at

e

(b) Pattern mining

NSGA-II
CCGDE3
LMOCSO
WOF-SMPSO
SparseEA
MOEA/PSL
SLMEA

−0.8 −0.6 −0.4 −0.2 0
lg(network complexity)

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Er
ro

r r
at

e

(c) Neural network training

NSGA-II
CCGDE3
LMOCSO
WOF-SMPSO
SparseEA
MOEA/PSL
SLMEA

−4.0 −3.0 −2.0 −1.0 0

Fig. 5. Populations with median HV values obtained by NSGA-II, CCGDE3, LMOCSO, WOF-SMPSO, SparseEA, MOEA/PSL, and the proposed SLMEA
on FS3, PM3, and NN3 with approximately 100 000 decision variables.

7 8 9 10
×104

3 4 5 6
Number of evaluations

0.30
0.32
0.34
0.36
0.38
0.40

IG
D

(a) SMOP8

Proposed fast clustering
Random grouping
Ordered grouping

7000 90003000 5000

Proposed fast clustering
Random grouping
Ordered grouping

Number of evaluations

0.84
0.86
0.88
0.90
0.92
0.94
0.96

H
V

(b) Feature selection

Fig. 6. Convergence profiles of SLMEA on SMOP8 and the feature selec-
tion problem, where the proposed fast clustering method, random grouping,
and ordered grouping are adopted.

Number of evaluations

0.30
0.32
0.34
0.36
0.38
0.40
0.42

IG
D

(a) SMOP8

Adaptive K
K = 10
K = 50
K = 100

7 8 9 103 4 5 6

Adaptive K
K = 10
K = 50
K = 100

Number of evaluations

0.88
0.90
0.92
0.94
0.96
0.98

H
V

(b) Feature selection

7000 90003000 5000
×104

10, 50, 100

Fig. 7. Convergence profiles of SLMEA on SMOP8 and the feature selec-
tion problem, where the parameter K is adaptively updated or fixed to

.

Number of evaluations

0.30
0.32
0.34
0.36
0.38
0.40

IG
D

(a) SMOP8

Initial K = 1
Initial K = 5
Initial K = 10
Initial K = 15

7 8 9 103 4 5 6

Initial K = 1
Initial K = 5
Initial K = 10
Initial K = 15

Number of evaluations

0.84
0.86
0.88
0.90
0.92
0.94
0.96

H
V

(b) Feature selection

7000 90003000 5000
×104

1, 5, 10, 15
Fig. 8. Convergence profiles of SLMEA on SMOP8 and the feature selec-
tion problem, where the initial value of parameter K is set to .

ρρ

Number of evaluations

0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44

IG
D

(a) SMOP8

7 8 9 103 4 5 6

Adaptive ρ
ρ = 0.1
ρ = 0.5
ρ = 1.0

Number of evaluations

0.88

0.90

0.92

0.94

0.96

H
V

(b) Feature selection

7000 90003000 5000

Adaptive ρ
ρ = 0.1
ρ = 0.5
ρ = 1.0

×104

0.1, 0.5, 1

Fig. 9. Convergence profiles of SLMEA on SMOP8 and the feature selec-
tion problem, where the parameter ρ is adaptively updated or fixed to

.

 1060 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 4, APRIL 2023

tiveness and efficiency in solving SLMOPs with hundreds of
thousands of variables. Therefore, this paper serves as a first
attempt to solve SLMOPs with sparse optimal solutions,
where a fast clustering based MOEA has been proposed to
address the curse of dimensionality. The proposed MOEA can
reduce the high-dimensional search space by grouping the
massive decision variables, which has been verified to be
effective for solving SLMOPs with up to 1 000 000 variables.
More importantly, all the operations related to decision vari-
ables can be converted into matrix calculations and acceler-
ated by GPUs, where the runtime of the proposed MOEA has
been reduced to less than a tenth of the runtime of existing
MOEAs.

In the future, it is desirable to further enhance the proposed
MOEA by taking full advantage of the objective functions of
specific SLMOPs. In terms of the efficiency, the objective
functions can be converted into those consisting of only
matrix calculations, such that the procedure of function evalu-
ations is considerably accelerated; furthermore, solution level
parallelization strategies [45], [46] can also be adopted to
accelerate the evaluation of each solution. In terms of its
effectiveness, detailed information about the objective func-
tions (e.g., datasets involved in the functions [61] and gradi-
ents of the functions [1]) can be considered in the generation
of offspring, which highly improves the convergence of the
population.

References

 Y. C. Jin and B. Sendhoff, “Pareto-based multiobjective machine
learning: An overview and case studies,” IEEE Trans. Syst. Man
Cybern. Part C (Appl. Rev.), vol. 38, no. 3, pp. 397–415, May 2008.

[1]

 Y. Tian, S. S. Yang, L. Zhang, F. C. Duan, and X. Y. Zhang, “A
surrogate-assisted multiobjective evolutionary algorithm for large-scale
task-oriented pattern mining,” IEEE Trans. Emerg. Top. Comput. Intell.,
vol. 3, no. 2, pp. 106–116, Apr. 2019.

[2]

 Y. Xiang, Y. R. Zhou, Z. B. Zheng, and M. Q. Li, “Configuring
software product lines by combining many-objective optimization and
SAT solvers,” ACM Trans. Softw. Eng. Methodol., vol. 26, no. 4, p. 14,
Feb. 2018.

[3]

 Y. Tian, X. C. Su, Y. S. Su, and X. Y. Zhang, “EMODMI: A multi-
objective optimization based method to identify disease modules,” IEEE
Trans. Emerg. Top. Comput. Intell., vol. 5, no. 4, pp. 570–582, Aug.
2021.

[4]

 J. Branke, B. Scheckenbach, M. Stein, K. Deb, and H. Schmeck,
“Portfolio optimization with an envelope-based multi-objective
evolutionary algorithm,” Eur. J. Oper. Res., vol. 199, no. 3, pp. 684–693,
Dec. 2009.

[5]

 R. Cheng, Y. C. Jin, M. Olhofer, and B. Sendhoff, “Test problems for
large-scale multiobjective and many-objective optimization,” IEEE
Trans. Cybern., vol. 47, no. 12, pp. 4108–4121, Dec. 2017.

[6]

 L. M. Antonio and C. A. Coello Coello, “Use of cooperative
coevolution for solving large scale multiobjective optimization
problems,” in Proc. IEEE Congr. Evolutionary Computation, Cancun,
Mexico, 2013, pp. 2758–2765.

[7]

 L. M. Antonio, C. A. Coello Coello, S. G. Brambila, J. F. González, and
G. C. Tapia, “Operational decomposition for large scale multi-objective
optimization problems,” in Proc. Genetic and Evolutionary

[8]

Computation Conf. Companion, Prague, Czech Republic, 2019, pp.
225–226.

 X. L. Ma, F. Liu, Y. T. Qi, X. D. Wang, L. L. Li, L. C. Jiao, M. L. Yin,
and M. G. Gong, “A multiobjective evolutionary algorithm based on
decision variable analyses for multiobjective optimization problems
with large-scale variables,” IEEE Trans. EComput., vol. 20, no. 2,
pp. 275–298, Apr. 2016.

[9]

 X. Y. Zhang, Y. Tian, R. Cheng, and Y. C. Jin, “A decision variable
clustering-based evolutionary algorithm for large-scale many-objective
optimization,” IEEE Trans. EComput., vol. 22, no. 1, pp. 97–112, Feb.
2018.

[10]

 H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “A framework for
large-scale multiobjective optimization based on problem transfor-
mation,” IEEE Trans. EComput., vol. 22, no. 2, pp. 260–275, Apr. 2018.

[11]

 Y. Tian, C. Lu, X. Y. Zhang, K. C. Tan, and Y. C. Jin, “Solving large-
scale multiobjective optimization problems with sparse optimal
solutions via unsupervised neural networks,” IEEE Trans. Cybern.,
vol. 51, no. 6, pp. 3115–3128, Jun. 2021.

[12]

 Y. C. Hua, Q. Q. Liu, K. R. Hao, and Y. C. Jin, “A survey of
evolutionary algorithms for multi-objective optimization problems with
irregular Pareto fronts,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2,
pp. 303–318, Feb. 2021.

[13]

 C. He, R. Cheng, C. J. Zhang, Y. Tian, Q. Chen, and X. Yao,
“Evolutionary large-scale multiobjective optimization for ratio error
estimation of voltage transformers,” IEEE Trans. EComput., vol. 24,
no. 5, pp. 868–881, Oct. 2020.

[14]

 S. Singh, J. Kubica, S. Larsen, and D. Sorokina, “Parallel large scale
feature selection for logistic regression,” in Proc. SIAM Int. Conf. Data
Mining, Sparks, USA, 2009, pp. 1172–1183.

[15]

 J. Liu, M. G. Gong, Q. G. Miao, X. G. Wang, and H. Li, “Structure
learning for deep neural networks based on multiobjective
optimization,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6,
pp. 2450–2463, Jun. 2018.

[16]

 K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Syst., vol. 9, no. 4, pp. 115–148, 1995.

[17]

 K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS)
for engineering design,” Comput. Sci. Inform., vol. 26, no. 4, pp. 30–45,
1996.

[18]

 Y. Tian, S. S. Yang, X. Y. Zhang, and Y. C. Jin, “Using PlatEMO to
solve multi-objective optimization problems in applications: A case
study on feature selection,” in Proc. IEEE Congr. Evolutionary
Computation, Wellington, New Zealand, 2019, pp. 1–8.

[19]

 Y. Tian, X. T. Zheng, X. Y. Zhang, and Y. C. Jin, “Efficient large-scale
multiobjective optimization based on a competitive swarm optimizer,”
IEEE Trans. Cybern., vol. 50, no. 8, pp. 3696–3708, Aug. 2020.

[20]

 W. J. Hong, P. Yang, and K. Tang, “Evolutionary computation for
large-scale multi-objective optimization: A decade of progresses,” Int.
J. Autom. Comput., vol. 18, no. 2, pp. 155–169, Apr. 2021.

[21]

 Y. Tian, L. C. Si, X. Y. Zhang, R. Cheng, C. He, K. C. Tan, and Y. C.
Jin, “Evolutionary large-scale multi-objective optimization: A survey,”
ACM Comput. Surv., vol. 54, no. 8, p. 174, Nov. 2022.

[22]

 A. Song, Q. Yang, W. N. Chen, and J. Zhang, “A random-based
dynamic grouping strategy for large scale multi-objective optimization,”
in Proc. IEEE Congr. Evolutionary Computation, Vancouver, Canada,
2016, pp. 468–475.

[23]

 F. Sander, H. Zille, and S. Mostaghim, “Transfer strategies from single-
to multi-objective grouping mechanisms,” in Proc. Genetic and
Evolutionary Computation Conf., Kyoto, Japan, 2018, pp. 729–736.

[24]

TIAN et al.: A FAST CLUSTERING BASED EA FOR SUPER-LARGE-SCALE SPARSE MULTI-OBJECTIVE OPTIMIZATION 1061

http://dx.doi.org/10.1109/TETCI.2018.2872055
http://dx.doi.org/10.1109/TETCI.2020.3014923
http://dx.doi.org/10.1109/TETCI.2020.3014923
http://dx.doi.org/10.1016/j.ejor.2008.01.054
http://dx.doi.org/10.1109/TCYB.2016.2600577
http://dx.doi.org/10.1109/TCYB.2016.2600577
http://dx.doi.org/10.1109/TCYB.2020.2979930
http://dx.doi.org/10.1109/JAS.2021.1003817
http://dx.doi.org/10.1109/TNNLS.2017.2695223
http://dx.doi.org/10.1109/TCYB.2019.2906383
http://dx.doi.org/10.1007/s11633-020-1253-0
http://dx.doi.org/10.1007/s11633-020-1253-0

 M. H. Li and J. X. Wei, “A cooperative co-evolutionary algorithm for
large-scale multi-objective optimization problems,” in Proc. Genetic
and Evolutionary Computation Conf. Companion, Kyoto, Japan, 2018,
pp. 1716–1721.

[25]

 H. K, Chen, X. M. Zhu, W. Pedrycz, S. Yin, G. H. Wu, and H. Yan,
“PEA: Parallel evolutionary algorithm by separating convergence and
diversity for large-scale multi-objective optimization,” in Proc. 38th
IEEE Int. Conf. Distributed Computing Systems, Vienna, Austria, 2018,
pp. 223–232.

[26]

 C. He, L. H. Li, Y. Tian, X. Y. Zhang, R. Cheng, Y. C. Jin, and X. Yao,
“Accelerating large-scale multiobjective optimization via problem
reformulation,” IEEE Trans. EComput., vol. 23, no. 6, pp. 949–961, Dec.
2019.

[27]

 H. Qian and Y. Yu, “Solving high-dimensional multi-objective
optimization problems with low effective dimensions,” in Proc. 31st
AAAI Conf. Artificial Intelligence, San Francisco, USA, 2017, pp.
875–881.

[28]

 W. J. Hong, K. Tang, A. M. Zhou, H. Ishibuchi, and X. Yao, “A
scalable indicator-based evolutionary algorithm for large-scale
multiobjective optimization,” IEEE Trans. EComput., vol. 23, no. 3,
pp. 525–537, Jun. 2019.

[29]

 Y. Tian, C. Lu, X. Y. Zhang, F. Cheng, and Y. C. Jin, “A pattern
mining-based evolutionary algorithm for large-scale sparse
multiobjective optimization problems,” IEEE Trans. Cybern., 2020. vol.
52, no. 7, pp. 6784–6797, Jul. 2022.

[30]

 Z. C. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and
W. Banzhaf, “NSGA-NET: A multi-objective genetic algorithm for
neural architecture search,” arXiv preprint arXiv: 1810.03522, Oct.
2018.

[31]

 Y. Tian, S. S. Yang, and X. Y. Zhang, “An evolutionary multiobjective
optimization based fuzzy method for overlapping community
detection,” IEEE Trans. Fuzzy Syst., vol. 28, no. 11, pp. 2841–2855,
Nov. 2020.

[32]

 X. Y. Zhang, F. C. Duan, L. Zhang, F. Cheng, Y. C. Jin, and K. Tang,
“Pattern recommendation in task-oriented applications: A multi-
objective perspective [application notes],” IEEE Comput. Intell. Mag.,
vol. 12, no. 3, pp. 43–53, Aug. 2017.

[33]

 J. H. Zhao, Y. Xu, F. J. Luo, Z. Y. Dong, and Y. Y. Peng, “Power
system fault diagnosis based on history driven differential evolution and
stochastic time domain simulation,” Inf. Sci., vol. 275, pp. 13–29, Aug.
2014.

[34]

 Y. Tian, X. Y. Zhang, C. Wang, and Y. C. Jin, “An evolutionary
algorithm for large-scale sparse multiobjective optimization problems,”
IEEE Trans. EComput., vol. 24, no. 2, pp. 380–393, Apr. 2020.

[35]

 E. G. Talbi, “A unified view of parallel multi-objective evolutionary
algorithms,” J. Parallel Distrib. Comput., vol. 133, pp. 349–358, Nov.
2019.

[36]

 W. Q. Ying, S. Y. Chen, B. Wu, Y. H. Xie, and Y. Wu, “Distributed
parellel MOEA/D on spark,” in Proc. Int. Conf. Computing Intelligence
and Information System, Nanjing, China, 2017, pp. 18–23.

[37]

 N. Kantour, S. Bouroubi, and D. Chaabane, “A parallel MOEA with
criterion-based selection applied to the knapsack problem,” Appl. Soft
Comput., vol. 80, pp. 358–373, Jul. 2019.

[38]

 T. F. Qiu and G. Ju, “A selective migration parallel multi-objective
genetic algorithm,” in Proc. Chinese Control and Decision Conf.,
Xuzhou, China, 2010, pp. 463–467.

[39]

 C. Sanhueza, F. Jiméenez, R. Berretta, and P. Moscato, “PasMoQAP: A
parallel asynchronous memetic algorithm for solving the multi-objective
quadratic assignment problem,” in Proc. IEEE Congr. Evolutionary

[40]

Computation, Donostia, Spain, 2017, pp. 1103–1110.

 B. Derbel, A. Liefooghe, G. Marquet, and E. G. Talbi, “A fine-grained
message passing MOEA/D,” in Proc. IEEE Congr. Evolutionary
Computation, Sendai, Japan, 2015, pp. 1837–1844.

[41]

 B. Xu, Y. Zhang, D. W. Gong, and L. Wang, “A parallel multi-objective
cooperative co-evolutionary algorithm with changing variables,” in
Proc. Genetic and Evolutionary Computation Conf. Companion, Berlin,
Germany, 2017, pp. 1888–1893.

[42]

 K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. EComput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[43]

 Q. F. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary
algorithm based on decomposition,” IEEE Trans. Evolutionary
Computation, vol. 11, no. 6, pp. 712–731, Dec. 2007.

[44]

 T. J. Stanley and T. N. Mudge, “A parallel genetic algorithm for
multiobjective microprocessor design,” in Proc. 6th Int. Conf. Genetic
Algorithms, San Francisco, USA, 1995, pp. 597–604.

[45]

 R. Szmit and A. Barak, “Evolution strategies for a parallel multi-
objective genetic algorithm,” in Proc. 2nd Annu. Conf. Genetic and
Evolutionary Computation, Las Vegas, Nevada, USA, 2000, pp.
227–234.

[46]

 K. Deb and C. Myburgh, “A population-based fast algorithm for a
billion-dimensional resource allocation problem with integer variables,”
Eur. J. Oper. Res., vol. 261, no. 2, pp. 460–474, Sept. 2017.

[47]

 B. D. Li, J. L. Li, K. Tang, and X. Yao, “Many-objective evolutionary
algorithms: A survey,” ACM Comput. Surv., vol. 48, no. 1, p. 13, Sept.
2015.

[48]

 M. Ester, H. P. Kriegel, J. Sander, and X. W. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proc. Int. Conf. Knowledge Discovery and Data Mining, Portland,
Oregon, USA, 1996, pp. 226–231.

[49]

 X. Y. Zhang, Y. Tian, R. Cheng, and Y. C. Jin, “An efficient approach
to nondominated sorting for evolutionary multiobjective optimization,”
IEEE Trans. Evolutionary Computation, vol. 19, no. 2, pp. 201–213,
Apr. 2015.

[50]

 E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength Pareto evolutionary algorithm for multiobjective optimization,”
in Proc. 5th Conf. Evolutionary Methods for Design Optimization and
Control with Applications to Industrial Problems, Athens, Greece,
2001, pp. 95–100.

[51]

 R. C. Liu, R. Ren, J. Liu, and J. Liu, “A clustering and dimensionality
reduction based evolutionary algorithm for large-scale multi-objective
problems,” Appl. Soft Comput., vol. 89, p. 106120, Apr. 2020.

[52]

 Y. Tian, R. Cheng, X. Y. Zhang, and Y. C. Jin, “PlatEMO: A MATLAB
platform for evolutionary multi-objective optimization [educational
forum],” IEEE Comput. Intell. Mag., vol. 12, no. 4, pp. 73–87, Nov.
2017.

[53]

 B. Xue, M. J. Zhang, and W. N. Browne, “Particle swarm optimization
for feature selection in classification: A multi-objective approach,”
IEEE Trans. Cybern., vol. 43, no. 6, pp. 1656–1671, Dec. 2013.

[54]

 X. Yao, “A review of evolutionary artificial neural networks,” Int. J.
Intell. Syst., vol. 8, no. 4, pp. 539–567, Jan. 1993.

[55]

 R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules in large databases,” in Proc. 20th Int. Conf. Very Large Data
Bases, San Francisco, USA, 1994, pp. 487–499.

[56]

 E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. Da
Fonseca, “Performance assessment of multiobjective optimizers: An
analysis and review,” IEEE Trans. EComput., vol. 7, no. 2, pp. 117–132,

[57]

 1062 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 4, APRIL 2023

http://dx.doi.org/10.1109/TFUZZ.2019.2945241
http://dx.doi.org/10.1109/MCI.2017.2708578
http://dx.doi.org/10.1016/j.ins.2014.02.039
http://dx.doi.org/10.1016/j.jpdc.2018.04.012
http://dx.doi.org/10.1016/j.asoc.2019.04.005
http://dx.doi.org/10.1016/j.asoc.2019.04.005
http://dx.doi.org/10.1016/j.ejor.2017.02.015
http://dx.doi.org/10.1016/j.asoc.2020.106120
http://dx.doi.org/10.1109/MCI.2017.2742868
http://dx.doi.org/10.1109/TSMCB.2012.2227469
http://dx.doi.org/10.1002/int.4550080406
http://dx.doi.org/10.1002/int.4550080406

Apr. 2003.

 Y. Tian, X. S. Xiang, X. Y. Zhang, R. Cheng, and Y. C. Jin, “Sampling
reference points on the Pareto fronts of benchmark multi-objective
optimization problems,” in Proc. IEEE Congr. Evolutionary Compu-
tation, Rio de Janeiro, Brazil, 2018, pp. 1–6.

[58]

 L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm
for calculating hypervolume,” IEEE Trans. EComput., vol. 10, no. 1,
pp. 29–38, Feb. 2006.

[59]

 J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm
EComput., vol. 1, no. 1, pp. 3–18, Mar. 2011.

[60]

 X. Xiang, Y. Tian, J. H. Xiao, and X. Y. Zhang, “A clustering-based
surrogate-assisted multiobjective evolutionary algorithm for shelter
location problem under uncertainty of road networks,” IEEE Trans.
Industrial Informatics, vol. 16, no. 12, pp. 7544–7555, Dec. 2020.

[61]

Ye Tian received the B.Sc., M.Sc., and Ph.D.
degrees from Anhui University in 2012, 2015, and
2018, respectively. He is currently an Associate Pro-
fessor with the Institutes of Physical Science and
Information Technology, Anhui University, and also
a Postdoctoral Research Fellow with the Department
of Computing, the Hong Kong Polytechnic Univer-
sity. His current research interests include evolution-
ary computation and its applications. He is the recipi-
ent of the 2018 and 2021 IEEE Transactions on Evo-

lutionary Computation Outstanding Paper Award, the 2020 IEEE Computa-
tional Intelligence Magazine Outstanding Paper Award, and the 2022 IEEE
Computational Intelligence Society Outstanding Ph.D. Dissertation Award.

Yuandong Feng received the B.Sc. degree from
Hunan Normal University in 2018. He is currently a
master student at the School of Computer Science
and Technology, Anhui University. His current
research interests include large scale multi-objective
optimization and its applications.

Xingyi Zhang (Senior Member, IEEE) received the
B.Sc. degree from Fuyang Normal College in 2003,
and the M.Sc. and Ph.D. degrees from Huazhong
University of Science and Technology in 2006 and
2009, respectively. He is currently a Professor with
the School of Artificial Intelligence, Anhui Univer-
sity. His current research interests include unconven-
tional models and algorithms of computation, multi-
objective optimization, and membrane computing.
He is the recipient of the 2018 and 2021 IEEE Trans-

actions on Evolutionary Computation Outstanding Paper Award and the 2020
IEEE Computational Intelligence Magazine Outstanding Paper Award.

Changyin Sun received the B.Sc. degree from
Sichuan University in 1996, and the M.Sc. and Ph.D.
degrees from Southeast University in 2001 and 2004,
respectively. He is currently a Professor with the
School of Automation, Southeast University. His
current research interests include intelligent control,
flight control, pattern recognition, and optimal the-
ory. He is an Associate Editor of IEEE Transactions
on Neural Networks and Learning Systems.

TIAN et al.: A FAST CLUSTERING BASED EA FOR SUPER-LARGE-SCALE SPARSE MULTI-OBJECTIVE OPTIMIZATION 1063

http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1109/TII.2019.2962137
http://dx.doi.org/10.1109/TII.2019.2962137

	I Introduction
	II Related Work and Motivation
	A Large-Scale MOEAs
	B Sparse MOEAs
	C Parallel MOEAs
	D Motivation of This Work

	III The Proposed Algorithm
	A General Procedure of SLMEA
	B Fast Clustering Based Dimensionality Reduction
	C Offspring Generation
	D Parameter Adaptation
	E Time Complexity of SLMEA

	IV Experimental Results
	A Parameter Settings
	B Comparisons on Benchmark Problems
	C Comparisons on Real-World Problems
	D Performance Verification of the Components in SLMEA

	V Conclusions
	References

