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   Dear Editor,

This  letter  concerns  about  the  distributed  dimensionally  reduction
filtering for a class of cyber physical systems with denial of service
(DoS)  attacks.  Considering  each  sensor  exchanging  measurements
with neighbors subjected to finite network energy, the dimensionally
reduction method is applied. In this case, under random DoS attack, a
finite horizon Kalman filtering is designed. Additionally, the optimal
transmitting schedules of sensors are proposed to minimize the trace
of  estimation  error  covariance,  which  are  solved  by  applying  the
mixed  strategy.  Finally,  a  simulation  example  is  given  to  show  the
effectiveness of proposed distributed filtering.

A  wireless  sensor  network  is  composed  of  a  number  of  spatially
distributed  intelligent  sensors,  which  has  been  widely  used  in  prac-
tice.  Since  the  distributed  filtering  has  the  robustness  of  filter  fail-
ures and lower computation costs, it has achieved particular attention
and wealth of researches have been proposed in [1], [2]. It is noticed
that  any  communication  network  can  only  carry  finite  amount  of
information at  each instant.  However,  for  a  large-scale  cyber-physi-
cal  system  (CPS),  the  dimensions  of  measurement  may  be  high,
which cannot be transmitted completely, simultaneously. In order to
deal  with  the  problem,  Chen et  al. [3]  proposed  the  dimensionally
reduction  strategy  (DRS)  for  distributed  fusion  filtering,  in  which,
the  network  bandwidth  limitation  between  the  sink  node  and  the
fusion  center  was  considered.  Moreover,  the  authors  in  [4]  pointed
out  that  for  a  high-dimensional  signal,  the  DRS may be  efficient  in
traffic  reduction  as  compared  with  the  quantization  method.  It  is
noticed that the distributed filtering with high-dimensional measure-
ments are rarely investigated, which is one of motivations of this let-
ter.

In  addition  to  the  limited  bandwidth  influencing  on  the  perfor-
mance of CPSs, the network security is an another important issue to
be addressed. In recent years, a number of researches have been stud-
ied the impact of specific malicious attacks such as DoS attacks [5],
[6]  and  false  data  injection  (FDI)  attacks  [7].  As  pointed  out  in  [8]
that  the  DoS  attacks  are  more  likely  to  happen  in  control  systems.
With  assumption  the  behavior  of  DoS  attacker  described  by  the
Bernoulli random process, Zhang et al. [6] gave a method to achieve
the optimal jamming schedule from the perspective of attackers and a
stability sufficient condition under the optimal attack schedule. From
the  perspectives  of  attacker  and  defender,  the  game  theory  was
applied in [9] to find the Nash equilibrium between two players. The
aforementioned references are investigated under an assumption that

the Kalman filtering had entered the steady state. It is worthy notic-
ing  that  before  the  Kalman  filtering  entering  steady  state,  the  mali-
cious  attacker  would  make  a  great  destructive.  For  this  reason,  the
distributed filtering for CPS under DoS attack is investigated in this
letter.

.

Motivated  by  the  above  observation,  this  letter  studies  the  dis-
tributed  dimensionally  reduction  filtering  for  CPSs  under  DoS
attacks. In comparison with those relevant existing results, the contri-
butions  of  this  letter  can  be  summarized  as  follows.  Firstly,  a  sce-
nario more similar to this work were considered in [10], [11], where
the  network  transmission  burden  were  reduced  through  event-trig-
gered mechanisms. However,  the event-triggered mechanism cannot
select and transmit the partial measurements, which is not suitable for
a  large-scale  CPSs  with  high-dimensional  measurements.  Secondly,
different with [3], [4], the DRS is firstly introduced to the problem of
distributed filtering, where the measurements are selected and trans-
mitted.  Third,  by using the mixed strategy,  the optimal DRS is  pro-
posed to minimize the trace of estimation error covariance

Problem formulation: The dynamic of  a  class  of  linear  discrete-
time CPSs is given as
 

x(k+1) = Ax(k)+Bw(k) (1)
x(k) ∈ Rn w(k) ∈ Rω

Qw > 0 A B
where  is  the  state  vector,  and  is  a  zero-mean
white  noise  with  covariance ,  and  are  system  matrices
with appropriate dimensions.

G = (V, ξ,A)
V = {1,2, . . . ,N} ξ ∈ V×V

A = [ai j] ∈ Rn×n ai j = 1 j
i

A sensor network is utilized to estimate the states of CPSs, which
can be described by a directed graph , which consists of
a  set  of  sensors  and a  set  of  edges .  The
adjacent matrix is defined as . If ,  sensor  is
neighboring of sensor . Each sensor measures the outputs of system
through
 

yi(k) =Cix(k)+ vi(k) (2)
yi(k) ∈ Rm i vi(k) ∈ Rm

Qvi > 0
Ci ω(k)

vi(k) E{ω(k)vT
i (k)} = 0

(A,B)
(A,Ci)i∈V

where  is  the  measurements  of  sensor ,  and  is
the channel noise with zero-mean and covariance , and matrix

 is given with appropriate dimensions. The system disturbance 
is  uncorrelated  with ,  which  means  that .
Assume  that  the  pair  matrices  is  controllable  and  the  pair
matrices  is observable.

yi(k)

yi(k)

h yi(k)
h < m

∆ =Ch
m = h!/(h!(m−h)!)

yi(k)
∆

ỹi(k) ∈ Rh h j
i,l(k) = 1 h j

i,l(k) = 0
l yi(k)

j h j
i,l(k)

It is noted that in this letter, each sensor measures the system out-
puts  and  then  transmits  its  measurement  to  neighbors.  In  fact,  the
dimensions  of  measurement  may  be  high  in  large-scale  CPSs.
However, the network channel bandwidth is limited, which only car-
ries a finite amount of information at  each instant.  In this case,  it  is
impossible  to  transmit  the  data  packet  completely.  To  reduce
the network transmission burden, the DRS [3] is applied in this letter.
Denote  the  variable  as  the  number  of  dimensions  of  can  be
selected and transmitted at each instant, where . Therefore, for
each sensor, there exist  possible cases to be
allowed to send components of .  Note that at each instant, only
one case of the groups of  can be selected, and the selected signal is
denoted as . Define  or  to represent the
th  dimension  of  is  whether  or  not  selected  and  transmitted  to

sensor . Therefore,  must satisfy
 

m∑
l=1

h j
i,l(k) ≤ h, i, j ∈ N . (3)

λi j(k) λ̄i j
λi j(k) = 1

ỹi(k) j
ỹi(k)

Additionally,  the  network  channel  is  fragile  for  the  malicious
attacker.  In  this  letter,  the  DoS attacks  are  considered which satisfy
the Bernoulli stochastic distribution. In order to describe the stochas-
tic process, the notation  is defined, whose expectation is . If

,  the  attacker  does  not  send  the  malicious  information  and
the measurement  can be transmitted to its neighbor ,  success-
fully. Otherwise, the measurement  is discarded by DoS attacker.
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k
i j zi, j(k) =λ ji(k)h j(k)y j(k)+

(I−λ ji(k)h j(k))zi, j(k−1) h j(k) = diag{hi
j,1(k), hi

j,2(k), . . . ,
hi

j,m(k)} i Zi

(k) =
∑

j∈Ni zi, j(k) Πi j = col{0, . . . ,0︸ ︷︷ ︸
j−1

, I j, 0, ..0︸︷︷︸
ni− j

} Yi(k) =

col{y j(k)} j∈Ni

Moreover,  a  zero  order  hold  (ZOH)  mechanism,  equipped  in  each
sensor,  holds  the  latest  receiving  information.  Thus,  at  instant ,
ZOH  receives information from sensor  as  

,  where 
. Sensor  collects its neighboring information denoting as 

.  Define  and 
. Then, one can get that

 

Zi(k) =
∑
j∈Ni

H ji(k)Πi jYi(k)+
∑
j∈Ni

(I−H ji(k))Πi jZi(k−1) (4)

Yi(k) = Ḡix(k)+ ṽi(k) Ḡi = row{C j} j∈Ni v̄i(k) = col{v j(k)} j∈Ni

H ji(k) = λ ji(k)h j(k) ηi(k) = [xT (k)x
ZT

i (k−1)]T

where , , ,
and .  Furthermore,  denote 

, one can obtain the following augment system:
 

ηi(k+1) =Ai(k)ηi(k)+Bi(k)ṽi(k), Zi(k) = Ci(k)ηi(k)+ v̂i(k) (5)

Ai(k) =
[

A 0∑
j∈Ni H ji(k)Ḡi

∑
j∈Ni (I−H ji(k))Πi jΠ

⊤
i j

]
Bi(k) =[

B 0
0
∑

j∈Ni H ji(k)Πi jΠ
T
i j

]
v̂i(k) =

[
w(k)
v̄i(k)

]
Ci(k) = [

∑
j∈Ni H ji(k)Ḡi×∑

j∈Ni (I−H ji(k))Πi jΠ
T
i j] Di(k) =

[
0
∑

j∈Ni H ji(k)Πi jΠ
T
i j

]
where , 

, , 

, .

h j(t) j ∈ Ni

h j(k)

The  purpose  of  this  letter  is  to  propose  a  distributed  filtering  for
CPS  (1)  under  consideration  with  the  network  limited  energy  and
DoS  attacks.  There  exist  two  problems  to  be  solved  in  this  letter
described as follows. 1) Assume that , , is known in priori,
and then the aim is to propose the distributed finite-horizon filtering
for  system  (5).  2)  Design  the  transmission  schedule  to  mini-
mize the trace of estimation error covariance subject to (3).

η̂i(k|k−1)
η̂i(k|k)

Distributed finite-horizon filtering design: Define  and
 as  the  one-step  predicted  estimation  and  estimation  states,

respectively. Then, the distributed filtering of augment system (5) is
derived based on the finite-horizon Kalman filtering [12].

Theorem  1:  For  a  CPS  under  the  DRS  and  DoS  attacks,  the  dis-
tributed  finite  horizon  Kalman  filtering  of  the  augment  system  (5)
can be obtained as
 

η̂i(k|k) = η̂i(k|k−1)+Ki(k)Z̃i(k)

η̂i(k+1|k) = η̂i(k+1|k−1)+Fi(k)Z̃i(k)

Pi(k+1|k) = Āi(k)Pi(k|k−1)Ā⊤i (k)+
∑
j∈Ni

λ̄ ji(1− λ̄ ji)h j(k)Πi j

×Âi(k)E{ηi(k)ηT
i (k)}ÂT

i (k)ΠT
i jh j(k)+ B̄i(k)RvB̄T

i (k)

+
∑
j∈Ni

λ̄ ji(1− λ̄ ji)h j(k)Πi jB̂⊤i (k)RvB̂T
i (k)ΠT

i jh j(k)

Pi(k|k) = Pi(k|k−1)+Pi(k|k−1)C̄T
i (k)KT

i (k)+Ki(k)C̄i(k)

×Pi(k|k−1)+Ki(k)Ωi(k)KT
i (k) (6)

Z̃i(k) = Zi(k)−C̄iη̂i(k|k−1) Ωi(k) =
∑

j∈Ni λ̄ ji(1− λ̄ ji)h j(k)Πi j×
Ĉi(k)E{ηi(k)ηT

i (k)}ĈT
i (k)Πi jh j(k) + C̄i(k)Pi(k|k−1)C̄T

i (k)+ D̄i(k)Qv×
D̄T

i (k) +
∑

j∈Ni λ̄ ji(1 − λ̄ ji)h j(k)Πi jD̂i(k)QvD̂T
i (k)Πi jh j(k) Θi(k) =∑

j∈Ni λ̄ ji(1 − λ̄ ji)h j(k)Πi jĈiE{ηi(k)ηT
i (k)}ΠT

i jh
T
j (k)Ĉi + C̄i(k)Pi(k|k −

1)C̄T
i (k)+

∑
j∈Ni λ̄ jih j(k)D̂iQvD̂iΠ

T
i jh

T
j (k)+

∑
j,l∈Ni, j,l λ̄ jiλ̄ilh j(k)Πi j×

D̂i(k)QvD̂T
i (k)ΠT

i jh
T
l (k) Fi(k) =

[∑
j∈Ni λ̄ ji(1− λ̄ ji)h j(k)Πi jÂi(k)E×

{ηi(k)ηT
i (k)}ĈT

i (k)Πi jh j(k) +
∑

j∈Ni λ̄ jih j(k)Πi jB̂iQvD̂T
i (k)Πi jh j(k) +∑

j∈Ni λ̄ ji(1 − λ̄ ji)h j(k)Πi jD̂i(k)QvD̂T
i (k)Πi jh j(k)

]
Θ−1

i (k) Ki(k) =

Pi(k|k−1)C̄T
i (k)Θ−1

i (k) Âi =

[
0 0

Ḡi Π⊤i j

]
B̂i =

[
0 0
0 Π⊤i j

]
Ĉi = [Ḡi Π

T
i j]

D̂i= [0 ΠT
i j]Āi(k)=

[
A 0∑

j∈Ni λ̄ jih j(k)Πi jḠi
∑

j∈Ni (I−λ̄ jih j(k))Πi jΠ
T
i j

]
B̄i(k)=

[
B 0
0
∑

j∈Ni λ̄ jih j(k)Πi jΠ
T
i j

]
D̄i(k)= [0

∑
j∈Ni λ̄ jih j(k)Πi jΠ

T
i j]

where , 
 

 , 
 

 
, 

 
, 

, ,  

,

, ,

C̄i(k) =
[∑

j∈Ni λ̄ jih j(k)Πi jḠi
∑

j∈Ni (I− λ̄ jih j(k))Πi jΠ
T
i j

]
.

L(Zi(1),
Zi(2),Zi(3), . . . ,Zi(k−1)) Ẑi(k|k−1) = C̄i(k)η̂i(k|k−1)+
proj{vi(k)|Zi(1),Zi(2), . . . ,Zi(k−1)} v̂i(k) ⊥ L(v̂i(k−1), v̂i(k−2),
. . . , v̂i(1),ηi(1))v̂i(k−1) proj{vi(k)|Zi(1),Zi(2), . . . ,Zi(k−1)} = 0
L(·)vi(k) L(·)

vi(k) Ẑi(k|k−1) =
C̄i(k)η̂i(k|k−1) Z̃i(k) = Zi(k)− Ẑi(k|k−1)

Z̃i(k) = (Ci(k)−C̄i(k))ηi(k)+ C̄i(k)ei(k|k−1)+
v̂i(k) ei(k|k−1) = ηi(k)− η̂i(k|k−1) v̂i(k)⊥ηi(k|k−1)
v̂i(k)⊥ei(k|k−1) E{Ci(k)−C̄i(k)} = 0 Θi(k) = E{Z̃i(k)×
Z̃T

i (k)} Θi(k) =
∑

j∈Ni λ̄ ji(1− λ̄ ji)h j(k)Πi jĈi(k)E{ηi(k)×
ηT

i (k)}Ĉ⊤i (k)ΠT
i j(k)h j(k)+ C̃i(k)Pi(k|k−1)C̃i

T (k)+
∑

j∈Ni λ̄ jih j(k)Πi j×
D̂i(k)QvD̂T

i (k)ΠT
i jh j(k)+

∑
l, j∈Ni, j,l λ̄ jiλ̄lih j(k)Πi jD̂iQvD̂T

i (k)Πilhl(k).

η̂i(k+1|k) η̂i(k+1|k)= η̂i(k+1|k−1)+Fi(k)Z̃i(k) Fi(k) =
E{ηi(k+1)Z̃T

i (k)}E{Z̃i(k)Z̃T
i (k))}−1

Fi(k) Fi(k) =
[∑

j∈Ni λ̄ ji(1− λ̄ ji)h j(k)Πi j×
Âi(k)E{ηi(k)ηT

i (k)}× ĈT
i (k)Πi jh j(k) +

∑
j∈Ni λ̄ jih j(k)Πi jB̂iQvD̂T

i (k)×
ΠT

i jh j(k)+
∑

j∈Ni λ̄ ji(1 − λ̄ ji)h j(k)Πi jD̂i(k)QvD̂T
i (k)ΠT

i jh j(k)
]
Θ−1

i (k)
ṽi(k|k−1)⊥L(Zi(1),Zi(2), . . . ,Zi(k−1))

L(Zi(1),Zi(2), . . . ,Zi(k−1))
η̂i(k+1|k−1) = Āi(k)η̂i(k|k−1)
η̂i(k|k) η̂i(k|k) = η̂i(k|k−1)+Ki(k)Z̃i(k)

Ki(k) = E{ηi(k)Z̃T
i (k)}E{Z̃i(k)Z̃T

i (k))}−1 η̂i(k|k−1)⊥ei(k|k−1)
Ki(k) = Pi(k|k−1)C̄T

i (k)Θ−1
i (k)

Pi(k+1|k) Pi(k|k)
ei(k+1|k) = Āi(k)ei(k|k−1)+ Âi(k)ηi(k)− Fi(k)

Z̃i(k)+Bi(k)ṽi(k) Pi(k+1|k) =
E{ei(k+1|k)eT

i (k+1|k)} Pi(k+1|k) = Āi(k)Pi(k|k−
1)Ā⊤i (k) +

∑
j∈Ni λ̄ ji(1 − λ̄ ji)h j(k)Πi j × Âi(k)E{ηi(k)ηT

i (k)}ÂT
i (k) ×

ΠT
i jh j(k) + B̄i(k)RvB̄T

i (k) +
∑

j∈Ni λ̄ ji(1− λ̄ ji)h j(k)Πi jB̂T
i (k)RvB̂T

i (k)×
ΠT

i jh j(k) Pi(k|k) = Pi(k|k−1)+Pi(k|k−
1)C̄T

i (k)KT
i (k)+Ki(k)C̄i(k)Pi(k|k−1)+

∑
j∈Ni λ̄ ji(1− λ̄ ji)h j(k)Πi jKi(k)×

Ĉi(k)E{ηi(k)ηT
i (k)}ĈT

i (k)Πi jh j(k)KT
i (k)+ Ki(k)C̄i(k)Pi(k|k−1)C̄T

i (k)×
KT

i (k)+ Ki(k)D̄i(k)QvD̄T
i (k)KT

i (k)+
∑

j∈Ni λ̄ ji(1− λ̄ ji)Ki(k)h j(k)Πi j×
D̂i(k)QvD̂T

i (k)Πi jh j(k)KT
i (k)

Proof:  Taking  projection  of  both  side  of  (4)  to  the  space 
,  one  obtains 

. Since 
, ,  where

 represents that the linear space  is dependent on the stoch-
astic  parameters  in  the  set .  Therefore,  one  has 

. Defining , the following equa-
tion  can  be  obtained 

,  where .  Since ,
,  and ,  defining 

,  one  yields 
 
 

The  authors  in  [12]  gave  a  method  to  obtain  the  one-step  predicted
estimation  as , 

.  Therefore, it  is important to deri-
ve .  One  can  obtain  that 

 
 .

Since ,  one  takes  both  side  of
the  augment  equation  (4)  in  the  space ,
having .  From  [12],  the  state  estim-
ation  can  be  determined  as ,

.  Since ,
one can get that . Following, the proced-
ures for the covariance matrices  and  are proposed.
One  can  derive  that  

.  Therefore,  the  covariance  matrix 
 can be proposed as 

 
 

. Furthermore, one can get that 
  

 
  

. ■
Pi(k|k)

h j(k) j ∈ Ni
h j(k)

h j(k) j ∈ Ni
Pi(k|k)

From (6), one can get that the estimation error covariance  is
related  to  the  transmission  data  packet , ,  which  implies
that  different  induces  different  estimation  error  covariance.  In
order  to  optimize  the  performance  of  distributed  filtering,  the  opti-
mal , ,  is  designed  to  minimize  the  trace  of  estimation
error covariance .

Pi(k|k)
Design of dimensionality reduction strategy: The design of DRS

is  to  minimize  the  trace  of  estimation  error  covariance .  The
optimization problem can be described by
 

min
h j(k)

trace(Pi(k|k)) s.t.
m∑

l=1

hi
j,l(k) ≤ h,hi

j,l(k) = {0,1}, j ∈ Ni. (7)

{h j(k)| j ∈ Ni} i
Pi(k|k)

Lemma 1:  Strategies  constitute  games over  sensor 
with utility , and there exist at last one Nash equilibrium.

Pi(k|k)

{h j(k)| j ∈ Ni}
Pi(k|k) h j(k)

Pi(k|k)

Proof:  is  the cumulative utility determined by DRS, which
indicates that the transmission schedules among neighbors have inde-
pendent  influences  on  estimation  error.  Then,  consti-
tute  games  with  interface .  Since  subjects  to  discrete
action  space,  the  uniqueness  of  Nash  equilibrium  is  classified  from
cases  in  pure  strategies  and  mixed  strategies.  For  the  game  in  pure
strategies,  Nash  equilibriums  certainly  exist  under  finite  action
spaces.  However,  order interchangeability leads to the possibility of
multiple equilibriums. For that in mixed strategies, strategies in prob-
ability  space  subject  to  convex  set,  the  uniqueness  of  Nash  equilib-
rium is guaranteed with convexity of . ■
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∆

∆̄i
Pi(k|k) ∆̄i = ∆

n̄i n̄i
i

Hi,mixed (γ1
i ,γ

2
i , . . . ,γ

∆̄i
i ) = {Hr

i,pure(k) with possibility γr
i }

Hr
i,pure(k) r

r = 1,2, . . . , ∆̄i
∑∆̄i

r=1 γ
r
i = 1 γr

i ∈ [0,1]
γr

i

It is noticed that there exist  possible cases to be selected for each
sensor. Therefore, one can derive  possible cases for the estimation
error  covariance ,  where  and  is  the number of  the
neighbors of sensor .  In this letter,  the mixed strategies are defined
as ,  where

 is  the  pure  strategy  under  the -th  transmission  schedule,
, ,  and .  It  is  noticed  that  the  dif-

ferent combination of  constitute different mixed strategies. There-
fore, the number of mixed strategies is infinite.

trace(Pi(k|k))
Pr

i (k|k) Pi(k|k) r

Due  to  the  number  of  pure  strategies  is  finite,  the  value  of
 is  easily  determined  under  each  pure  strategy.  By

defining  as  the value of  under  the -th  pure strategy,
the optimization problem (7) can be converted as
 

min
Γi

∆̄i∑
r=1

γr
i trace(Pl

i(k|k)) s.t.
∆̄i∑

r=1

γr
i = 1. (8)

Γi = {γ1
i ,γ

2
i , . . . ,γ

∆̄i
i }where . The optimal problem can be calculated by

using the Lagrange multipliers method.

5

Ci =

[
1 0 0 0
0 0 1 0

]
Simulation: This  section  is  to  verify  the  effectiveness  of  the

derived  distributed  filtering.  The  satellite  system  is  applied,  as  pre-
sented in [11]. A network of  sensors is applied, where any two sen-
sors  can  communicate.  The  measurement  matrix  of  each  sensor  is

.  Assume  that  only  one  dimension  of  measure-

ment can be selected and transmitted.
24Note that  there exist  pure strategies for each sensor.  By apply-

ing the  mixed strategy,  the  probability  of  each cases  at  each instant
can  be  obtained,  and  then  the  distributed  filtering  under  DRSs  is
derived.  The system states and estimated states are shown in Fig. 1.
As can be seen from Fig. 1, the estimated sates can catch up with the
system states, which means that the proposed reduction dimensioned

distributed filtering under the DoS attack can achieve good effective-
ness.

Conclusion: In this  letter,  the dimensionally reduction distributed
finite-horizon  filtering  for  CPSs  under  DoS  attacks  is  investigated.
Considering  the  CPSs  with  high-dimensional  measurements,  the
DRS is applied, which is to select and transmit partial measurement.
In this scenario, the distributed finite-horizon Kalman filtering is pro-
posed  under  DoS  attacks.  Moreover,  the  mixed  strategy  is  used  to
derive  the  optimal  transmission  schedule  for  CPSs  to  minimize  the
trace of estimation error covariance. Finally, the effectiveness of the
proposed distributed filtering is presented.

Acknowledgments: This work was supported by the National Nat-
ural Science Foundation of China (62103130, 62273255), the Shang-
hai  International  Science  and  Technology  Cooperation  Project
(22510712000),  and  the  Fundamental  Research  Funds  for  the  Cen-
tral Universities.

References
 J.  Y.  Mao,  X.  Y.  Meng,  and  D.  R.  Ding, “Fuzzy  set-membership
filtering  for  discrete-time  nonlinear  systems,” IEEE/CAA  J.  Autom.
Sinica, vol. 9, no. 6, pp. 1026–1036, 2022.

[1]

 Q. Li,  B.  Shen,  Z.  D.  Wang,  and W. G.  Sheng, “Recursive distributed
filtering  over  sensor  networks  on  Gilbert-Elliott  channels:  A  dynamic
event-triggered approach,” Automatica, vol. 113, pp. 1–9, 2020.

[2]

 B.  Chen,  G.  Hu,  D.  W.  C.  Ho,  and  L.  Yu, “Distributed  covariance
intersection  fusion  estimation  for  cyber-physical  systems  with
communication  constraints,” IEEE  Trans.  Automat.  Contr.,  vol. 61,
no. 12, pp. 4020–4026, 2016.

[3]

 B.  Chen,  D.  W.  C.  Ho,  W.  Zhang,  and  L.  Yu, “Distributed
dimensionality  reduction  fusion  estimation  for  cyber-physical  systems
under DoS sttacks,” IEEE Trans. Syst., Man, and Cybern-Syst., vol. 49,
no. 2, pp. 455–468, 2019.

[4]

 D. Zhang, G. Feng, Y. Shi, and D. Srinivasan, “Physical safety and cy-
ber  security  analysis  of  multi-agent  systems:  A survey  of  recent  adva-
nces,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 319–333, 2021.

[5]

 H.  Zhang,  P.  Cheng,  L.  Shi,  and  J.  Chen, “Optimal  DoS  attack
scheduling in  wireless  networked control  system,” IEEE Trans.  Contr.
Syst. Tech., vol. 24, no. 3, pp. 843–852, 2016.

[6]

 H. Karimipour and V. Dinavahi, “On false data injection attack against
dynamic  state  estimation  on  smart  power  grids,” in Proc.  IEEE  Int.
Conf. Smart Energy Grid Eng., 2017, pp. 388–393.

[7]

 B. DeBruhl and P. Tague, “Digital filter design for jamming mitigation
in  802.15.4  communication”,  in Proc.  Int.  Conf.  Comput.  Commun.
Netw., Maui, USA, Jul. 2011. DOI: 10.1109/ICCCN.2011.6006020.

[8]

 H. H. Yuan and Y. Q. Xia, “Resilient strategy design for cyber-physical
system  under  DoS  attack  over  a  multi-channel  framework,” Inf.
Sciences, vol. 454, pp. 312–327, 2018.

[9]

 C. Deng, C. Wen, W. Wang, X. Li,  and D. Yue, “Distributed adaptive
tracking  control  for  high-order  nonlinear  multi-agent  systems  over
event-triggered  communication,” IEEE Trans.  Automat.  Contr,  vol. 68,
no. 2, pp. 1176–1183, 2023.

[10]

H∞
 H. Zhang,  Z.  Wang,  H.  Yan,  F.  Yang,  and X.  Zhou, “Adaptive  event-
triggered  transmission  scheme  and  filtering  co-design  over  a
filtering  network  with  switching  topology” IEEE  Trans.  Cybern.,
vol. 49, no. 12, pp. 4296–4307, 2019.

[11]

 B.  D.  O.  Anderson,  J.  B.  Moore,  and  M.  Eslami, “Optimal  filtering,”
IEEE Trans. Syst. Man and Cybern., vol. 12, no. 2, pp. 235–236, 2007.

[12]

 

0
−50

0

50

100

−50

0

50

100

System state Sensor 1 Sensor 2
Sensor 3 Sensor 4 Sensor 5

x 1
 (t

)

x 2
 (t

)

k
10 20 30 40

0
−2

2
0

6
4

8

x 3
 (t

)

k
10 20 30 40

0
k

10 20 30 40

−50

0

50

100

x 4
 (t

)

0
k

10 20 30 40

 
Fig. 1. The comparisons between estimation state and system states.
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