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   Dear Editor,

tanh(·)

This  letter  concentrated  on  the  adaptive  predefined-time  optimal
tracking  control  for  underactuated  autonomous  underwater  vehicles
(AUVs).  According  to  adaptive  dynamic  programming  (ADP)  with
actor-critic  neural  networks  (NNs),  by  constructing  a  novel  barrier-
type  cost  function,  an  adaptive  predefined-time  optimal  constraint
control  approach  was  developed.  With  the  help  of  predefined-time
stability  theory via  function,  the  developed control  approach
could ensure all state errors did not beyond the preset error boundary,
and the controlled system was semi-global practical predefined-time
stable.  At  the  same  time,  the  minimum  of  cost  function  could  be
guaranteed. Finally, simulation results were given to verify the effec-
tiveness of the developed control approach.

Related  work: With  the  continuous  development  of  marine  sur-
vey  technology,  underactuated  AUVs,  as  a  more  efficient  tool  for
ocean  navigation  and  exploration,  have  paid  considerable  attentions
for  scholars.  At  the  same  time,  some  significance  works  have  been
obtained, see [1] and [2]. Reference [1] studies a leader-follower for-
mation  control  issue  for  multi  AUVs.  Based  on  the  designed  kine-
matic and dynamic model of AUVs in [1], the authors in [2] propose
a  robust  adaptive  trajectory  tracking  control  approach  for  AUVs.  It
should  be  noted  that  the  above  developed  control  methods  do  not
consider  the  settling  time  and  minimum  energy  consumption  of
AUVs.  On  the  one  hand,  to  deal  with  the  infinite-time  converge
issue, fixed-time stable theory is developed in [3], the settling time in
[3]  do  not  depend  on  the  initial  values,  which  only  depend  on  the
design parameters.  Thus,  Li et  al. [4]  investigate the adaptive fuzzy
fixed-time  decentralized  control  issue  for  nonlinear  systems.  Huang
et al. [5] study the robust adaptive fixed-time control issue for under-
actuated  autonomous  surface  vessels.  Note  that  the  settling  time  in
the above developed practical fixed-time control methods depends on
the unknown weight vectors. Thus, [6] develops the predefined-time
stable  theory  for  nonlinear  systems,  the  settling  time  is  a  design
parameter,  which  does  not  depend  on  unknown  weight  vectors  and
other parameters. Inspired by [6], Xie and Chen [7] design a nonsin-
gular  adaptive  predefined-time control  law for  rigid  spacecrafts.  On
the other hand, scholars always hope to use smaller control energy on
the  premise  of  achieving  satisfactory  performance  indicators,  thus,
Bellman [8] first  present the dynamic programming theory. In addi-
tion,  to solve the dimension disaster  issue in dynamic programming
(DP) theory,  Werbos [9] developed the reinforcement learning (RL)
algorithm by combining NNs for nonlinear systems. Mazouchi et al.
[10]  study  the  distributed  adaptive  optimal  control  issue  for  multi-
agent  systems,  and  Wen et  al. [11]  propose  a  simplified  adaptive
optimal control method for nonlinear systems. In addition, the above
considered systems are  also limited to  affine ones,  which cannot  be
applied  to  solve  the  nonlinear  systems  with  unmatched  conditions.
Thus, Yang et al. [12] develop an ADP-based optimal tracking con-
trol  strategy for multi-UAVs. Then,  [13] studies the robust  adaptive
optimal  full  state  constraint  control  issue  for  nonlinear  systems.
When considering the effective balance between quality control and
energy  control,  Cao et  al. [14]  develop  RL-based  robust  adaptive

fixed-time optimal  control  method for  robotic  manipulators  by  con-
structing  nonsingular  sliding  mode  surface.  However,  by  far,  there
are  no  available  results  on  adaptive  optimal  predefined-time  con-
trollers for nonlinear systems with error constraints. Motivated by the
above  analysis,  this  letter  first  studies  the  predefined-time-based
adaptive optimal  tracking control  problem for  underactuated AUVs.
Compared with the existing works, the main contributions of this let-
ter  can  be  highlighted  as  follows:  1)  Based  on  the  predefined-time
stable  theory  and  barrier  cost  function,  a  predefined-time  adaptive
trajectory  tracking  control  method  is  first  proposed  for  AUVs.  It
should be noted that the work [14] studies the adaptive optimal fixed-
time  control  for  nonlinear  systems,  which  cannot  preset  the  system
convergence time, the settling time is subjected to the design parame-
ters  and  unknown  weight,  the  settling  time  in  this  letter  is  a  main
design parameter, which does not depend on the other design param-
eters  and  unknown  weight.  2)  With  the  help  of  hyperbolic  tangent
function, the singular issue can be effectively avoided. In addition, by
using  prescribed  performance  technique,  the  developed  control
approach  can  ensure  all  state  errors  can  converge  to  a  preset  error
boundary in predefined-time.

Problem  statement: Based  on  the  body  and  earth  fixed  coordi-
nates,  inspired by [1]  and [2],  AUV usually  can be  modeled as  fol-
lows:
 

η̇ = R(ψ)υ
τ+ d(t) = Mυ̇+C(υ)υ+ D(υ)υ

(1)

υ = [u,v,r]T

η = [x,y,ψ]T

ψ ∈ [0,2π)
(x,y) d(t) = [d1(t),d2(t),d3(t)]T

τ = [τu,0, τr]T

M = diag{m1,1,m2,2,m3,3} D(υ) = diag{d1,1(u),
d2,2(v),d3,3(r)} C(υ)

R(ψ)

where  represents  the  AUV’s  velocity  vector  with  yaw
rate r,  sway velocity v and surge velocity u;  represents
the  AUV’s  position  vector  with  yaw  angle  and  position

;  represents  external  disturbance  vec-
tor;  represents  the  control  input  vector  with  yaw
moment, sway force and surge force. Positive definite inertia matrix

.  The  damping matrix 
, the matrix of Coriolis and centripetal terms  and

rotation matrix  are described as
 

C(υ)=

 0 0 −m2,2v
0 0 m1,1u

m2,2v −m1,1u 0

 ,R(ψ)=

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


d1,1(u) = −Xu −Xu|u| |u| d2,2(v) = −Yv −Yv|v| |v| d3,3(r) =

−Nr −Nr|r| |r| Xu,Xu|u| Yv,Yv|v|
Nr,Nr|r| m1,1 = m−Xu̇ m2,2 = m−Yv̇ m3,3 = Iz −Nṙ

Xu̇ Yv̇ Nṙ
Iz

where ,  and 
 with  hydrodynamic  derivatives , ,

; , ,  with  AUV’s
mass m, added masses ,  and , and moment of inertia in yaw

.
ηd = [xd ,

yd ,ψd]T
Assumption 1 [1]: The elements of the desired trajectory 

 is bounded, their first and second-order derivatives are also
bounded.

d∗ = [d∗1,
d∗2,d

∗
3]T d(t) = [d1(t),d2(t),d3(t)]T

∥d(t)∥ ≤ ∥d∗(t)∥

Assumption 2 [2]: There exists unknown constant vector 
,  the  external  disturbance  vector 

satisfies .
Control objective: This letter will design an adaptive predefined-

time constraint optimal tracking control law for AUVs (1) such that
1) AUV can track the desired trajectory in predefined time;
2) All closed-loop signals are bounded in predefined time;
3) The cost function is minimal, and all state errors remain within a

preset region.
χ̇(t) = f (χ, t) f (0) =

0 χ(0) = χ0
∥χ(χ0, t)∥ ≤ δ

∀t ≥ Tmax Tmax δ > 0

Definition 1 [6], [7]: For nonlinear system  with 
,  the  equilibrium  point  is  said  to  be  the  practical  prede-

fined-time  stable  (PTS)  if  the  state  trajectory  satisfies 
for  with predefined time  and constant .

β ∈ (0,1) π > 0 π̄ > 0
D > 0 V(χ)

Lemma  1  [6],  [7]:  For  any  constants , ,  and
, there exists a continuous function , we have

 

V̇(χ) ≤ − π̄

βTmax
V1+ β2 − π

βTmax
V1− β2 +D (2)

χ̇(t) = f (χ, t)thus,  the  nonlinear  system  is  globally  predefined-time
stable (PPTS).

χi ∈ R p ∈ (0,1] q > 1Lemma 2 [4]: For , there exist constants  and ,
one has
 

m∑
i=1

|χi|q ≥ m1−q(
m∑

i=1

|χi|)q,

m∑
i=1

|χi|p ≥ (
m∑

i=1

|χi|)p. (3)
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Main results: First, define the coordinate transformation as
 {

e = η−ηα
z2 = υ− α̂

(4)

ηα = [xd ,yd ,ψα]T e = [ex,ey,eψ]T ψαwhere , ,  is called to be approach
angle, and defined as
 

ψα = a tan2(ey,ex) tanh

 e2
x + e2

y

δ

+ψd

1− tanh

 e2
x + e2

y

δ

 (5)

a tan2(ey,ex) (ex,ey)
ψα = ψd ex = ey = 0
where  represents the angle value of . Obviously,

 when . Define error variable as
 

ξ je(t) =
e j(t)
κ je(t)

, ξz2 (t) =
z2(t)
κz2 (t)

, j = x,y,ψ (6)

κ je(t) = (κ je0 − κ je∞)exp(−a jt)+ κ je∞ κz2 (t) = (κz20 − κz2∞)
×exp(−az2 t)+ κz2∞ κ je0 κ je∞ κz20 κz2∞
a j az2 |e j(0)| < κ je0
|z2(0)| < κz20

where  and 
 are performance functions, , , , ,

 and  are  positive  constants,  then  we  have  and
.

Step 1: For AUVs, design the cost function as
 

V1(ξe(0)) = min
α∈Ω1(U1)

{w t f

t
p1(ξe(s),α(ξe))ds

}
=

w t f

t
p1(ξe(s),α∗(ξe))ds (7)

ξe = [ξx,e, ξy,e, ξψ,e]T p1(ξe,α∗) = δ1
ξT

e ξe
2(1−ξT

e ξe)2 + r1(α∗)2 δ1 >

0 r1 > 0 Ω1(U1) α∗ t f

where , , 

 and  are constants.  is the admissible control of . 
is the terminal time. Define the HJB equation as
 

H(ξe,α,
∂V1

∂ξe
) = δ1

ξT
e ξe

2(1−ξT
e ξe)2

+ r1(α∗)2

+
∂V1

∂ξe

1
κe

[R(ψ)α∗ − η̇α −ξeκ̇e]. (8)

∂H(·)
∂α∗ = 0By solving , we can obtain the ideal virtual control law as

 

α∗ = − 1
2r1κe

∂V1

∂ξe
R(ψ). (9)

∂V1
∂ξe

To achieve the optimal control objective, let construct the  as
 

∂V1

∂ξe
= R−2(ψ)κe

κe
2r12βπ
βTmax

( 1
2 )1+ β2 ξ

1+β
e

(1−ξT
e ξe)2+βϖe

+
2r1π

βTmax

×
( 1

2 )1− β2 ξ1−β
e

(1−ξT
e ξe)2−βϖe

tanh

 π

βTmax

( 1
2 )1− β2 ξ2−β

e

(1−ξT
e ξe)2−βς1




− 2r1(η̇α +ξeκ̇e)+
2τ1
κe
ξeϖe +V∗1(X)

}
(10)

τ1 > 0 ς1 > 0 V∗1 = −
2r12βπ
βTmax

(
1
2

)1+ β2

κeξ
1+β
e

(1−ξT
e ξe)2+βϖe

− 2r1π
βTmax

(
1
2

)1− β2 κeξ
1−β
e

(1−ξT
e ξe)2−βϖe

× tanh
[
π
βTmax

ξ2−β
e

(1−ξT
e ξe)2−βς1

(
1
2

)1− β2
]
+

2r1(η̇α +ξeκ̇e)− 2τ1
κe
ξeϖe +

1
κe

∂V1
∂ξe

R2(ψ),X = [ξe,κe]T , ϖe =
1+ξT

e ξe
(1−ξT

e ξe)2

where  and  are  constants. 

.

V∗1(X)Based on [13], RBF NN is utilized to identify , one has
 

V∗1(X) =W∗T1 S1(X)+ε1(X) (11)
ε1(X) ∥ε1(X)∥ ≤ ε∗1

ε∗1 > 0 S1(X) = [S 1,1(X),S 1,2(X),S 1,3(X)]T

W∗1 = diag{W∗1,1,W
∗
1,2,W

∗
1,3}

where  is  the  identify  error  vector  and  satisfies 
with  constant .  is  the
basis  function  vector,  and  is  the  un-
known parameter matrix.

W∗1

ŴT
Jc1S1(X)

˙̂WJc1

Since  is  the  unknown  parameter  matrix,  ADP algorithm with
actor-critic NNs is adopted to achieve the optimal control goal, critic
NN  is  utilized  to  online  learning  optimal  cost  function,
then, design the critic NN updating law  as
 

˙̂WJc1 = −h̄c1S1(X)ST
1 (X)ŴJc1 (12)

h̄c1 > 0where  is the learning rate.
ŴT

Ja1S1(X)
α∗

And actor NN  is utilized to online turning the ideal vir-
tual control , thus, design the optimal virtual control law as 

α̂ = R−1(ψ)

κe
− 2βπ
βTmax

(
1
2

)1+ β2 ξ
1+β
e

(1−ξT
e ξe)2+βϖe

− π

βTmax

×
(

1
2

)1− β2 ξ
1−β
e

(1−ξT
e ξe)2−βϖe

tanh

 π

βTmax

ξ
2−β
e

(1−ξT
e ξe)2−βς1

×
(

1
2

)1− β2

+ (η̇α +ξeκ̇e)− τ1ξe

r1κe
ϖe −

ŴT
Ja1S1(X)

2r1

 . (13)

˙̂WJa1Design the actor NN updating law  as
 

˙̂WJa1 = − h̄a1S1(X)ST
1 (X)(ŴJa1 −ŴJc1)

− h̄c1S1(X)ST
1 (X)ŴJc1 (14)

h̄a1 > 0 h̄a1 > h̄c1where  is the learning rate and satisfies .
Define the Hamiltonian approximation error as

 

E1 = H
(
ξe, α̂,

∂V̂1

∂ξe

)
−H

(
ξe,α,

∂V1

∂ξe

)
= H

(
ξe, α̂,

∂V̂1

∂ξe

)
. (15)

P(t) = Tr{(ŴJa1−
ŴJc1)T (ŴJa1 −ŴJc1)}

Similar to [12], define positive-definite function 
, then, we have

 

Ṗ = − h̄a1

2
Tr

{
∂P(t)
∂ŴJa1

S1(X)ST
1 (X)

∂P(t)
∂ŴJa1

}
≤ 0 (16)

∂H(ξe,α̂,
∂V̂1
∂ξe )

∂ŴJa1
= 03×3Obviously, it can ensure .

τStep 2: Design the predefined-time optimal control law  as
 

τ = κz

− 2βπ
βTmax

( 1
2 )1+ β2 ξ

1+β
z

(1−ξT
z ξz)2+βϖz

−
( 1

2 )1− β2 π

βTmax

ξ
1−β
z

(1−ξT
z ξz)2−βϖz

× tanh

 π

βTmax

( 1
2 )1− β2 ξ2−β

z

(1−ξT
z ξz)2−βς1


+ŴT S− τ2ξz

r2κz
ϖz

− 1
2r2

ŴT
Ja2S2 −ω1,0 tanh

(
ϖz
κzς2
ξzω1,0

)
(17)

ξz = [ξu,z, ξv,z, ξr,z]T ϖz =
1+ξT

z ξz

(1−ξT
z ξz)2 Ŵ

W∗ W∗ ς2 > 0
where , .  is  the  estimation  of

,  will be defined later.  is the constant.
Design the updating laws of actor-critic NNs and adaptive law as

 

˙̂WJc2 = −h̄c2S2(Z)ST
2 (Z)ŴJc2 (18)

 

˙̂WJa2 = − h̄a2S2(Z)ST
2 (Z)(ŴJa2 −ŴJc2)

− h̄c2S2(Z)ST
2 (Z)ŴJc2 (19)

 

˙̂W = Γ(S(Z)ϖz
κz
ξz −KŴ) (20)

h̄c2 > 0 h̄a2 > 0 h̄a2 > h̄c2
K Γ

where  and  are the learning rates and satisfy .
 and  are positive-definite matrices.
Theorem 1: For AUV system (1), Assumptions 1 and 2 hold, if we

adopt  predefined-time  optimal  controller  (17),  virtual  control  law
(13), actor-critic NNs updating laws (12), (14), (18) and (19), adap-
tive law (20), the developed control method has the following proper-
ties:

ηd = [xd ,yd ,ψd]T1) AUV can track  in predefined time;
2) All state errors are bounded and the cost functions are minimal.
Proof (Step 1): Choose the Lyapunov function as

 

V1 =
ξT

e ξe

2(1−ξT
e ξe)2

+
1
2

W̃T
Ja1W̃Ja1 +

1
2

W̃T
Jc1W̃Jc1 (21)

W̃Ja1 =W∗1 −ŴJa1 W̃Jc1 =W∗1 −ŴJc1
ŴJa1 ŴJc1 W∗1

α̂

where  and  are  the  estimation
errors,  and  are estimations of . Based on the designed
virtual control law  and learning laws, we have
 

V̇1 ≤ −
ϵ1π

βTmax
V

1− β2
1 − ϵ̄1π̄

βTmax
V

1+ β2
1 +D1 (22)

ϵ̄1 =min{2β, h̄c1ζb
2 } ϵ1 =min{1, h̄c1ζb

2 } D1 =
β
2 ( 2−β

2 )(2−β)/β+

h̄c1ζb
2 ( ∥W̄Ja1∥2

2 )1+β/2 +
β
2 ( 2−β

2 )(2−β)/β + h̄c1ζb
2 ( ∥W̄Jc1∥2

2 )1+ β2 +0.2785ς1+
(h̄c1+h̄a1)ζb

2 W∗T1 W∗1 + ∥R(ψ)∥ κ̄z2

∥∥∥κz2

∥∥∥≤ κ̄z2 κ̄z2 >0∥∥∥W̄Ja1
∥∥∥>0

∥∥∥W̄Jc1
∥∥∥>0

where  and , 

,  with  constants ,
 and .
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Proof (Step 2): Choose the Lyapunov function as
 

V2=
ξT

z Mξz

2(1−ξT
z ξz)2

+
W̃TΓ−1W̃

2
+

W̃T
Ja2W̃Ja2

2
+

W̃T
Jc2W̃Jc2

2
(23)

W̃ W̃Ja2 W̃Jc2 ŴJa2 ŴJc2
W∗2

where ,  and  are  the  estimation errors,  and 
are estimations of .

F(Z) = −M−1[C(υ)υ+ D(υ)υ+Mα̇+Mξzκ̇z] Z = [υ,
α̇,ξz,κz]T F̂(Z|Ŵ) = ŴT S(Z) F(Z)

Let  with 
.  RBFNN  is  adopted  to  identify ,

and one has
 

F(Z) =W∗T S(Z)+ε(Z) (24)
S(Z) = [S 1(Z),S 2(Z),S 3(Z)]T

ε(Z) = [ε1, ε2, ε3]T W∗T = diag{W∗Tu ,

W∗Tv ,W∗Tr }

where  is  the  basis  function  vector,
 is  the  identify  error  vector, 

 is the ideal weight matrix.
ω∗1,0 = ε(Z)+ d(t)

∥ω∗1,0∥ ≤ ω1,0 ω1,0 > 0
In  addition,  according  to  Assumption  2,  define ,

which satisfies  with constant , one has
 

ϖz
κz
ξzω

∗
1,0 −

ϖz
κz
ξzω1,0 tanh

(
ϖz
κzς2
ξzω1,0

)
≤ 0.2785ς2. (25)

V̇2Similar to Step 1,  is
 

V̇2 ≤ −
ϵ2π

βTmax
V

1− β2
2 − ϵ̄2π̄

βTmax
V

1+ β2
2 +D2 (26)

D2 = 0.2785ς2 +
(h̄c2+h̄a2)ζb

2 W∗T2 W∗2 +
1
2W∗T KW∗ + β2 ( 2−β

2 )
2−β
β +

[ δ
∗

2 K]1 + β2 +
β
2 ( 2−β

2 )
2 − β
β +

β
2 ( 2 − β

2 )
2−β
β +

h̄c2ζb
2 ( ∥W̄Ja2∥2

2 )1 + β2 +
h̄c2ζb

2 ×
( ∥W̄Jc2∥2

2 )1+ β2 ϵ̄2=min{2β(λmax(M)), h̄c2ζb
2 , (λmin(K)λmax(Γ−1))1+β/2}

ϵ2 =min{1/(λmax(M)), h̄c2ζb
2 , (λmin(K)λmax(Γ−1))1−β/2}

where 

, 
and .

V =
∑2

i=1 ViLet , from (22) and (26), we have
 

V̇ ≤ − ϵπ

βTmax
V1− β2 − ϵ̄π̄

βTmax
V1+ β2 +D (27)

ϵ =min{ϵ1, ϵ2} ϵ̄ =min{ϵ̄1, ϵ̄2} D = D1 +D2where ,  and .
From (27), define the following sufficiently small region as:

 

Ω =

{
V |V ≤min{[ 2βDTmax

ϵπ
]2/(2−β), [

2βDTmax

ϵ̄π̄
]2/(2+β)}

}
.

T̄ ≤
√

2Tmax ξe ξz Ŵ
ŴJai ŴJci√

2Tmax

Obviously,  it  ensure  that V can  converge  into  the  set  Ω in  prede-
fined  time .  Thus,  it  also  ensure  the  errors , , ,

,  and  other  signals  are  all  bounded  in  predefined  time
. ■

m1,1 = 200 Kg m2,2 = 260 Kg m3,3 = 100 Kg d1,1 = (60+
110 |u|) Kg/s d2,2 = (120+200 |v|) Kg/s d3,3 = (80+120 |r|) Kg/s

ηd = [xd ,yd ,ψd]T xd = 0.5t
yd = 10sin(0.004πt) ψd = atan(yd/xd)

d(t) = [5sin(0.5πt)+6cos(πt),sin(0.5t)+2sin(0.1t),0]
η(0) = [−2,2,2]T υ(0) = [0,0,0]T

Ŵ(0) = diag{0.02,0.05,0.03} ŴJa1(0) = diag{0.1,0.3,0.2} ŴJa2(0) =
diag{0.2,0.3,0.1} ŴJc1(0) = diag{0.3,0.1,0.2} ŴJc2(0) = diag{0.5,
0.2,0.3} β = 0.85 Tmax = 5
π = 0.5 ς1 = 0.2 ς2 = 0.6 τ1 = 5 r1 = 9.5 τ2 = 7.5 r2 = 5.5
h̄a1 = 0.8 h̄c1 = 0.6 h̄a2 = 0.6 h̄c2 = 0.5 Γ = diag{10,10,20}
K = diag{20,20,20}

Simulation example: For  AUVs (1),  the  dynamic  parameters  are
given  as: , , , 

, , .
Choose  the  desired  trajectory  vector  as ,

, .  The  environmental  distur-
bance . The ini-
tial  conditions  are  given  as: , ,

, , 
, , 

.  And  design  parameters  are  given  as: , ,
, , , , , , ,

, , , , ,
.

κxe(t) = (6−0.2)e−t +0.2 κye(t) = (10−
0.5)e−t +0.5 κψe(t) = (8−0.6)e−0.8t +0.6 κu,z2 (t) = (5−0.3)e−1.5t+

0.3 κv,z2 (t) = (10−0.5)e−t +0.5 κr,z2 (t) = (8−0.6)e−0.8t +0.6

The performance functions , 
, , 

, , .
The simulation results are displayed by Figs. 1 and 2.
Conclusion: We have studied the ADP-based adaptive predefined-

time  optimal  tracking  control  issue  for  AUVs.  By  constructing  a
novel  barrier  cost  function  with  prescribed-performance  technique,
an  error-constraint-based  predefined-time  adaptive  optimal  control
approach has been developed. With the help of predefined-time sta-
ble theory, it has been proved all state errors can converge into a pre-
set error boundary, and all system signals are bounded in predefined
time.
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Fig. 1. Actual states and desired signals.
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Fig. 2. AUV’s velocities u, v, r.
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