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Figure 1: Pipeline of OsGG-Net for head pose estimation by generating a landmark-connection graph to model the 3D angle
associated with the landmark distribution robustly in one step.

ABSTRACT
Head pose estimation is a crucial problem that involves the pre-
diction of the Euler angles of a human head in an image. Previous
approaches predict head poses through landmarks detection, which
can be applied to multiple downstream tasks. However, previous
landmark-based methods can not achieve comparable performance
to the current landmark-free methods due to lack of modeling the
complex nonlinear relationships between the geometric distribution
of landmarks and head poses. Another reason for the performance
bottleneck is that there exists biased underlying distribution of
the 3D pose angles in the current head pose benchmarks. In this
work, we propose OsGG-Net, a One-step Graph Generation Net-
work for estimating head poses from a single image by generating
a landmark-connection graph to model the 3D angle associated
with the landmark distribution robustly. To further ease the angle-
biased issues caused by the biased data distribution in learning
the graph structure, we propose the UnBiased Head Pose Dataset,
called UBHPD, and a new unbiased metric, namely UBMAE, for
unbiased head pose estimation. We conduct extensive experiments
on various benchmarks and UBHPD where our method achieves
the state-of-the-art results in terms of the commonly-used MAE
metric and our proposed UBMAE. Comprehensive ablation studies
also demonstrate the effectiveness of each part in our approach.
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1 INTRODUCTION
Head pose estimation [5, 10, 25, 32] has long been active research
in computer vision, as it can be applied in lots of real problems,
such as driver behavior monitoring, human attention modeling,
and human-computer interaction. This paper addresses the head
pose estimation problem from a single image, where we need to
predict a 3D vector containing the angles of yaw, pitch, and roll.

In the head pose estimation literature, most previous meth-
ods [17, 23] apply landmarks as the intermediate step to regress the
3 degree-of-freedom angles from an image. Therefore, landmarks
are typically useful for several downstream tasks such as face recog-
nition or identification, face alignment, expression transfer, and
so on. However, previous methods rarely apply the robustness of
a facial graph for head pose estimation. In this work, we explore
the robustness of facial graph generation for modeling the 3D pose
angles associated with the landmark distribution efficiently.

In terms of graph generation, researchers [13, 24] often apply
two-stepmethods to generate graphs from featuremaps. Specifically,
they first regress the spatial location of nodes from the feature map
and then link edges by generating the adjacent matrix according
to relationships of nodes. With this kind of two-step method, we
reveal it hard to model the complex nonlinear relationships between
the geometric distribution of landmarks and head poses robustly,
leading to the performance bottleneck of landmark-based models.
Another cause leading to this performance bottleneck is that there
exist underlying distribution biases of the 3D pose angles lying in
the current head pose datasets. Therefore, we are wondering if the
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negative effect brought by such angle-biased distribution existing
in current benchmarks [3, 6, 7, 16, 36] can be mitigated.

In this work, we propose an end-to-end and image-to-graph ar-
chitecture to generate a landmark-connection graph that takes the
generated facial landmarks as the vertexes to model the 3D angle
associated with the landmark distribution robustly. Specifically,
we adopt a one-step approach for face graph generation network,
namely OsGG-Net, where we take a single image as input, generate
the facial landmarks first, and then apply the spatial graph convo-
lution network (GCN) to regress three directions of pose angles.
Our OsGG-Net consists of three pipelines, that is, landmark, graph,
and pose pipelines. In the landmark pipeline, we apply an integral
landmark regression to automatically localize the face landmarks
from an image. Then the graph pipeline is proposed to generate
a face graph for pose estimation. In the end, the pose pipeline fo-
cuses on extracting the spatial extent of the face graph, by directly
regressing the yaw, pitch, and roll of head poses.

To further ease the angle-biased problem caused by the biased
distribution lying in the current benchmarks, we propose the Un-
Biased Head PoseDataset by human-cleaning, called UBHPD, for
unbiased head pose estimation. Specifically, we explore the under-
lying distribution histogram of existing datasets in Section 4. In
order to generate an unbiased head pose dataset, we uniformly sam-
pling the images from BIWI, AFLW, 300W-LP, UPNA and SynHead
according to the density histogram for each direction of head pose
angle. Taking this underlying distribution difference into account,
we propose an unbiased metric, namely UBMAE, to have a balanced
evaluation of each angle for head pose estimation.

The major contributions of this paper are summarized as follows:
• We propose an end-to-end and image-to-graph framework
to generate a robust facial graph by applying CNN and GCN
jointly.

• We propose a novel one-step face graph generation network,
called OsGG-Net, instead of using a two-step framework, for
estimating head poses from a single image.

• We are the first to reveal the potential bias lying in current
head pose benchmarks and propose an UnBiased Head Pose
Dataset, namely UBHPD, and a new metric called UBMAE.

• Extensive experiments demonstrate that OsGG-Net achieves
state-of-the-art results on various benchmarks and UBHPD
in terms of both MAE and UBMAE metrics.

2 RELATEDWORKS
2.1 Head Pose Estimation
In the head pose estimation community, previous works fall into
two categories, i.e. landmark-free and landmark-based.
Landmark-free. These methods typically predict three Euler an-
gles directly from a single image without landmarks involved. For
example, HopeNet [25] applies cross-entropy and Mean Square
Error (MSE) losses to train a deep convolutional neural network
(CNN). QuatNet [10] adopts a quaternion-based multi-regression
loss method to avoid ambiguity problem in the commonly used
Euler angle representation. FSA-Net [32] proposes a stage-wise
regression mechanism with a CNN model and an attention mecha-
nism combined with a feature aggregation module to group global
spacial features. Liu et al. [20] present the head pose estimation as

a label distribution learning paradigm with a multi-loss function
by regressing a Gaussian label distribution rather than a single
label. Concurrently, a novel model based on the characteristic of
representations with three vectors in a rotation matrix is developed
in TriNet [5] to address the discontinuity in annotations and the
Mean Absolute Error (MAE) of Euler angles based metric.
Landmark-based. This kind of methods often detect facial land-
marks first and then use them to estimate the head pose. For exam-
ple, Hyperface [23] applies a multi-task model for face detection,
landmarks localization, pose estimation and gender recognition us-
ing deep CNNs. KEPLER [17] proposes a modified GoogLeNet [29]
architecture for landmark detection and pose estimation of uncon-
strained faces by regression, where landmark prediction is improved
by the coarse pose supervision. A number of landmark-based meth-
ods attract much attention in the literature, since facial landmarks
are important intermediate results shared by multiple downstream
tasks. However, current landmark-based methods fails to achieve
comparable performance to the landmark-free methods due to the
lack of the abilities to model the complex nonlinear relationships
between the geometric distribution of landmarks and head poses
robustly and efficiently. Therefore, it is necessary to take full advan-
tage of landmarks to solve the current performance bottleneck by
designing such nonlinear mappings. In this work, we focus on mod-
eling the 3D pose angles associated with the landmark distribution
efficiently by generating a facial graph.

2.2 Graph Generation
Graph generation is a crucial problem in many areas, such as gen-
erating social networks, drug discovery, designing electric circuits,
and so on. Most previous methods [15, 18, 19, 27] focus on applying
generative models, i.e. variational autoencoders and generative ad-
versarial networks to predict a probabilistic fully-connected graph.
Since our goal is to apply graph generation for head pose estima-
tion, we relate our work to the domain-specific graph generation
literature, where previous methods mainly use two-step approaches.
For example, DGR [24] applies a Spatial Location Regression Net
to regress the position of nodes directly and generate the feature
vector of each node from the feature map by bilinear interpolation
according to spatial coordinates. Then a Gaussian kernel is used
to generate the adjacent matrix according to the spatial location of
nodes. Kim et al. [13] propose a dynamic programming framework
to build the graph structure in an online manner by incorporating
the adjacency matrix in the graph theory to propagate message
through the known structure of the graph. In this paper, we aim to
generate a static and robust facial graph for head pose estimation.

2.3 Head Pose Benchmarks
Recently, researchers have been putting their efforts into collecting
the images of humans and head poses in the wild or in the lab
setting. Zhu et al. [36] expand 61, 225 samples across large poses
in the 300W dataset [26] with flipping to 122, 450 samples for syn-
thesizing the 300W across Large Poses (300W-LP). The AFLW2000
dataset [36] is proposed to include large pose variations with vari-
ous illumination conditions and expressions, where the first 2, 000
images of the AFLW dataset [16] with ground-truth 3D faces and
the corresponding 68 landmarks are provided. The BIWI dataset [6]
is recorded with a Kinect sensor in the controlled environment,
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containing 24 videos of 20 different subjects (14 men, 6 women, 4
people with glasses), i.e. totally 15, 000 frames. To get rid of errors
and noises in the ground truth annotations due to various difficul-
ties in ground truth collection, a large-scale synthetic head pose
dataset, SynHead [7], is created by gathering head motion tracks
from the BIWI and the ETH dataset [3] and recording additional
depth video sequences with the Kinect and SoftKinetic sensors. Af-
ter failure cases are discarded by manual inspection, the SynHead
contains 10 subjects, 70 motion tracks, and 510,960 frames in total.

However, existing datasets [3, 6, 7, 16, 36] share the fundamental
problem that the collected samples and the ground truth annota-
tions have the underlying distribution bias for three directions of
pose angles. For data-driven learning, the existing biased distri-
bution has a negative impact on the performance of the trained
model. To address this problem, we propose the UnBiased Head
Pose Dataset by uniformly sampling the samples from the exist-
ing head pose benchmarks according to the density histogram for
each pose angle, called UBHPD. Taking the biased underlying dis-
tribution difference into account, we propose an unbiased metric,
namely UBMAE, to have a balanced evaluation of each angle.

3 METHOD
Overview. Head pose estimation aims at predicting head poses
given an image. We present a new head pose detector, coined as
One-step Graph Generation Netwrok (OsGG-Net), by viewing a
face as a graph to extract its features. As shown in Figure 2, in our
OsGG-Net, we take an image as input and feed it into a backbone
to extract the spatial landmark heatmaps of a face. Then, we design
three pipelines to perform head pose estimation in an end-to-end
manner. 1) Landmark Pipeline is defined on the extracted landmark
heatmaps. This Landmark Pipeline automatically localizes the face
landmarks from an image. 2) Graph Pipeline is defined over all land-
marks extracted from Landmark Pipeline. This Graph Pipeline tries
to relate landmarks to generate a face graph for pose estimation.
The generated face graph would capture the dependencies of each
landmark on the estimated pose. 3) Pose Pipeline operates on the
generated face graph. This pipeline focuses on extracting the spatial
extent of the face graph, by directly regressing the yaw, pitch, and
roll of head poses. These three pipelines collaborate together to yield
head poses from an image in an end-to-end manner. Backbone.
In our OsGG-Net, we input one RGB image with the resolution of
𝐻𝑖𝑚𝑔 ×𝑊𝑖𝑚𝑔 × 3, where 3 denotes the number of channels. This
RGB image is fed into a Fully Convolutional Network [21] with
a simple ResNet [9] backbone. Specifically, we choose ResNet-34
with light-weighted decoder architecture as our OsGG-Net feature
backbone. This architecture employs an encoder-decoder architec-
ture to extract heatmaps for each landmark. The extracted spatial
heatmaps H are with the resolution of 𝐾 × 𝐻 ×𝑊 , where 𝐾 de-
notes the number of regressed landmarks. The extracted heatmaps
are successively input into three pipelines. Next, we present the
technical details of these pipelines.

3.1 Landmark Pipeline
The first pipeline is Landmark Pipeline, which is defined on the
extracted landmark heatmaps H with 𝐾 × 𝐻 ×𝑊 . This Landmark
Pipeline automatically localizes the face landmarks from an image.
Specifically, we apply an integral landmark regression to make it

feasible to train our model in a differential way. Previous methods
on keypoints heatmap regression need to prepare ground-truth
gaussian heatmaps with a small radius, where the center value
with 1 represents the location of the key points. Given a learned
heat map H𝑘 for 𝑘th keypoint, each location in the map represents
the probability of the location being the key point. The final key-
point location coordinate N𝑘 is obtained as the location p with the
maximum likelihood as

N𝑘 = argmax
p

H𝑘 (p) . (1)

This landmark regression method has two drawbacks. 1) It is
non-differential. Since we are not able to use keypoints coordinates
to train our model in an end-to-end manner, we need to regress
gaussian heatmaps and generate landmarks by post-processing
heatmaps according to Equation 1. 2) The keypoint localization
precision is limited by the lower resolution of heatmaps than that
of the original image due to down-sampling steps in a deep neu-
ral network. Using larger resolution of input images would bring
more computer resources. In this work, in order to localize the face
landmarks accurately, we employ the idea from integral pose re-
gression on human pose estimation [28, 34] to replace the argmax
in Equation 1 with the integration of all locations p in its domain
Ω weighted by their probabilities. In this way, J𝑘 is defined as

N𝑘 =

∫
p∈Ω

p · H̃𝑘 (p), (2)

where H̃𝑘 denotes the normalized heatmaps. In order to make all
elements of H̃𝑘 non-negative and sum to one, we apply a softmax
operator in this work to H𝑘 (p) defined as

H̃𝑘 =
𝑒H𝑘 (p)∫

𝑞∈Ω 𝑒
H𝑘 (q)

(3)

For the discrete form in the generated heatmaps, Equation 2 is
relaxed to

N𝑘 =

𝐻∑
𝑝𝑦=1

𝑊∑
𝑝𝑥=1

p · H̃𝑘 (p), (4)

where 𝐻,𝑊 denote the height, width of heatmaps, respectively. As
shown in Figure 2, applying the softmax operator to the extracted
landmark heatmaps 𝐾 ×𝐻 ×𝑊 outputs 𝑥 and 𝑦 coordinate for each
landmark. Then, we have a coordinate matrix Jwith𝐾×2 generated
from this landmark pipeline. For the landmark loss, we use theMean
Absolute Error (MAE) loss to regress landmarks directly for more
accurate localization.

L𝑙𝑎𝑛𝑑 =

𝐾∑
𝑘=1

𝑀𝐴𝐸 (N𝑘 ,T𝑘 ), (5)

where N𝑘 ,T𝑘 denote the prediction and ground-truth of the 𝑘th
landmark, and 𝐾 is the total number of landmarks.

3.2 Graph Pipeline
The second pipeline is Graph Pipeline, which is defined over all land-
marks heatmaps H and the landmark coordinates matrix J ∈ R𝐾×2
extracted from Landmark Pipeline. This Graph Pipeline tries to
relate landmarks to generate a face graph for pose estimation. The
generated face graph captures the dependencies of each landmark
on the estimated pose. In order to generate this desired face graph,
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Figure 2: Illustration of OsGG-Net. On the left, we present the overall OsGG-Net framework. The blue cuboids represent the
generated landmark heatmaps, the blue, sky blue, red, and green boxes denote the backbone, the Landmark Pipeline, the
Graph Pipeline, and the Pose Pipeline. On the right, we show the detailed design of each pipeline.

we need to generate nodes and edges on each heatmap H𝑘 . For
nodes in the graph, we take the predicted landmark spatial coordi-
nates J as each node. Then we have 𝐾 nodes in this desired graph.
For generating edges in this graph, we first define the correspond-
ing landmark feature maps F𝑘 as nodes and generate edges E𝑘 on
each heatmap. The corresponding landmark feature maps F𝑘 is
defined as

F𝑘 = H𝑘 ◦ J, (6)

where ◦ denotes matrix indexing, such that F𝑘 ∈ R𝐾×𝐾 .
Edges linking. In order to train our model in an end-to-end man-
ner, we search 𝑆 “alternative” nodes 𝑘𝑠𝑎 among the left 𝐾 − 1 land-
marks for a “master” node 𝑘𝑚 on F𝑘 , where 𝑠 ∈ {1, 2, ..., 𝑆}. Then
we link 𝑆 edges between the “master” node 𝑘𝑚 and “alternative”
nodes 𝑘𝑠𝑎 . In this work, we define a mask matrixM𝑠𝑒𝑎𝑟𝑐ℎ ∈ R𝐾×𝐾 to
constrain the search range of each “master” node on each landmark
feature map F𝑘 . As a result, we get the valid landmark feature map
F̃𝑘 within our search range M𝑠𝑒𝑎𝑟𝑐ℎ as

F̃𝑘 = F𝑘 ⊙ M𝑠𝑒𝑎𝑟𝑐ℎ, (7)

where ⊙ denotes the element-wise multiplication, and entries of
𝑆 × 𝑆 in M𝑠𝑒𝑎𝑟𝑐ℎ are 1 and others are 0.
Adjacent matrix generation. The adjacent matrix A is generated
by applying a softmax operator to the F̃𝑘 ∈ R𝐾×𝐾 along one dimen-
sion according to the spatial position of nodes. The generated facial
graph has three properties, that is, being symmetric and sparse
for the full matrix, but being dense for each row and column. 1)
Symmetric. To assure it symmetric, we add A⊤ to A, and apply a
clipping method to prune edges with small weights. The adjacency
matrix Ã is defined as:

Ã = max
( 1
2
(A + A⊤), 𝑡𝑐𝑙𝑖𝑝

)
, (8)

where Ã is the 𝐾 × 𝐾 adjacency matrix, 𝐾 is number of landmarks,
𝑡𝑐𝑙𝑖𝑝 is the threshold of clipping. 2) Sparse. In order to generate a
sparse adjacency matrix for getting rid of redundancy entries in
the adjacent matrix of a facial graph, we apply a ℓ1 norm to each
element of Ã. The sparse loss is defined as

L𝑠𝑝𝑎𝑟𝑠𝑒 =
𝐾∑
𝑖=1

𝐾∑
𝑗=1

|Ã𝑖, 𝑗 |, (9)

where | · | denotes the absolute value of each element in Ã. 3)
Dense RC. Using the sparse loss, the model would collapse to the
oversimplified solutions to make many zeros in the matrix, which
is not desirable. Instead, we aim to make it Dense for entries in each
Row and Column, namely, Dense RC. In this way, each “master”
node links to its “important” nodes without missing all “alternative”
nodes. Furthermore, to constrain the Dense RC of the generated
adjacency matrix, we apply a dense loss to Ã. And the dense loss is
defined as

L𝑑𝑒𝑛𝑠𝑒 =
𝐾∑
𝑖=1

|
𝐾∑
𝑗=1

Ã𝑖, 𝑗 |, (10)

where
∑𝐾
𝑗=1 Ã𝑖, 𝑗 is a 𝐾 × 1 matrix. Putting sparse loss and dense

loss together, we define the overall graph loss as

L𝑔𝑟𝑎𝑝ℎ = 𝛽𝑠L𝑠𝑝𝑎𝑟𝑠𝑒 + 𝛽𝑑L𝑑𝑒𝑛𝑠𝑒 , (11)

where 𝛽𝑠 , 𝛽𝑑 denote the weight hyper-parameter of the sparse loss
and dense loss. In order to explore how much each loss affects
the final performance of our OsGG-Net, we perform extensive
experiments on each parameter in Section 6.3.

Poster Session 3 MM ’21, October 20–24, 2021, Virtual Event, China

2468



3.3 Pose Pipeline
The third pipeline is Pose Pipeline, which operates on the generated
face graph. This pipeline focuses on extracting the spatial extent
of the face graph, by directly regressing the yaw, pitch, and roll of
head poses. Specifically, we take the predicted landmark coordinates
J ∈ R𝐾×2 as the node feature and feed it together with generated
adjacency matrix Ã into the Pose Pipeline. First, we apply a batch
normalization layer to J, and then input the result together with Ã
into 5 graph convolution layers. Finally, we use one 2D convolution
layer and one fully connected layer to generate 𝒚̂ including yaw,
pitch, roll. For accurate pose estimation, we adopt the MAE loss to
regress poses directly, which is defined as

L𝑝𝑜𝑠𝑒 = 𝑀𝐴𝐸 (𝒚̂,𝒚), (12)

where 𝒚 is the ground-truth of head poses.
Overall loss. Putting landmark, graph, and pose losses together,
we define the overall loss of our OsGG-Net model as

L𝑡𝑜𝑡𝑎𝑙 = 𝛼L𝑙𝑎𝑛𝑑 + 𝛽L𝑔𝑟𝑎𝑝ℎ + 𝛾L𝑝𝑜𝑠𝑒 (13)

where𝛼, 𝛽,𝛾 denote theweight hyper-parameter of landmark, graph,
and pose loss, respectively. In order to explore the effect of each
loss on the final performance, we perform extensive experiments
on each parameter for our ablation study in Section 6.1.

4 THE UNBIASED HEAD POSE DATASET
In this section, we describe the proposed UnBiased Head Pose
Dataset by human-cleaning, namely UBHPD, in detail.
Existing dataset. There are four real-world datasets for head pose
estimation, including BIWI [6], AFLW2000 [16], 300W-LP [36], and
SynHead [7]. However, they all share the fundamental problem that
samples have the underlying distribution bias for three directions
of head poses. For data-driven learning, the existing biased distri-
bution has a significantly negative impact on the learned model’s
performance. This is broadly acknowledged in previous works on
object recognition [30] and facial expression recognition [8] but
has not yet been addressed for head pose estimation.

To address this problem, we explore the underlying distribution
histogram of existing head pose estimation benchmarks. Specif-
ically, we calculate the counts of head pose frames, where three
directions of head pose angles (yaw, pitch, roll) are within [-90◦,
+90◦]. Then we split the range into 𝑈 segments to visualize the
density histogram for each head pose angle, as shown in Figure
3. In our case, we set 𝑈 = 15 to cover the range of valid head
pose angles within [-90◦, +90◦]. As can be seen, for the yaw angle,
BIWI, AFLW2000, and SynHead have a large density within [-18◦,
+18◦], while having a small density within [-90◦, -54◦] and [+54◦,
+90◦]. The same density trend has been shown in the pitch and
roll angle. Although 300W-LP has a “uniform” density within [-90◦,
-42◦] and [+42◦, +90◦], the density of other segments are such low
that the distribution of the yaw angle is distinct from that of pitch
and roll angles on 300W-LP. Moreover, the yaw’s distribution of
300W-LP dataset shows an obvious difference from that of BIWI and
AFLW2000 datasets, which influences the cross-dataset evaluations.
UBHPD. In order to generate an unbiased head pose dataset, we
sample the images from BIWI, AFLW2000, 300W-LP, UPNA and
SynHead according to the density histogram for each direction of
head pose angle in a Gaussian manner. As a result, the 15 segments

(-90◦, -78◦, -66◦, -54◦, -42◦, -30◦, -18◦, -6◦, +6◦, +18◦, +30◦, +42◦,
+54◦, +66◦, +78◦, +90◦) consist of 25,000 frames in total in our new
dataset. After sampling the data, we visualize the density histogram
of our new dataset for comparison with the existing datasets. As
can be seen, our new dataset has an “unbiased” distribution for
yaw, pitch, and roll such that we call our new dataset UBHPD. We
split 70% of the total data as the training dataset and 30% as the test
dataset. To the best of our knowledge, we are the first to propose
an unbiased dataset in the head pose estimation community.
UBMAE. Most previous methods adopt the mean absolute error
(MAE) for head pose estimation. However, this metric ignores the
underlying distribution difference between the source and the target
dataset. For example, the MAE metric would be biased to the angles
with more samples in the source dataset, while our UBMAE is still
balanced to the pose angles with even rare samples. Taking the
underlying distribution difference between 𝑆 angle segments into
account, we define the UBMAE metric as

𝑈𝐵𝑀𝐴𝐸 =
1
3𝑈

©­«
𝑈∑
𝑖=1

3∑
𝑗=1

𝑑
𝑗
𝑖

𝑠
𝑗
𝑖

(𝑦 − 𝑦)ª®¬ , (14)

where we denote 𝑖, 𝑗 for the index of the segment sets, and three di-
rections of head pose angles, 𝑦,𝑦 for the prediction and the ground-
truth of the 𝑗th head pose angle within the 𝑖th segment set, and
𝑑
𝑗
𝑖
, 𝑠 𝑗
𝑖
for the density of the 𝑗th angle within the 𝑖th segment set in

the target and source dataset, respectively. This means that 𝑑 𝑗
𝑖
= 𝑠

𝑗
𝑖

if the training set and test set ideally share the same underlying
distribution of each angle within given 𝑈 segments.

5 EXPERIMENTS
5.1 Experiments Settings
Datasets. We adopt three biased datasets for head pose estimation
in the experiments: the 300W-LP, AFLW2000, BIWI, UPNA datasets,
and our proposed UBHPD dataset. The 300W across Large Poses
(300W-LP) dataset is synthesized by Zhu et al. [36] with expanding
61,225 samples across large poses in the 300W dataset [26] with
flipping to 122,450 samples. The AFLW2000 dataset [16] provides
ground-truth 3D faces and the corresponding 68 landmarks for
the first 2, 000 images of the AFLW dataset, where the faces in the
dataset have large pose variations with various illumination con-
ditions and expressions. The BIWI Kinect Head Pose Database [6]
contains 24 videos of 20 subjects in the controlled environment.
There are a total of roughly 15, 000 frames in the dataset. In ad-
dition to RGB frames, the dataset also provides the depth image
for each frame. The UPNA Head Pose Database [2] contains 10
subjects, where each user has 12 videos and 300 frames per video.
Our proposed UBHPD dataset is an unbiased version of all existing
datasets in the head pose estimation community. See more details
about our new unbiased dataset in Section 4.
Protocols. 1)Protocol 1: FollowingHopenet [25] and FSA-Net [32],
we train on the synthetic 300W-LP dataset while testing on the two
real-world datasets, the AFLW2000 and BIWI datasets. Notice that,
when evaluating on the BIWI dataset, we only consider frames with
pose angles within the range of [-99◦, +99◦] with MTCNN [35] face
detection, following Hopenet [25] and FSA-Net [32]. We compare
several state-of-the-art landmark-based pose estimation methods
using this protocol. The batch size we used for this protocol is 16. 2)
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BIWI 300W_LP SynHead UBHPDAFLW2000

Figure 3: Distribution of BIWI, AFLW2000, 300W-LP, SynHead, and UBHPD. Top, middle, and bottom row denote yaw, pitch
and roll, respectively.

Protocol 2: For BIWI dataset, we use 70% of videos (16 videos) in
the BIWI dataset for training, and the others (8 videos) for testing.
The faces in the BIWI dataset are detected by MTCNN with the
empirical tracking technique to avoid failure of face detection. We
used a batch size of 8 for training in this metric. For UPNA dataset,
we use 70% of subjects (7 subjects) for training, and the others (4
subjects) for testing. 3) Protocol 3: For our new UBHPD dataset,
we used 70% of the data in the dataset for training, and the oth-
ers for testing. We excluded the target dataset in our UBHPD for
cross-dataset evaluation settings.
Implementation Details. We use PyTorch [22] backend for im-
plementing the proposed OsGG-Net 1. For data augmentation in
training, we closely follow FSA-Net [32] and apply random crop-
ping and random scaling (0.8 ∼ 1.2) to training images. We use 300
epochs to train the network with the Adam [14] optimizer with the
initial learning rate of 0.001. All experiments are conducted on one
NVIDIA Titan RTX GPU. The total training time is 8.3 hours, and
the inference time of our model is 2.5 ms per image.

5.2 Comparison with State-of-the-art Methods
In this section, we implement extensive experiments to compare
the proposed OsGG-Net with state-of-the-art methods.
Protocol 1. Following HopeNet [25] and FSA-Net [32], we train on
the synthetic 300W-LP dataset while testing on the two real-world
datasets, the AFLW2000 and BIWI datasets. We report the compari-
son results of both MAE and UBMAE on the AFLW2000 and BIWI
datasets in Table 1. When transferred to the AFLW2000 and BIWI
datasets, our OsGG-Net achieves the best performance in terms of
both metrics. When evaluating on the AFLW2000 and BIWI dataset,
img2pose [1] using the large face detection benchmark [31] for pre-
training achieves MAE=4.27 (Yaw:4.41, Pitch:5.57, Roll:2.82) and
MAE=3.90 (Yaw:3.97, Pitch:5.27, Roll:2.46), respectively. Although
we do not pre-train our model on auxiliary datasets, we can achieve

1The code and dataset are released at https://github.com/stoneMo/OsGG-Net.

comparable results to their performance. This infers the excellent
generalizability of the proposed OsGG-Net.

Table 1: Comparisons with the state-of-the-art methods on
the AFLW2000 and BIWI dataset evaluated on Protocol 1.
Bold and underline denote the first and second place.

Methods 300W-LP → 𝐴𝐹𝐿𝑊 2000 300W-LP → 𝐵𝐼𝑊 𝐼

Yaw Pitch Roll MAE UBMAE Yaw Pitch Roll MAE UBMAE

Dlib (68 points) [12] 23.10 13.60 10.50 15.80 19.60 16.80 13.80 6.19 12.20 23.92
FAN (12 points) [4] 6.36 12.30 8.71 9.12 11.71 8.53 7.48 7.63 7.89 16.31
Landmarks [25] 5.92 11.86 8.27 8.65 11.14 4.87 9.85 7.38 7.37 9.52
3DDFA [36] 5.40 8.53 8.25 7.39 9.73 36.20 12.30 8.78 19.10 35.21
Hopenet (𝛼 = 2) [25] 6.47 6.56 5.44 6.16 7.87 5.17 6.98 3.39 5.18 10.58
Hopenet (𝛼 = 1) [25] 6.92 6.64 5.67 6.41 8.20 4.81 6.61 3.27 4.90 10.02
SSR-Net-MD [33] 5.14 7.09 5.89 6.01 7.80 4.49 6.31 3.61 4.65 9.93
HPE [11] 4.80 6.18 4.87 5.28 6.78 3.12 5.18 4.57 4.29 9.23
FSA-Net [32] 4.50 6.08 4.64 5.07 6.50 4.27 4.96 2.76 4.00 8.13
QuatNet [10] 3.92 5.62 3.97 4.50 5.74 2.94 5.49 4.01 4.15 8.88
TriNet [5] 4.04 5.77 4.20 4.67 5.96 4.11 4.76 3.05 3.97 8.15
OsGG-Net (ours) 3.96 5.71 3.51 4.39 5.53 3.26 4.85 3.38 3.83 8.05

Protocol 2. In this protocol, 70% of videos are used for training
(16 videos for BIWI, 7 subjects for UPNA) and 30% for testing (8
videos for BIWI, 3 subjects for UPNA). The comparison results
with state-of-the-art methods on the BIWI and UPNA datasets are
reported in Table 2. When testing on the BIWI and UPNA dataset,
our OsGG-Net outperforms FSA-Net [32] and Tri-Net [5] in terms
of MAE and UBMAE, which further validates the effectiveness of
our OsGG-Net.
Protocol 3. In Table 3, we compare our OsGG-Net with state-of-
the-art methods in terms of both MAE and UBMAE metrics on the
proposed UBHPD dataset. All are trained on the UBHPD-train and
tested on the UBHPD-test. We can observe that the difference (△)
between MAE and UBMAE is smaller than the two aforementioned
protocols, which shows the “unbiased” distribution lying in our
proposed UBHPD. In this protocol, our OsGG-Net achieves the best
results in terms of MAE and UBMAE. This also demonstrates the
advantage of our OsGG-Net over current methods.
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Table 2: Comparisons with state-of-the-art methods on the
BIWI and UPNA dataset evaluated on Protocol 2.

Methods BIWI-train → BIWI-test UPNA-train → UPNA-test
Yaw Pitch Roll MAE UBMAE Yaw Pitch Roll MAE UBMAE

SSR-Net-MD [33] 4.24 4.35 4.19 4.26 5.18 4.56 4.85 4.96 4.79 6.11
VGG16 [7] 3.91 4.03 3.03 3.66 4.41 4.08 3.95 3.27 3.77 4.60
VGG16+RNN [7] 3.14 3.48 2.60 3.07 3.71 3.23 3.67 2.75 3.22 4.03
FSA-Net [32] 2.89 4.29 3.60 3.60 4.37 3.05 4.53 3.34 3.64 4.80
TriNet [5] 2.93 3.04 2.44 2.80 3.39 3.15 3.24 2.55 2.98 3.67
OsGG-Net (ours) 2.95 3.01 2.24 2.73 3.30 3.14 3.32 2.32 2.93 3.58

Table 3: Comparisons with state-of-the-art methods on the
UBHPD dataset using Protocol 3.

Method Yaw Pitch Roll MAE UBMAE △(𝑈𝐵𝑀𝐴𝐸 −𝑀𝐴𝐸)
SSR-Net-MD [33] 5.05 5.53 5.12 5.23 5.44 0.21
VGG16 [7] 4.63 4.25 3.62 4.17 4.33 0.16
VGG16+RNN [7] 3.45 3.75 2.85 3.35 3.48 0.13
FSA-Net [32] 3.52 4.72 3.45 3.90 4.04 0.14
TriNet [5] 3.23 3.45 2.63 3.10 3.22 0.12
OsGG-Net (ours) 3.25 3.36 2.53 3.05 3.17 0.12

Cross-dataset Evaluation. We evaluate our OsGG-Net and pre-
vious work trained on 300W-LP and UBHPD separately on the
BIWI dataset in Table 4. When trained on UBHPD, all methods
perform better than the one trained on 300W-LP, which validates
the effectiveness of our UBHPD in cross-dataset settings. In this
cross-dataset setting, our OsGG-Net outperforms FSA-Net [32] and
Tri-Net [5] by a large margin (0.19 and 0.21) in terms of MAE, which
further shows our method’s decent generalization capability.

Table 4: Comparisons with two different source datasets
(300W-LP and UBHPD) for the cross-dataset settings.

Method Source Target Yaw Pitch Roll MAE UBMAE

Hopenet [25] 300W-LP BIWI 4.81 6.61 3.27 4.90 10.02
FSA-Net [32] 300W-LP BIWI 4.27 4.96 2.76 4.00 8.13
Tri-Net [5] 300W-LP BIWI 4.11 4.76 3.05 3.97 8.15
OsGG-Net(ours) 300W-LP BIWI 3.26 4.85 3.38 3.83 8.05

Hopenet [25] UBHPD BIWI 4.65 6.45 3.23 4.78(↓ 0.12) 6.48(↓ 3.54)
FSA-Net [32] UBHPD BIWI 4.06 4.63 2.52 3.74(↓ 0.26) 5.05(↓ 3.08)
Tri-Net [5] UBHPD BIWI 3.96 4.43 2.88 3.76(↓ 0.21) 5.12(↓ 3.03)
OsGG-Net(ours) UBHPD BIWI 3.02 4.58 3.06 3.55(↓ 0.28) 4.92(↓ 3.13)

5.3 Visualization
In Figure 4, we visualize the qualitative examples of head pose esti-
mation and generated face graphs on 300W-LP, AFLW2000, BIWI,
and UNPA datasets. By comparison, our OsGG-Net model achieves
competitive head pose estimation performance. Some failure cases
are reported on the Bottom Row in the Figure 4. Our model some-
times misses the cases where there exists a large area of occlusion
on the human face. For visualization on the robust facial graph, we
also show the generated facial graphs used for head pose estima-
tion on the BIWI dataset, as shown in Figure 5. As can be seen, the
generated facial graphs have decent robustness to both the same
pose angles of different subjects (Top Row) and different head pose
angles for the same subject (Bottom Row).
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Figure 4: Visualization results. The blue, green, red lines de-
note the yaw, pitch, and roll. Failures Row: left two for pre-
dictions, right two for GT. Best viewed on screen.

Figure 5: Visualization of the generated facial graph (Top
Row: the same head pose angles of different subjects, Bot-
tom Row: different pose angles for the same subject).

6 ABLATION STUDY
In this section, we explore extensive ablation studies on each part
of our OsGG-Net, including landmark regression in Landmark
Pipeline, edge linking strategies and adjacency matrix generation in
Graph Pipeline, and the Pose Pipeline. Unless specified, all models
for our ablation study are trained on the proposed UBHPD dataset,
and then tested on BIWI dataset.

6.1 Effect of each loss (landmark, graph, pose)
In this section, we explore how much each of the three proposed
losses affects the final performance of head pose estimation, as
shown in Table 5. We can observe the obvious performance drop
without using the proposed landmark loss and graph loss. When
increasing the weighting coefficient 𝛼 and 𝛽 , we can achieve bet-
ter results in terms of MAE and UBMAE. This demonstrates the
importance of each loss proposed in our OsGG-Net.

Furthermore, we conduct extensive experiments to explore the
sparse and dense loss used in Graph Pipeline in Table 6. As can be
seen, with the rise of the weight importance of the sparse and dense
loss, our method’s performance increase and then decrease. This
result further validates the rationality of introducing the sparse
loss and dense loss to constrain the sparsity and denseness of the
generated facial graphs.
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Table 5: Exploration study on the importance weight of each
designed loss. + denotes if the loss is used or not; ++ is used
for the increase of loss weight (𝛼, 𝛽,𝛾 ) by a factor of 10.

L𝐿𝑎𝑛𝑑 L𝐺𝑟𝑎𝑝ℎ L𝑃𝑜𝑠𝑒 Yaw Pitch Roll MAE UBMAE

+ + 3.45 4.79 3.48 3.91 (↑0.36) 5.41 (↑0.49)
+ + 3.31 4.65 3.34 3.77 (↑0.22) 5.22 (↑0.30)

+ + + 3.02 4.58 3.06 3.55 (−) 4.92 (−)
++ + + 3.01 4.52 3.03 3.52 (↓0.03) 4.87 (↓0.05)
+ ++ + 2.97 4.36 3.08 3.47 (↓0.08) 4.81 (↓0.11)
++ ++ + 2.93 4.32 3.01 3.42 (↓0.13) 4.74 (↓0.18)

Table 6: Exploration study on sparse loss and dense loss.

𝛽𝑠𝑝𝑎𝑟𝑠𝑒 𝛽𝑑𝑒𝑛𝑠𝑒 Yaw Pitch Roll MAE UBMAE

1 1 2.93 4.32 3.01 3.42 (−) 4.74 (−)
1 5 2.88 4.27 2.96 3.37 (↓0.05) 4.67 (↓0.07)
1 10 2.86 4.21 2.95 3.34 (↓0.08) 4.63 (↓0.11)
1 15 2.96 4.39 3.15 3.50 (↑0.08) 4.86 (↑0.12)
1 20 3.28 4.68 3.46 3.81 (↑0.39) 5.28 (↑0.54)
5 1 2.91 4.28 3.13 3.44 (↑0.02) 4.78 (↑0.04)
10 1 2.85 4.21 3.03 3.36 (↓0.06) 4.67 (↓0.07)
15 1 3.18 4.49 3.28 3.65 (↑0.23) 5.06 (↑0.32)
20 1 3.46 4.62 3.45 3.84 (↑0.42) 5.32 (↑0.58)

6.2 Number and search range of nodes
In this part, we first explore the number of landmarks (nodes), i.e.
𝐾 , used in our OsGG-Net. In order to pick the salient and stable
landmarks, we first select 34 candidates by calculating the moving
distances of landmark locations along with the head pose changes
for the identical person. Then we compare the stableness of these
candidates for the same head pose from diverse people and set 𝐾 =

19 in our experiments. Using 𝐾 = 68, 34, our model achieves worse
performance (𝐾=68: MAE=4.10, UBMAE=5.71; 𝐾=34: MAE=3.63,
UBMAE=5.05;) than 𝐾 = 19 in terms of MAE and UBMAE. See
more results in the supplementary.

In order to analyze the effect of the node search range, i.e. 𝑆 , on
linking edges, we set the number of the search range of nodes to
3, 5, 7, 9, 18 empirically. We report the quantitative results in Table
7. With the increase of the search range of nodes for linking edges
of facial graphs dynamically, our method’s performance rises and
drops then. This is because a large search range makes the network
hard to generate a facial graph robust to predicting head pose angles.

Table 7: Study on the search range of nodes to link edges.

Search range (𝑆) Yaw Pitch Roll MAE UBMAE

3 2.86 4.21 2.95 3.34 (−) 4.63 (−)
5 2.81 4.16 2.87 3.28 (↓0.06) 4.54 (↓0.09)
7 2.75 4.13 2.83 3.24 (↓0.10) 4.48 (↓0.15)
9 2.93 4.25 2.99 3.39 (↑0.05) 4.70 (↑0.07)
18 3.15 4.47 3.23 3.62 (↑0.28) 5.01 (↑0.38)

6.3 Adjacency matrix generation
In Table 8, we explore the threshold of clipping, 𝑡𝑐𝑙𝑖𝑝 , used for adja-
cency matrix generation in Graph Pipeline by experimenting with
different numerical values. We can observe that with the incorpo-
ration of a threshold to clip the importance score in the adjacency

matrix, our method improves in terms of MAE and UBMAE, which
indeed validates the importance of the generated adjacency matrix
for estimating head poses.

Table 8: Exploration study on adjacency matrix generation.

𝑡𝑐𝑙𝑖𝑝 Yaw Pitch Roll MAE UBMAE

0 2.75 4.13 2.83 3.24 (−) 4.48 (−)
0.05 2.71 4.08 2.78 3.19 (↓0.05) 4.42 (↓0.06)
0.10 2.69 4.06 2.75 3.17 (↓0.07) 4.38 (↓0.10)
0.15 2.77 4.16 2.83 3.25 (↑0.01) 4.50 (↑0.02)
0.16 2.87 4.21 2.85 3.31 (↑0.07) 4.58 (↑0.10)

6.4 Pose Pipeline
In order to better understand the influence of the Pose Pipeline
on the final performance of our OsGG-Net, we further explore the
number of graph convolution networks (GCN) used in this pipeline.
The quantitative results are reported in Table 9. When increasing
the number of GCNs to 5, we achieve the best performance in terms
of MAE and UBMAE. However, the method’s performance drops
with a large number of GCNs used in Pose Pipeline. This is due to
the vanishing gradient problem lying in deeper GCN models.

Table 9: Exploration study on Pose Pipeline.

Pose decoder Yaw Pitch Roll MAE UBMAE

GCN ×3 2.69 4.06 2.75 3.17 (−) 4.38 (−)
GCN ×5 2.63 3.98 2.71 3.11 (↓0.06) 4.30 (↓0.08)
GCN ×7 2.75 4.15 2.87 3.26 (↑0.09) 4.51 (↑0.13)
GCN ×9 2.96 4.56 3.02 3.51 (↑0.34) 4.86 (↑0.48)
GCN ×11 3.01 4.69 3.28 3.66 (↑0.49) 5.08 (↑0.70)

7 CONCLUSION
In this paper, we propose OsGG-Net, a One-step Graph Generation
Network for estimating head poses from a single image. Our OsGG-
Net consists of landmark, graph, and pose pipelines. An integral
landmark regression in the landmark pipeline is applied to localize
the face landmarks automatically, then the graph pipeline is used to
generate a face graph for modeling the complex nonlinear relation-
ships between the geometric distribution of landmarks and head
poses, and finally the pose pipeline is proposed to extract the spatial
extent of the face graph, by directly regressing the yaw, pitch, and
roll of head poses. Furthermore, we also propose the UBHPD by
human-cleaning, and a new unbiased metric, namely UBMAE, for
unbiased head pose estimation, to address the biased underlying
distribution issues lying in current benchmarks. We conduct ex-
tensive experiments on various benchmarks and UBHPD where
our method achieves the state-of-the-art results in terms of the
commonly-used MAE metric and our proposed UBMAE. Compre-
hensive ablation studies also demonstrate the effectiveness of each
part of our approach.
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