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In laser systems, it is well known that beam pointing is shifted due to many un-modeled factors, such as vibrations
from the hardware platform and air disturbance. In addition, beam-pointing shift also varies with laser sources as
well as time, rendering the modeling of shifting errors difficult. While a few works have addressed the problem of
predicting shift dynamics, several challenges still remain. Specifically, a generic approach that can be easily ap-
plied to different laser systems is highly desired. In contrast to physical modeling approaches, we aim to predict
beam-pointing drift using a well-established probabilistic learning approach, i.e., the Gaussian mixture model. By
exploiting sampled datapoints (collected from the laser system) comprising time and corresponding shifting
errors, the joint distribution of time and shifting error can be estimated. Subsequently, Gaussian mixture
regression is employed to predict the shifting error at any query time. The proposed learning scheme is verified
in a pulsed laser system (1064 nm, Nd:YAG, 100 Hz), showing that the drift prediction approach achieves
remarkable performances. © 2019 Optical Society of America

https://doi.org/10.1364/AO.58.000948

1. INTRODUCTION

High-quality pulsed lasers with frequency 1–1 kHz have been
used as major light sources in national high-tech fields such as
laser ignition, space debris detection, and ranging. In these
fields, beam-pointing stability is a core quality of a pulsed laser
[1]. In laser ignition drivers, the stability of beam pointing de-
termines whether the laser can hit targets accurately [2]. In the
field of space debris detection and ranging, the stability of beam
pointing determines the intensity of echo signals, which affects
the precision of orbit determination [3]. However, in a practical
sense, pulsed laser beam pointing is prone to unstable drift as a
result of complex factors (both internally and externally).
Internal factors include temperature distribution, micro motion
of laser optical components, and intrinsic random jitters in laser
systems. Externally, surrounding variations related to temper-
ature, pressure, and humidity should also be taken into ac-
count. All of the aforementioned disturbances will eventually
affect performance of beam pointing, making the designing of
beam-pointing controllers more difficult. Thus, it is vital to
model beam-pointing drift so as to obtain high-performance
beam-pointing systems.

So far, many researchers have tried to estimate beam-pointing
drift by examining frequency and temporal components. In
Ref. [4], the authors analyzed the frequency spectrum of the

beam position drift from a spallation neutron source (SNS).
Results showed that beam drift often appears with frequency
components lower than 1 Hz to 2 Hz, which may help us
to select sampling time and control frequency when designing
control systems. In addition, the temporal components of beam
drift, which may greatly affect performance and parameter tun-
ing of control systems, need to be studied urgently. Fix and
Stockl [5] investigated the beam-pointing stability of an optical
parametric oscillator (OPO) and used the Allan variance [6] to
analyze temporal components of pointing stability. Their re-
sults revealed that beam-pointing drift is influenced by white
noise ranging from 0.5 s to 10 s, but after 30 s, linear drift
becomes significant. In Ref. [7], the authors measured beam
wander under varying atmospheric turbulences by changing
temperature and wind velocity of the optical turbulence gen-
erator chamber. One of their important results proved that the
variance of beam drift varied linearly with the temperature gra-
dient. Although those methods can roughly estimate frequency
and temporal variation characteristics of beam drift, the model
of beam-pointing drift is not established, and the shifting errors
cannot be predicted. Due to a variety of un-modeled and
time-varying disturbance factors, qualitative modeling of
beam-pointing drift in different laser systems by physical mod-
eling approaches is difficult. In contrast to physical modeling
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approaches that require precise prior knowledge about disturb-
ance factors, a generic method that alleviates any prior disturb-
ances is urgently needed in order to address the problem of
modeling and predicting shift dynamics in different laser
systems.

Therefore, our work focuses on studying machine learning
algorithms in order to provide a new perspective on modeling
and predicting beam-pointing drift. Machine learning algo-
rithms can analyze and predict physical models on the basis of
pure data while alleviating any prior knowledge. Specifically, in
this paper, we consider modeling of the beam-pointing drift
phenomenon using the Gaussian mixture model (GMM) [8],
which is often used to estimate probability distribution of
complex and nonlinear dynamics. Generally, with the joint dis-
tribution (obtained by GMM) of relevant variables, Gaussian
mixture regression (GMR) [9] is utilized to estimate corre-
sponding condition probability distribution given input signals.
Thus, we propose to model the joint distribution of time and
drift errors of beam pointing, and subsequently, use GMR to
predict drift errors at different time steps. The key advantages
of our approach are three-fold: (i) prior disturbance factors
are alleviated; (ii) probability distribution of beam-pointing
drift dynamics in different laser systems can be estimated;
and (iii) shift errors can be predicted at any query time before
the laser works, which is highly desired for the design of
optimal controllers.

In our experiment, we first capture the beam-pointing
drift data from the Nd:YAG, 100 Hz laser at various time steps.
Then, based on the training data, we recognize patterns of
beam-pointing drift via GMM. In summary, we can use
temporal components of the GMM model to predict beam-
pointing drift, aiming to improve the performance of
beam-pointing control systems.

2. MEASUREMENT SYSTEM

A schematic of the laser source is shown in Fig. 1. For the pulsed
laser source, we use a single-longitudinal-mode Q-switched

Nd:YAG laser with TEM00 mode at wavelength 1064 nm,
where the work repetition is 100 Hz and the pulse width is
30 ns. (Note that this laser system was devised by our research
group [10].) The gain medium is a 3 mm × 3 mm × 7 mm,
Nd3��1%�, Nd:YAG crystal, pumped by fiber-coupled,
2 W, 808 nm laser diodes. With a coupling system consisting
of 1∶2 plano-convex lenses, the pump beam is focused to a beam
diameter of about 0.2 mm at the intra-resonator end of the
Nd:YAG. The laser cavity consists of a dichroic mirror coated
for high transmission at the pump wavelength and high
reflectivity at the laser wavelength, and an output coupler coated
with 85% reflectivity at the laser wavelength mounted upon a
piezoelectric transducer (PZT). An acousto-optic modulator
(AOM) with low insertion loss is used to produce Q-switched
operation. By inserting the Fabry–Perot (F-P) etalon into the
laser cavity, a single-longitudinal-mode laser is obtained. A frac-
tion of the laser is sampled by the photodiode (PD), which pro-
vides the signal tomatch the laser’s frequency with the F-P etalon
resonance. Adriving voltage is fed back to a PZT actuator to keep
the single-longitudinal-mode laser operation.

An illustration of the measurement system for the pulsed
laser is shown in Fig. 2. An aperture and a filter (coated for
high transmission at the laser wavelength and high reflectivity
at the pump wavelength) are used to avoid the influence of the
pump laser in the measurement. A 4× telescope is introduced to
ensure the divergence angle is less. Attenuators are used to pro-
tect the scientific CCD. Then the sampling laser beam trans-
mits through the focal lens f (f � 150 mm) and is focused on
the far-field scientific CCD (LaserCam-HR II, Coherent Inc.)
with 1280 × 1024 pixels, 6.5 μm × 6.5 μmla pixel size each,
and 400 nm to 1100 nm spectral range.

To run the pulsed laser, start sampling, and compute the
centroid drift, a driving and sampling unit is used. Within the
pulsed laser running time, a sampling period is set as 20 min as
an example to verify the proposed method. (Note that the sam-
pling time is not necessarily 20 min; a longer period is also
allowed.)

Fig. 1. Overview of the single-longitudinal-mode Q-switched Nd:YAG laser.

Fig. 2. Overview of measurement system for pulsed lasers.
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The sampling frequency of the CCD camera is 5 Hz, and
thus a sampling period comprises 6000 samples. The pointing
movement of the far-field spot or near-field spot in the x and y
axes are calculated by

δαx�t� � arctan
δx�t�
f

≈
δx�t�
f

, (1)

δαy�t� � arctan
δy�t�
f

≈
δy�t�
f

, (2)

where δαx�t� and δαy�t� represent translational displacements of
the far-field spot in the x and y axes, respectively. From (1)
and (2), it can be found that the pointing motions are propor-
tional to translational displacement by the focal length f . So, in
our work, we use translational drifts instead.

After a sampling period, training datasets X and Y are
recorded as

X �

2
666664

t1 δx1
t2 δx2

..

. ..
.

tN δxN

3
777775

and Y �

2
666664

t1 δy1
t2 δy2

..

. ..
.

tN δyN

3
777775
: (3)

where δxi � xi − x0, δyi � yi − y0 with �xi, yi� being the cent-
roid position at t i and �x0, y0� as the expected centroid position.
Then, we can use the modeling method GMM/GMR to
predict the drift δx in x direction and the drift δy in y direction
at time t.

3. MODELING METHODS

With the training datasets X and Y, we can model the joint
probability distribution P�t, δx� and P�t , δy� using GMM.
Specifically, we have

P�t, δx� ∼
XK
k�1

πkN �μk,Σk�, (4)

P�t , δy� ∼
XK
k�1

π̄kN �μ̄k, Σ̄k�, (5)

where πk, μk, and Σk, respectively, represent prior probability,
mean, and covariance of the k-th Gaussian component when
modeling P�t, δx�. (It is noted that

PK
k�1 πk �

PK
k�1 π̄k � 1

in order to render proper probability distributions).
Similarly, π̄k, μ̄k, and Σ̄k, respectively, represent prior prob-

ability, mean, and covariance of the k-th Gaussian component
when modeling P�t, δy�. Usually, the classical expectation-
maximization (EM) algorithm is employed to estimate
GMM parameters. The EM algorithm is an iterative algorithm
that has two key steps: expectation (E) step and maximization
(M) step. When modeling P�t, δx�, in the E step, it tries to
calculate the posterior probability γ�i, k�, which represents
the probability of data point (μk, Σk) belonging to component
k. In the M steps, it updates the prior probability, mean, and
covariance based on the posterior probability. When modeling
P�t, δy�, the procedures are similar. Here is the algorithm: after
several iterations of the EM algorithm, the mixture parameters
λ � fπk, μk,ΣkgKj�1 and λ̄ � fπ̄k, μ̄k, Σ̄kgKj�1 are obtained.

An illustration of the EM algorithm is provided in Algorithm 1.
The reader is encouraged to refer to [11] for more details.

Algorithm 1. Expectation Maximization Algorithm

1: Define K Guassian models fkgK1 , N Training set figN1
2: Initialize the estimates μk , Σk and the mixture weights

πk , k � 1,…, k
3: repeat
4: for each k, i do
5: γ�i, k� ≔ p�t i , δxi jμk ,Σk�
6: Update the parameters:

πk ≔
1

m

XN
i�1

γ�i, k�,

μk ≔
PN

i�1 γ�i, k�δxiPN
i�1 γ�i, k�

,

Σk ≔
PN

i�1 γ�i, k��δxi − μk��δxi − μk�TPN
i�1 γ�i, k�

,

7: end for
8: until convergence
9: Return the final parameter estimates

It is worth pointing out that the Bayesian information cri-
terion (BIC) [12] is often used to choose the number of
Gaussian components for GMM, which aims to achieve a com-
promise between modeling precision and complexity. BIC is
defined as

BIC�k� � k ln�n� − ln�L�λjz��, (6)
where k is the number of components, n is the size of the train-
ing set, and L�λjz� is the likelihood of the observed set z given
the model parameters λ. L�λjz� is defined as

L�λjz� �
Xn
i�1

log

�
1

k

XK
k�1

p�zijλk�
�
, (7)

where p�zijλk� is the posterior probability, which represents the
probability of the data point belonging to component k.

Once the joint probability distributions P�t, δx� and
P�t , δy� are obtained, GMR can be used to determine
P�δx jt� and P�δyjt�. For simplicity of discussion, we take
the prediction of P�δxjt� as an example, while P�δyjt� can
be computed in a similar manner. Let us first write
Gaussian components from (4) in expanded form, i.e.,

μk �
�
μk,t
μk,δx

�
and

X
k
�

�
σk,tt σk,tδx
σk,δx t σk,δxδx

�
: (8)

Formally, by using GMR, we have [13–15]

P�δxjt� ∼
XK
k�1

hxk�t�N �μxk�t�, σxk�, (9)

where

hxk�t� �
πkN �tjμk,t , σk,tt�PK
i�1 πiN �tjμi,t , σi,tt�

, (10)

μxk�t� � μk,δx � σk,δx tσ
−1
k,tt�t − μk,t�, (11)

σxk � σk,δxδx − σk,δx tσ
−1
k,ttσk,tδx : (12)
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Thus, for any query time t�, we can estimate the predicted
horizontal movement of spot δx� from (9). Similarly, the ver-
tical movement of spot δy� can also be calculated.

4. EXPERIMENTAL RESULTS

To quantitatively estimate the number of components, we
compare the BIC values from 1 to 20 components with four
training sets by GMMs as we show in Code 1, Ref. [16].
Results are shown in Fig. 3, and the number with the lowest
BIC is five. So in this experiment, we will choose five Gaussian
components for GMM.

After estimating the beam position probability density by
GMMs as well as trajectory prediction and reconstruction of

the beam position movements by GMR as we show in
Code 2, Ref. [17], the horizontal and vertical results of four
independent sample periods are shown in Figs. 4 and 5. In
Figs. 4 and 5, green scatter points locate the horizontal and
vertical coordinates of the sampling spots centroid, respectively,
red ellipses represent GMMs, and the red curves represent the
predicted beam drift trajectory. In Fig. 4, approximately sinus-
oidal drift of the horizontal direction can be found. In horizon-
tal direction, the maximum is about �0.012 mm and the
minimum is about −0.018 mm, where the maximum and min-
imum of corresponding pointing are about �1.4 μrad and
−2.09 μrad, respectively. In Fig. 5, the drift of the vertical
direction is an irregular sinusoidal motion with different
magnitudes. In vertical direction, the maximum is about
�0.004 mm and the minimum is about −0.002 mm, where
the maximum and minimum of corresponding pointing are
about �0.47 μrad and −0.23 μrad, respectively.

In order to observe the relationship between the four sam-
pling periods, we put the four fitting curves of horizontal and
vertical trajectories together. In Fig. 6, we find that horizontal
and vertical error distributions in multiple tests are almost
consistent. Therefore, it is meaningful to study beam-pointing
drift over time.

After modeling the beam-pointing drift by GMM, GMR
can be employed to predict the shift errors. In order to illustrate
the prediction performance of GMR, we resort to two metrics
that are widely used in the machine learning community, i.e.,
mean squared error (MSE) and mean absolute error (MAE),
which are defined as follows:

Fig. 3. BIC values with 1 to 20 components.

Fig. 4. Time series over 20 min of the horizontal movement of every independent observation. (a) First period. (b) Second period. (c) Third
period. (d) Fourth period.
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MSE � 1

n

Xn
i�1

�yi − ŷi�2, (13)

MAE �
Pn

i�1 jyi − ŷij
n

, (14)

where yi and ŷi, respectively, represent the observed and
predicted values of the data, and n denotes the number of data
points.

Both MSE and MAE are typical metrics in error analysis, as
they reflect the average values of predicted errors. MSE mea-
sures the average of the squares of errors between the actual

observations and predicted values, while MAE measures
the average of the magnitudes of errors between the actual
and predicted values. Considering that errors could be positive
and negative, the square values (used in MSE) and absolute
values (MAE) are used to measure the second-order and
first-order trend of the magnitude of errors.

We evaluated the prediction capability of GMR by comput-
ing the MSE and MAE in four periods. Table 1 shows the MSE
and MAE values of the x and y directions in four periods and
the total error of the four periods. From both the MSE and
MAE values, it can be seen that the prediction of shift errors
is reliable with high accuracy.

Fig. 5. Time series over 20 min of the vertical movement of every independent observation. (a) First period. (b) Second period. (c) Third period.
(d) Fourth period.

Fig. 6. Predicted errors of four periods in the horizontal direction (a) and vertical direction (b).
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Furthermore, we consider the moving average (MA),
which is a common method to predict drift errors, as a baseline
to illustrate the superiority of our approach. According to
the previous drift values, MA is capable of estimating the
drift at the next time step. Specifically, MA predicts the drift
by using

ŷn�1 �
1

n

Xn
j�1

yj, (15)

where yj represents the observed value at previous time steps,
and ŷn�1 represents the predicted value of the time n� 1. It is
worth emphasizing that MA needs previous drifts to estimate
the current drift. In contrast, our method can predict drifts at
any query time according to the drift distribution before experi-
ments. Given the four period observations in the starting
5 min, Table 2 represents the beam-pointing drift prediction
performances from 5 min to 10 min by using our method and
MA method. In Table 2, it is seen that the lower value of MSE
and MAE is shown for the GMR model when compared to the
MA method. Thus, we can conclude that our approach has
better performance and provides more accurate beam-pointing
drift prediction.

5. CONCLUSION

Laser beam pointing may drift due to mechanical vibrations,
temperature drift, and other unknown noise. The complex dis-
turbance makes it harder to design a beam-pointing control
system. Few studies have mentioned beam-pointing prediction
methods. In our work, a method based on GMM/GMR to an-
alyze the probability model of beam-pointing drift and retrieve
the trajectories was studied in order to predict beam-pointing
drift of a pulsed laser. The beam pointing drift of a pulsed,
1064 nm, Nd:YAG laser was analyzed in detail. The beam

position movement data of the four independently observed
running sets were sampled. Approximated motion profiles in
the two directions were found and could be used in a new
period for predicting the pointing drift. Comparing the hori-
zontal and vertical error distributions of four sampling periods,
the error distributions varying in time of the two directions
were almost consistent. With beam-pointing trajectories, the
control strategy can be designed more effectively, and more
control accuracy will be achieved. In future work, we will de-
sign a beam-pointing control system based on beam-pointing
trajectories by GMM/GMR.
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Table 1. MSE and MAE Values in Four Periods

X Direction Y Direction

Period MSE�10−3� MAE MSE�10−3� MAE
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