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ABSTRACT
We investigate the problem of weakly-supervised video object
grounding (WSVOG), where only the video-sentence annotations
are provided for training. It aims at localizing the queried objects
described in the sentence to visual regions in the video. Despite the
recent progress, existing approaches have not fully exploited the
potential of the description sentences for cross-modal alignment in
two aspects: (1) Most of them extract objects from the description
sentences and represent them with fixed textual representations.
While achieving promising results, they do not make full use of
the contextual information in the sentence. (2) A few works have
attempted to utilize contextual information to learn object represen-
tations, but found a significant decrease in performance due to the
unstable training in cross-modal alignment. To address the above
issues, in this paper, we propose a Stable Context Learning (SCL)
framework for WSVOG which jointly enjoys the merits of stable
learning and rich contextual information. Specifically, we design
two modules named Context-Aware Object Stabilizer module and
Cross-Modal Alignment Knowledge Transfer module, which are co-
operated together to inject contextual information to stable object
concepts in text modality and transfer contextualized knowledge in
cross-modal alignment. Our approach is finally optimized under a
frame-level MIL paradigm. Extensive experiments on three popular
benchmarks demonstrate its significant effectiveness.
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• Information systems → Multimedia and multimodal re-
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Cut the lettuce lengthwise and then chop.
.

Chop the lettuce into pieces and place in a bowl.

(a) Fully-supervised video object grounding

Cut the lettuce lengthwise and then chop.
.

Chop the lettuce into pieces and place in a bowl.

(b) Weakly-supervised video object grounding

Figure 1: Two settings of video object grounding. Given a
video and its natural language description (contextual in-
formation), they both aim to localize the mentioned ob-
jects to corresponding regions in video. (a) Fully-supervised
video object grounding is supervised with fine-grained
region-phrase annotations. (b) Weakly-supervised video ob-
ject grounding only has video-sentence annotations, which
makes it difficult to utilize such contextual information in
a stable way. Please refer to the text part for more details.

1 INTRODUCTION
Grounding natural language in visual regions is a crucial capability
needed for various downstream applications, like VQA [19, 45],
robotics [1] and image/video retrieval [8, 9, 36, 39, 40]. It aims at
localizing the objects described in the sentence within an image
or video, which involves associating words or phrases from lan-
guage modality to regions in visual modality. For instance, given a
video and its corresponding natural language description "Chop the
lettuce into pieces and place in a bowl", the goal is to localize the
queried objects "lettuce" and "bowl" to the corresponding regions
in the video. In recent years, visual grounding in context of still
images has witnessed much progress [14, 35, 44]. However, it is
far from being fully explored in video domain. Videos are intrin-
sically possessed of complex spatial-temporal relationships [10–
13, 38, 42], which hinders the direct application of those successful
image grounding methods to the video domain. Besides, it is labor-
intensive to annotate fine-grained bounding boxes in videos, since
each video consists of hundreds to thousands of frames. Therefore,
in this paper, we investigate the video object grounding problem in
a weakly-supervised fashion, where only the video and its corre-
sponding natural language description are available during training.
The lack of supervision from spatial bounding box annotations and
temporal object occurrences, as well as the unconstraint form of
videos and descriptions leave this task extremely challenging.
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Existingworks [31, 41, 49]mainly formulate theweakly-supervised
video object grounding (WSVOG) task as a frame-level multiple
instance learning (MIL) problem, where each frame is treated as
a bag of region proposals, and the frames throughout a video are
aggregated by weighting each frame’s contribution to the video so
as to utilize the video-level supervision. Under the MIL framework,
a frame bag is positive as long as at least one region proposal in the
bag is positive. Hence, to represent this frame bag, the popularmax-
imum MIL operator is adopted to pick out the region proposal that
best matches the queried object in the sentence. Visual regions and
queried objects in the sentence are both projected into a common
embedding space, where similarities can be directly measured.

To better exploit visual and textual representations, prior works
have made various efforts. Shi et al. [31] enhanced visual represen-
tations by visual clustering, assuming visual features of the queried
objects should show similar appearance across video frames. Yang et
al. [41] adopted a self-attentionmodule tomodel spatial interactions
of visual regions, such that they enhance visual representations.
In terms of textual representations, Zhou et al. [49] employed the
order of queried objects in the sentence as a language prior of when
they appear in the video. Chen et al. [2] exploited activity cues
of the objects to enrich the textual representations. Despite their
effectiveness, prior efforts have not fully exploited the potential of
the description sentences for cross-modal alignment in two aspects:
• They mainly extract objects from the description sentences and
represent them with fixed textual representations (e.g. using
the same GloVe word feature for an object appeared in different
sentences). While methods based on fixed textual representa-
tions obtain promising results, they do not make full use of
the contextual information in the sentence. Intuitively, con-
textual information is useful because it can provide detailed
information of the object for accurate video object grounding.

• A few works [2, 31] have attempted to utilize contextualized
object features (e.g. BERT features, GloVe word features after
bi-LSTM), but found a significant decrease in performance. Be-
cause the contextualized object features of the same object may
vary dramatically in different sentences, such kind of diverse
object representations are not suitable for stable learning in
WSVOG task. To be specific, as shown in Figure 1(b), due to the
lack of region-phrase supervision from both spatial and tempo-
ral levels inWSVOG, similarities between textual object features
and visual region features cannot be directly optimized. There-
fore, in common embedding space, fixed object representations
can provide stable cluster centers for visual region features,
while diverse object representations introduce complexities to
the region-phrase alignment [31].
To fill the research gap, we propose a Stable Context Learning

(SCL) framework for WSVOGwhich jointly enjoys the merits of sta-
ble learning and rich contextual information. Our SCL framework
aims to learn a stable object concept feature 1, which is invariant
and context-generalized for an object under any contexts, by trans-
ferring the object’s diverse contextual information from different
description sentences to it. Specifically, to perform the transfer pro-
cess, two types of cross-modal alignment scores are learned in our

1We will refer to "object concept feature" as "object concept" in the rest of this paper
for simplicity.

framework, one for contextual information and the other for stable
object concept. Here, the contextual information is obtained by a
sentence-level language model (e.g. BERT). To learn the stable ob-
ject concept, we design a Context-Aware Object Stabilizer (CAOS)
to inject contextual information of an object in different sentences
to it in text modality. Based on the contextual information and sta-
ble object concept, we can finally conduct Cross-Modal Alignment
Knowledge Transfer (CMAKT) to transfer contextualized knowl-
edge by aligning the two types of visual-textual similarity scores.
By the above design, the proposed CAOS and CMAKT modules can
cooperate with each other in an end-to-end framework for stable
context learning. Experimental results demonstrate that our SCL
framework outperforms the state-of-the-arts significantly.

Our main contributions can be summarized as follows:
• We propose a novel SCL framework for weakly-supervised
video object grounding, which jointly enjoys themerits of stable
learning and rich contextual information.

• By carefully designing the cooperated Context-Aware Object
Stabilizermodule andCross-Modal Alignment Knowledge Trans-
fer module, we inject contextual information to stable object
concepts in text modality and transfer contextualized knowl-
edge in cross-modal alignment.

• We conduct extensive experiments on three popular and stan-
dard WSVOG datasets. The favorable results compared with
other state-of-the-arts verify the effectiveness of our method.

2 RELATEDWORK
Visual Grounding. It is a popular vision-and-language task which
involves learning the correspondence between textual descriptions
and visual regions in still images. Current work can be categorized
into fully-supervised setting and weakly-supervised setting accord-
ing to the reliance on fine-grained bounding box annotations. Fully-
supervised approaches [4, 24, 28, 29, 33, 46] are supervised with
densely annotated region-phrase pairs. For a given text query, these
approaches usually rank visual regions by using scores obtained
from distances in a common space [24, 25, 34], or from sentence
generation procedure [15]. Some recent approaches [20, 22, 32]
also try to utilize vision-language Transformer to encode textual
descriptions and visual regions.

Lately, weakly-supervised visual grounding is becoming the spe-
cific research focus due to the expensive region-phrase annotations
and inevitable biases of annotation artefacts. Weakly-supervised
approaches [3, 5, 6, 21, 37, 47] are supervised with only image-
sentence annotations. Karpathy and Fei-Fei [17] formulate it as
a multiple instance learning (MIL) problem and calculate the dot
product of image regions and words as the visual-semantic similar-
ity score to rank the region proposals in an MIL manner. Rohrbach
et al. [28] reconstruct the phrases from the predicted region pro-
posals and utilize region attention scores for grounding. Chen et
al. [3] improve upon their work by leveraging external complemen-
tary knowledge from the off-the-shelf detector. More supervisory
signals have been explored as well. Xiao et al. [37] use language
structures as additional spatial relation supervision. Datta et al. [6]
obtain stronger supervisory signals from the image caption task.
Gupta et al. [14] contrast with negative captions with the supervi-
sion of language models. Although much progress has been made in



terms of still images, only limited attention has been paid in video
domain. The complex spatial-temporal relationships of videos make
the problem even more chanllenging.
Weakly-Supervised Video Object Grounding. There are some
initial attempts of weakly-supervised object grounding in video
domain [16, 31, 43, 49]. Yu et al. [43] try to ground sentences to
objects in constraint videos recorded in the laboratory. Huang et
al. [16] propose to ground the linguistic references in videos by
extending the image-domain MIL-based grounding approach [17].
Zhou et al. [49] take a step further by introducing a brand new
weakly-supervised video object grounding dataset YouCook2-BB,
and extend [17] to a frame-level MIL framework for videos. Fol-
lowing the setup of [49], Shi et al. [31] complement the evaluation
metric and boost the performance by considering contextual simi-
larities of frames. Recently, Yang et al. [41] simultaneously consider
spatial and temporal contextual similarities of regions and frames
in an end-to-end manner. Meanwhile, Chen et al.[2] choose to
enhance the textual representations of objects by exploiting the
activities described in the sentence. While existing methods have
not fully exploited the potential of the description sentences for
vision-language alignment in rich contextual information and sta-
ble learning, we propose a novel frame-level MIL-based WSVOG
framework which jointly enjoys the merits of them.

3 METHOD
This work aims to ground objects described in the sentence to
visual regions in the video under the weakly-supervised setting,
where only the video-sentence annotations are provided for train-
ing. While existing methods have not fully exploited the potential
of the description sentences in rich contextual information and
stable learning, we propose a novel frame-level MIL-based WSVOG
framework which jointly enjoys the merits of them by injecting con-
textual information to stable object concepts in text modality and
transferring contextualized knowledge in cross-modal alignment.

We first introduce the formulation of MIL-based framework that
we adopt in the WSVOG task. Then we describe the textual and
visual embeddings from description sentences and visual regions.
Next, we elaborate on our proposed Context-Aware Object Sta-
bilizer (CAOS) and Cross-Modal Alignment Knowledge Transfer
(CMAKT) modules, respectively. Finally, we present the learning
and inference of our model.

3.1 Formulation of MIL-Based Framework
As illustrated in Figure 2, our framework takes a video V and
its corresponding description sentence 𝑆 as input. The video V
consists of 𝑇 frames, where the 𝑡th frame 𝑉𝑡 contains a set of 𝑁
region proposals 𝑅𝑡= {𝑟𝑡𝑛}𝑁𝑛=1 generated by RPN [26]. The cor-
responding natural language description 𝑆 consists of 𝐾 queried
objects (phrases) 𝑂= {𝑜𝑘 }𝐾𝑘=1, where each object is supposed to be
grounded to the corresponding visual regions in the video.

Under the frame-level MIL framework, each frame in the video
is regarded as a spatial frame-bag and all frame-bags throughout
the video are temporally aggregated with different weights, which
correspond to Spatial Grounding and Temporal Localization, re-
spectively. In terms of Spatial Grounding, we first measure the
region-phrase similarity 𝑀𝑘

𝑡,𝑛 in each frame-bag, and then adopt

themaximumMIL operator to obtain the frame-bag spatial ground-
ing score 𝑃𝑘𝑡 as follows:

𝑀𝑘
𝑡,𝑛 = Sim(𝑜𝑘 , 𝑟𝑡𝑛) (1)

𝑃𝑘𝑡 = max
1≤𝑛≤𝑁

𝑀𝑘
𝑡,𝑛 (2)

where Sim(·) denotes a similarity function that measures the simi-
larity scores between region and phrase.

For Temporal Localization, the aggregation weight 𝑄𝑘𝑡 for each
frame-bag is calculated as follows:

𝑄𝑘𝑡 = Temp({𝑅𝑡 }𝑇𝑡=1,𝑂) (3)

where Temp(·) is a function that synthetically considers the tempo-
ral region proposals and queried objects, and outputs the likelihood
of each frame-bag being positive. There are multiple implemen-
tations of Temp(·) function in previous works [2, 31, 41], such as
firstly concatenating the pooled features of region proposals and
queried objects and then utilizing MLPs with softmax to transform
them into likelihood [41].

Finally, the video-level grounding score ℎ𝑆V is the weighted
sum of frame-level grounding scores, followed with an average
over all queried objects:

ℎ𝑆V =
1
𝐾

𝐾∑︁
𝑘=1

𝑇∑︁
𝑡=1

𝑃𝑘𝑡 𝑄
𝑘
𝑡 (4)

where ℎ𝑆V can be directly optimized with the video-sentence an-
notations.

3.2 Textual and Visual Embedding
Under the MIL-based framework, queried objects and visual regions
should be both projected into a common embedding space, where
similarities between them can be directly calculated for the ground-
ing purpose. Previous works mainly embed the objects extracted
from the sentence with fixed textual representations (e.g. using
the same GloVe word feature for an object appeared in different
sentences), which ignore the rich contextual information of the
objects. For instance, the object "potato" in sentence "chop a peeled
potato in half" is simply embedded with its GloVe word feature
without any consideration of the context like "chop", "peeled", and
"in half", which is sub-optimal for grounding. On the other side,
directly utilizing contextualized object features will lead to signifi-
cant performance decrease, because in common embedding space
the diverse object features cannot provide stable cluster centers for
visual region features under weakly-supervised setting.

We propose to learn a stable object concept, which is invariant
for an object under any contexts, by leveraging the object’s diverse
contextual information in different description sentences. To ex-
tract the object’s diverse contextual information in these sentences,
we adopt a contextualized language model. Specifically, given a
description sentence 𝑆 , we first extract the queried objects {𝑜𝑘 } fol-
lowing previous methods [31, 41, 49]. Then we employ a pretrained
contextualized language model (e.g. BERT, GloVe after bi-LSTM)
to encode the sentence 𝑆 into contextualized textual representa-
tions and crop out the corresponding feature of 𝑜𝑘 . The encoded



…chop a peeled potato in half…

https://www.youtube.com/watch?v=4JdWEQ-4Y-w

RPN

Description Sentence S

Cross-Modal Alignment 
Knowledge Transfer

Visual Region
Embedding

{𝑟 }

𝐸 ( )
{𝐸 𝑟 }

Concept
Extraction

𝐸 (𝑆)

Contextualized 
Object Feature

𝐸 (𝑜 )

Context Feature
𝐷( )

Extracted 
Object Concept

Clustering Loss

Contextualized 
Language Model

𝑠

𝐸 ( )

𝐸 (𝑜 )

Spatial 
Grounding

Temporal 
Localization

Video
MIL

Video MIL 
Loss

{𝐸 𝑟 }

Spatial
Transfer Loss

Temporal
Transfer Loss

Object Concept Stabilizer

Concept
Reconstruction

𝐸 (𝑠)

Contextualized 
Object

𝐸 (𝑜)

Object Concept

𝐸 (𝑜)

𝐷(𝐸 𝑠 , 𝐸 (𝑜))

Context
𝐷( )

Reconstructed 
Object Concept

Reconstruction 
Loss

Similarity Score Maps

Stable Object 
Concept

𝐸 (𝑜 )

Negative Extracted
Object Concept

𝐸 𝑜 , 𝐸 𝑆

Contextuali
zed

Embedding
Modulator

Context 
Selector

𝑈(𝑜 )

𝒱

𝑈( )

𝑀 
,

𝑀 
,

𝑄 
,

𝑄 
,

Context-Aware Object Stabilizer

𝐷(𝐸 (𝑜 ), 𝐸 (𝑆))
𝑑

𝑑

ℎ 𝒱

ℎ 𝒱

𝑜
 

Figure 2: The overview of our proposed Stable Context Learning framework. Given a video and its description sentence, we
first extract the contextualized object feature 𝐸𝑐 (𝑜𝑘 ) and context feature 𝐸𝑐 (𝑆) from the sentence, then we employ a Context-
Aware Object Stabilizermodule to learn a stable object concept 𝐸𝑓 (𝑜𝑘 ) by injecting the diverse contextual information of 𝐸𝑐 (𝑜𝑘 )
and 𝐸𝑐 (𝑆) from different sentences. Based on the contextual information and stable object concept, as well as the embedded
visual regions, we conduct contextualized knowledge transfer in the Cross-Modal Alignment Knowledge Transfer module by
aligning their corresponding similarity scores in spatial and temporal dimensions. Our model is finally optimized under a
frame-level MIL paradigm.

sentence-level feature 2 is denoted as 𝐸𝑐 (𝑆) and the cropped object
feature is denoted as 𝐸𝑐 (𝑜𝑘 ), where 𝐸𝑐 (·) is a textual embedding
network. Since 𝐸𝑐 (𝑆) captures all contexts in the sentence from a
global view, we refer to it as context feature in the rest of the paper.
We also refer to 𝐸𝑐 (𝑜𝑘 ) as the contextualized object feature.

In terms of the visual region proposal 𝑟𝑡𝑛 , we employ a visual
region embedding network 𝐸𝑣 (·) to embed it into the common
embedding space as 𝐸𝑣 (𝑟𝑡𝑛).

3.3 Context-Aware Object Stabilizer
Context-Aware Object Stabilizer aims to learn a stable object con-
cept for each object 𝑜𝑘 by leveraging the object’s diverse contextual
information 𝐸𝑐 (𝑜𝑘 ) and 𝐸𝑐 (𝑆) in different sentences. By definition,
a stable object concept should be invariant under any contexts.
Therefore, we propose to inject the contextual information of an
object in different sentences to its stable object concept, such that
we can jointly enjoy the merits of stable learning and rich contex-
tual information. Specifically, as shown in Figure 2, we first employ
a Concept Extraction module 𝐷 (·) to extract object concepts from
the contextualized object feature 𝐸𝑐 (𝑜𝑘 ) and context feature 𝐸𝑐 (𝑆)
in different sentences, and then we learn a cluster center from them
as the stable object concept. However, if we learn the cluster cen-
ter by simply averaging the extracted object concepts of 𝑜𝑘 , the
learned stable object concept (cluster center) cannot be generalized
to other objects that are unseen in the training set. Therefore, we
learn a stable object concept embedding network 𝐸𝑓 (·) as an alter-
native, which embeds the object’s fixed word feature (e.g. GloVe)
to its stable object concept injected with rich contextual informa-
tion. We learn 𝐸𝑓 (·) by pulling close the matched extracted object

2In BERT, the sentence-level feature is cropped out from the "[CLS]" token ahead of the
sentence. In GloVe after bi-LSTM, we average all the word features from the outputs
of an end-to-end learned bi-LSTM as the sentence-level feature.

concepts to the stable object concept 𝐸𝑓 (𝑜𝑘 ), and pushing away
other unmatched extracted object concepts in the mini-batch. The
Clustering loss can be written as follows:

LClust = − 1
𝐾

𝐾∑︁
𝑘=1

𝑑+ (𝐸𝑓 (𝑜𝑘 ))
𝑑− (𝐸𝑓 (𝑜𝑘 ))

(5)

where

𝑑+ (𝐸𝑓 (𝑜𝑘 )) =
1
𝐼

𝐼∑︁
𝑖=1

cos(𝐷 (𝐸𝑐 (𝑜𝑘 ), 𝐸𝑐 (𝑆𝑖𝑘 )), 𝐸𝑓 (𝑜𝑘 ))

𝑑− (𝐸𝑓 (𝑜𝑘 )) =
1
𝐾 ′𝐽

𝐾 ′∑︁
𝑘′=1

𝐽∑︁
𝑗=1

cos(𝐷 (𝐸𝑐 (𝑜𝑘′), 𝐸𝑐 (𝑆
𝑗

𝑘′
)), 𝐸𝑓 (𝑜𝑘 ))

𝐷 (𝐸𝑐 (𝑜𝑘 ), 𝐸𝑐 (𝑆)) = 𝐸𝑐 (𝑜𝑘 ) − 𝐸𝑐 (𝑆)

(6)

For clarity, 𝑆𝑖
𝑘
is denoted as the 𝑖th sentence that includes the object

𝑜𝑘 in the mini-batch, and 𝑆 𝑗
𝑘′

is the 𝑗th sentence including another
object 𝑜𝑘′ in this mini-batch. cos(·) is the cosine similarity function.
Concept Extraction module 𝐷 (·) extracts the object concept by
removing the context feature 𝐸𝑐 (𝑆) from the contextualized object
feature 𝐸𝑐 (𝑜𝑘 ), which is simple and shows promising performance.

3.4 Cross-Modal Alignment Knowledge Transfer
However, the Context-Aware Object Stabilizer only tries to inject
contextual information to stable object concepts in text modality,
while WSVOG itself is a cross-modal task which involves visual-
textual alignment. Therefore, we propose to further transfer con-
textualized knowledge in cross-modal alignment by aligning the
corresponding similarity scores in Spatial Grounding and Temporal
Localization, respectively.

We measure the cross-modal region-phrase similarity 𝑀𝑘
𝑡,𝑛 in

Eq. (1) using cosine distance. The similarity between stable object



concept 𝐸𝑓 (𝑜𝑘 ) and visual region 𝐸𝑣 (𝑟𝑡𝑛) is calculated as:

𝑀
𝑓 ,𝑘
𝑡,𝑛 = cos(𝐸𝑓 (𝑜𝑘 ), 𝐸𝑣 (𝑟𝑡𝑛)) (7)

where the superscript 𝑓 of 𝑀 𝑓 ,𝑘
𝑡,𝑛 indicates the textual object is

embedded by 𝐸𝑓 (·) module. Likewise, we can obtain the similarity
𝑀
𝑐,𝑘
𝑡,𝑛 between contextualized object and visual region as 𝑀𝑐,𝑘

𝑡,𝑛 =

cos(𝐸𝑐 (𝑜𝑘 ), 𝐸𝑣 (𝑟𝑡𝑛)).
Based on the above cross-modal similarity scores, we could trans-

fer contextualized knowledge from 𝑀
𝑐,𝑘
𝑡,𝑛 to 𝑀 𝑓 ,𝑘

𝑡,𝑛 . To reduce the
irrelevant interruptions from diverse contexts, we design a Context
Selector module 𝑈 (·) to help select the object-relevant context for
improving the learning of stable object concept:

𝑈 (𝑜𝑘 ) = (𝐸𝑐 (𝑜𝑘 ) + 𝐸𝑐 (𝑆)) ⊙ (𝑔(𝐸𝑓 (𝑜𝑘 )) + 1) (8)
where (𝐸𝑐 (𝑜𝑘 ) + 𝐸𝑐 (𝑆)) fuses the contextualized object feature
with context feature, and each channel of it encodes distinct con-
texts of the object. 𝑔(·) is an FC layer transforming 𝐸𝑓 (𝑜𝑘 ) into
channel-wise selectors, and ⊙ is the Hadamard product that per-
forms channel-wise object-relevant context selecting. The selected
object-relevant context is then added to the fused contextualized
object feature, where 1 is an all-ones vector for residual connection.
Hence, the calculation of the similarity𝑀𝑐,𝑘

𝑡,𝑛 is rewritten as follows:

𝑀
𝑐,𝑘
𝑡,𝑛 = cos(𝑈 (𝑜𝑘 ), 𝐸𝑣 (𝑟𝑡𝑛)) (9)

Then we can transfer object’s contextualized knowledge to stable
object concepts by aligning their similarity scores𝑀𝑐,𝑘

𝑡,𝑛 with𝑀 𝑓 ,𝑘
𝑡,𝑛 .

Specifically, we first soften these similarity scores spatially for each
frame using softmax along the dimension of 𝑛, then we align the
softened similarity scores using 𝐿1 norm | | · | | as follows:

𝐴+
STran =

1
𝑇𝑁𝐾

𝑇∑︁
𝑡=1

𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

| |�̃� 𝑓 ,𝑘
𝑡,𝑛 − �̃�𝑐,𝑘

𝑡,𝑛 | | (10)

�̃�
𝑓 ,𝑘
𝑡,𝑛 = softmax

𝑛
(𝑀 𝑓 ,𝑘

𝑡,𝑛 /𝜏), �̃�
𝑐,𝑘
𝑡,𝑛 = softmax

𝑛
(𝑀𝑐,𝑘

𝑡,𝑛 /𝜏) (11)
where 𝜏 is a hyper-parameter with relate to softening. To avoid
the model learning naive solutions 3 in such cross-modal similar-
ity alignment and to improve its discriminative ability, we select
another object 𝑜𝑘′ for the (𝐸𝑐 (𝑜𝑘 ) + 𝐸𝑐 (𝑆)) in Eq. (8), where 𝑜𝑘′ is
from an unmatched description sentence 𝑆𝑘′ :

𝑈 (𝑜𝑘′) = (𝐸𝑐 (𝑜𝑘′) + 𝐸𝑐 (𝑆𝑘′)) ⊙ 𝑔(𝐸𝑓 (𝑜𝑘 ) + 1) (12)
and we can obtain the corresponding𝐴−

STran following Eq.(8-11). Fi-
nally, we contrast 𝐴+

STran with 𝐴−
STran to obtain the Spatial Transfer

loss:
LSTran = ℓ (𝐴+

STran −𝐴
−
STran) (13)

where ℓ (𝑥) = log(1 + exp(𝑥/[)), referring to the log loss with a
scale parameter [.

Likewise, for aggregation weight 𝑄𝑘𝑡 in Temporal Localization
described in Eq. (3), we can obtain the corresponding softened
aggregation weights �̃� 𝑓 ,𝑘𝑡 and �̃�𝑐,𝑘𝑡 along the temporal dimension,
then we align the weights similarly:

𝐴+
TTran =

1
𝑇𝐾

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

| |�̃� 𝑓 ,𝑘𝑡 − �̃�𝑐,𝑘𝑡 | | (14)

3For instance, a naive solution can be: in Eq. (8), 𝐸𝑐 (𝑜𝑘 ) +𝐸𝑐 (𝑆) ≡ 1 and𝑔 (𝑥) ≡ 𝑥−1.

The Temporal Transfer loss is obtained by contrasting 𝐴+
TTran with

𝐴−
TTran:

LTTran = ℓ (𝐴+
TTran −𝐴

−
TTran) (15)

where 𝐴−
TTran is derived from Eq. (12) similarly.

3.5 Learning and Inference
The task-relevant Video MIL loss for WSVOG is a contrastive loss
involving video-level grounding score ℎ𝑆V in Eq. (4). For the stable
object concept 𝐸𝑓 (𝑜𝑘 ), the corresponding Video MIL loss is:

L 𝑓

MIL = ℓ (ℎ𝑓
𝑆′V − ℎ𝑓

𝑆V ) + ℓ (ℎ𝑓
𝑆V′ − ℎ

𝑓

𝑆V ) (16)

where (𝑆 ′,V ′) refers to the negative pair, and the superscript 𝑓
indicates the textual object representations in the MIL-based frame-
work are embedded by 𝐸𝑓 (·). Similarly, we can get the Video MIL
loss L𝑐MIL corresponding to contextualized objects. The full Video
MIL loss is obtained as:

LMIL = L 𝑓

MIL + L𝑐MIL (17)

Our model is finally optimized by combining the Clustering loss,
Spatial Transfer loss, Temporal Transfer loss, and Video MIL loss
with the balance terms _1, _2:

L = _1LClust + _2 (LSTran + LTTran) + LMIL (18)

Inference.We learn stable object concepts for WSVOG by lever-
aging the object’s diverse contextual information in different sen-
tences. Through injecting contextual information in text modality
and transferring contextualized knowledge in cross-modal align-
ment, we learn stable object concepts which are context-generalized
for the object under any contexts. Therefore, in inference we utilize
these learned stable object concepts as the objects’ textual represen-
tations. In our experiments, we also tried to additionally utilize the
contextualized object features but found such kind of diverse tex-
tual representations will lead to performance decrease as expected
(see Section 4.5).

4 EXPERIMENTS
4.1 Dataset
YouCook2-BB [49]. It consists of 2,000 YouTube cooking videos
from 89 recipes. Each video is made up of 3 to 15 recipe steps
and each step is paired with a corresponding natural language
description. There are in total 15K pairs of video segments and
corresponding descriptions being extracted from the steps. Each
video segment lasts 19.6 seconds in average. Each natural language
description consists of 8.8 words averagely. The training, validation,
and testing sets, respectively, have 9,184, 3,042, and 1,423 pairs. The
bounding boxes of 67 most frequently-appearing objects in natural
language descriptions are annotated in validation and testing sets.
ActivityNetEntities [48]. It is a large-scale dataset consisting of
52K video segments collected from ActivityNet-Caption dataset.
There is at least one noun phrase in the paired natural language
description for each video segment. The training and validation sets
have 34,059 and 8,468 pairs, respectively. It has 432 most frequently-
appearing objects and their bounding boxes are annotated in the
training and validation sets. The annotations of testing set are not
public. We follow [41] that we evaluate our model on the validation



Table 1: Weakly-supervised video object grounding results on YouCook2-BB.

Methods
Query Accuracy (%) Box Accuracy (%)

macro micro macro micro
val test val test val test val test

Upper Bound 65.55 65.72 70.32 70.24 62.42 64.41 68.56 68.74
Random 11.15 10.94 12.96 12.79 10.36 10.67 12.19 12.26
Extended DVSA [17] 38.20 37.98 45.60 44.79 36.67 36.30 43.62 42.87
VOG [49] 37.26 36.69 44.99 44.34 35.69 35.08 43.04 42.42
NAFAE [31] 41.29 42.45 48.52 48.41 39.54 40.71 46.41 46.33
Chen et al. [2] 41.43 42.55 49.71 48.91 40.66 41.67 49.11 48.22
STVG [41] (baseline) 41.36 43.40 48.74 48.98 39.90 41.63 46.80 47.02
Ours 43.46 44.61 50.45 50.61 41.94 42.80 48.46 48.60

Table 2: WSVOG results on ActivityNetEntities.

Methods Query Acc. (%) Box Acc. (%)
macro micro macro micro

Upper Bound 50.94 64.81 49.05 63.41
Random 3.29 4.81 3.16 4.03
NAFAE [31] 21.47 32.06 19.54 28.08
STVG [41] 21.93 34.00 20.00 29.78
STVG∗ (baseline) 23.01 29.09 21.12 25.81
Ours w/o CAOS 25.77 34.06 23.71 30.21
Ours w/o CMAKT 25.13 32.22 23.09 28.62
Ours 25.90 35.44 23.82 31.61

set. For training, we do not use the bounding boxes in the training
set in our weakly-supervised setting.
RoboWatch [30]. It has 225 YouTube cooking videos in the testing
set. Each video contains multiple recipe steps and each step is
annotated with its description sentence. Huang et al. [16] extended
the bounding box annotations for some of the videos. We follow the
previous work [31] to evaluate our model’s generalization ability
by first training our model on the YouCook2-BB training set and
then evaluating it on the testing set of RoboWatch.

4.2 Evaluation Metric
We follow previous works [2, 31, 41] to evaluate the performance
of our model using Box Accuracy and Query Accuracy. Box Ac-
curacy is defined as the ratio of correctly grounded boxes to all
of the grounded boxes. Specifically, the top-1 ranked box in each
frame is selected as the grounded box, and we treat it as correct
if the Intersection-over-Union (IoU) between the grounded box
and ground-truth is no less than 50%. Query Accuracy is defined
as the ratio of correctly grounded queries to all of the queries. A
grounded query is correct if it matches with the correctly grounded
box. To evaluate the average of accuracies of all the classes and the
global accuracy regardless of distinct classes, macro-accuracy and
micro-accuracy are presented, respectively.

4.3 Implementation Details
We adopt STVG [41] as the backbone of the MIL-based framework
described in Section 3.1, and we follow the same settings of STVG
for fair comparison. We employ BERT [7] as the contextualized

language model and employ GloVe [23] as the fixed word feature.
For each video segment, we uniformly sample 𝑇 = 5 frames in
YouCook2-BB dataset and 𝑇 = 6 in ActivityNetEntities for training.
Region proposals in YouCook2-BB and RoboWatch datasets are all
extracted by Faster-RCNN [27] pretrained on Visual Genome [18]
with VGG-16 backbone, and the dimension of region features is
4096. Top 𝑁 = 20 region proposals are selected in each frame. For
ActivityNetEntities, we use the 2048-dimensional region features
provided by [48]. Textual object features and visual region features
are all embedded into a 512-dimensional common embedding space
with embedding networks 𝐸𝑐 (·), 𝐸𝑓 (·), and 𝐸𝑣 (·). The embedding
networks for textual features, which are 𝐸𝑐 (·) and 𝐸𝑓 (·), are both
one-layer MLPs with a ReLU activate function. The visual feature
embedding network 𝐸𝑣 (·) is a self-attention module followed with
a Tanh activate function, which is the same as STVG. For hyper-
parameters, we tune them on the validation set of YouCook2-BB
and fix them on all datasets. The hyper-parameter 𝜏 in Eq. (11) is
set to 1, and balance terms _1, _2 are set to 0.4, 0.2. The scale param-
eter [ in log loss ℓ (·) is set to 0.2. The framework is implemented
using PyTorch. We use Adam optimizer with 1e-4 weight decay.
For YouCook2-BB and ActivityNetEntities, the batchsizes are set to
48, 24, and learning rates are set to 1e-4, 8e-4, respectively.

4.4 Comparison with State-of-the-Arts
We compare our method with state-of-the-arts on the YouCook2-
BB and ActivityNetEntities datasets. We outperform them by a
considerable margin, which proves the effectiveness of our method.
YouCook2-BB. The compared state-of-the-arts include VOG [49],
NAFAE [31], Chen et al. [2], and STVG [41]. We adopt STVG as
the backbone of the MIL-based framework described in Section 3.1,
and we view STVG as the baseline model. We also compare with
an extension from the image grounding method DVSA [17]. The
Random result is provided as a baseline. The Upper Bound indicates
how far these methods are from the performance limit [49]. For fair
comparison, all the compared methods are trained with the same
4096-dimensional visual region features provided by Shi et al. [31].

Results on the YouCook2-BB dataset are summarized in Table 1.
It can be observed that our method significantly outperforms all
the state-of-the-arts in almost all evaluation metrics. Compared
with the relatively small improvements for WSVOG in recent years,
our method pushes the boundary of the performance ahead by a
considerable margin. Also, please note that it is not a completely



Table 3: Ablation results on YouCook2-BB.

Methods
Query Accuracy (%) Box Accuracy (%)

macro micro macro micro
val test val test val test val test

STVG [41] (baseline) 41.36 43.40 48.74 48.98 39.90 41.63 46.80 47.02
Contextualized Object Features Only
Baseline w/ BERT 39.64 41.45 47.07 47.40 38.22 39.86 45.20 45.51
Baseline w/ (GloVe + bi-LSTM) 38.99 41.14 46.67 47.09 37.62 39.49 44.83 45.22
Textual Representation Fusion Instead of Transfer
Model Ensemble 41.41 43.78 49.14 49.16 39.93 41.77 47.29 47.22
Addition 40.16 42.27 47.48 47.57 38.75 40.60 45.60 45.69
Multiplication 39.30 41.33 46.90 47.31 37.94 39.74 45.03 45.42
Concatenation 39.10 40.90 45.41 45.87 37.69 39.23 43.62 44.06
Context Selector 38.88 41.15 45.53 46.25 37.47 39.60 43.69 44.42
Component Effectiveness
Full w/o CAOS 41.83 44.14 49.74 49.78 40.35 42.35 47.77 47.81
Full w/o CMAKT 41.79 43.86 49.07 49.60 40.25 42.15 47.13 47.63
Full w/o Spatial Transfer 42.15 43.94 49.37 49.80 40.59 42.38 47.42 47.82
Full w/o Temporal Transfer 42.98 44.43 50.18 50.35 41.33 42.64 48.29 48.35
Full w/o Context Selector 42.74 44.22 50.23 50.31 41.27 42.45 48.14 48.31
Full w/o Concept Extraction 42.66 44.37 50.21 50.43 41.16 42.58 48.21 48.42
Improvements from BERT
Full w/ (GloVe + bi-LSTM) 42.21 44.32 49.30 49.86 40.74 42.54 47.34 47.89
Inference
𝑈 (𝑜𝑘 ) only 39.07 40.36 46.87 47.07 37.70 38.76 45.00 45.21
Both 𝐸𝑓 (𝑜𝑘 ) and𝑈 (𝑜𝑘 ) 42.36 43.97 49.76 49.82 40.87 42.22 47.78 47.84
Full model 43.46 44.61 50.45 50.61 41.94 42.80 48.46 48.60

fair comparison between our method and Chen et al. [2]’s work,
because they utilize extra information from the human detector
and OpenPose, and they sample more frames per video in training.
ActivityNetEntities. We compare our model with the state-of-
the-art methods NAFAE [31] and STVG [41] which have reported
results on the ActivityNetEntities dataset. We retrain the STVG
model by ourselves on the ActivityNetEntities dataset since the
authors did not provide the pretrained model, and the correspond-
ing method is marked with “ ∗ ” in Table 2. It can be observed
that our method outperforms the state-of-the-arts in all evaluation
metrics consistently. Particularly, we outperform the retrained base-
line model STVG* by a large margin, with at most 6.35% absolute
gains. We also surpass the originally reported results of STVG by at
most 3.97% absolute gains. Our model achieves more improvements
on this dataset because ActivityNetEntities is much larger than
YouCook2-BB, which contains a greater amount of contextual infor-
mation for an object in different sentences. Our proposed method
can benefit from it and thus learn better stable object concepts. The
ablated results of our method will be discussed later.

4.5 Further Remarks
Contextualized Object Features Only.We show a significant de-
crease in performance when replacing fixed textual representations
with diverse contextualized object features in the baseline model
STVG [41]. We respectively employ two kinds of contextualized
object features: BERT and GloVe after bi-LSTM. For GloVe after
bi-LSTM, we integrate an end-to-end learned bi-directional LSTM
to our framework and adopt the contextualized word features from

the outputs of it, which is the same setting as [31]. The correspond-
ing decreased performances are illustrated in Table 3, with about
2%-3% absolute decreases. As we have explained in Introduction, the
contextualized object features of the same object vary dramatically
in different sentences, which are not suitable for stable learning
and introduce complexities to the region-phrase alignment under
the weakly-supervised setting [31].
Textual Representation Fusion Instead of Transfer. It is a nat-
ural idea that we could simply fuse the fixed textual representations
and contextualized object features to jointly enjoy the merits from
both of them, instead of designing delicate transferring approaches.
We conduct several textual representation fusion strategies as listed
in Table 3, including model ensemble, addition, multiplication, con-
catenation, and context selector. For model ensemble, we add the
weighted outputs of grounding scores from baselinemodel and base-
line w/ BERT, and we report the best result after trying different
weights. For context selector, we fuse the textual representations
in the same way as Eq. (8) in our framework. We train the baseline
model with the fused textual representations, and find consistent
performance decreases in all fusion strategies except model ensem-
ble, which shows the necessity of our transferring strategy. Note
that model ensemble can only bring limited improvements, which
is not a good strategy under this occasion.
Component Effectiveness. We perform ablation studies on the
main components proposed in our method. Every time we only
remove one component and leave the rest unchanged. As illustrated
in Table 3, all the ablated versions have lower performances than



the full model, which prove the effectiveness of our proposed com-
ponents. We can observe that CMAKT plays a more important role
than CAOS in our model, because CMAKT directly transfers con-
textualized knowledge from the cross-modal alignment in WSVOG,
while CAOS focuses on textmodality.We also notice that in CMAKT,
Spatial Transfer brings more gains than Temporal Transfer, because
the region-phrase similarities in Spatial Grounding are directly op-
timized in training while the frame-bag weights in temporal play a
relatively minor role in WSVOG task. We evaluate the effectiveness
of Context Selector module 𝑈 (·) in CMAKT by replacing 𝑈 (𝑜𝑘 )
with 𝐸𝑐 (𝑜𝑘 ). We also remove the Concept Extraction module 𝐷 (·)
in CAOS to evaluate its effectiveness, where we take 𝐸𝑐 (𝑜𝑘 ) as the
extracted object concepts. We additionally evaluate our two main
modules CAOS and CMAKT on another dataset ActivityNetEntities,
and results in Table 2 prove the effectiveness of them consistently.
Improvements from BERT. We would like to investigate how
much gains does our model benefit from BERT. We replace BERT
features in our full model with GloVe features after bi-LSTM. As
shown in Table 3, our full model utilizing relatively weaker textual
representations (GloVe + bi-LSTM) can still outperform all the state-
of-the-arts in most evaluation metrics, which shows the impressive
power of our model. Particularly, without any reliance on more
advanced BERT features, ourmodel can still outperform the baseline
STVG [41] by a large margin.
Inference. Our model aims to learn a stable object concept, which
is invariant and context-generalized for an object under any con-
texts, by injecting contextual information in text modality and
transferring contextualized knowledge in cross-modal alignment.
Therefore, in inference we utilize these learned stable object con-
cepts as the objects’ textual representations. We also tried to ad-
ditionally utilize the contextualized features of the objects, whose
corresponding results are shown in Table 3, and found such kind of
diverse textual representations will lead to performance decrease
as expected in Introduction. To be specific, if we only employ the
contextualized textual representation 𝑈 (𝑜𝑘 ) for inference, we can
observe that the performance drops significantly. It is interesting
to mention that compared with the results of Context Selector in
paragraph Textual Representation Fusion Instead of Transfer, the
performance based on𝑈 (𝑜𝑘 ) is enhanced after text modal and cross-
modal transferring in our model. We also simultaneously utilize
𝑈 (𝑜𝑘 ) and the learned stable object concepts 𝐸𝑓 (𝑜𝑘 ) for inference,
but the results are still below our full model which only utilizes
𝐸𝑓 (𝑜𝑘 ) for inference.
GeneralizationTest.We follow the previous work [31] to evaluate
our model’s generalization ability. We train the model on the train-
ing set of YouCook2-BB first, and directly evaluate it on the testing
set of RoboWatch. RoboWatch includes different cooking videos
that have no overlap with YouCook2-BB, and consists of many
objects that never occur in YouCook2-BB (e.g. "alcohol", "hanger”,
"tie", and so on). The compared methods are RA-MIL [16], Extended
DVSA [17], NAFAE [31], and STVG [41]. Since STVG have not re-
ported the generalization results on RoboWatch, we re-implement
it by ourselves and denote it as STVG∗. For fair comparison, all the
compared methods are based on GloVe features, and we employ our
Full w/ (GloVe + bi-LSTM) model for generalization test. The results
are shown in Table 4 using query micro-accuracy. We outperform

the compared methods favorably, which proves the generalization
ability of our proposed approach.

Table 4: Generalization test on RoboWatch.

Methods query micro-acc (%)
Random 8.03
RA-MIL [16] 19.80
Extended DVSA [17] 28.25
NAFAE [31] 31.68
STVG∗ [41] (baseline) 32.05
Ours 33.16

4.6 Qualitative Results
To qualitatively demonstrate the effectiveness of our approach, we
present the visualization of video object grounding results of our
method and baseline STVG on YouCook2-BB. As shown in Fig-
ure 3, boxes in green are ground-truths and boxes in red are the
grounded results of the model. We can see that our model yields
better grounding results than STVG, like "vinegar" and "beef". Ow-
ing to the learned context-generalized stable object concepts, our
model jointly enjoys the merits of stable learning and rich contex-
tual information, thus showing a superior grounding performance.

Ours

STVG
(baseline)

add vinegar and mix together coat the beef with the marinade

Figure 3: Visualization of video object grounding results of
our method and baseline STVG.

5 CONCLUSION
We propose a stable context learning framework for WSVOG which
jointly enjoys the merits of stable learning and rich contextual
information. It learns a stable object concept, which is invariant
and context-generalized for an object under any contexts, by trans-
ferring the object’s diverse contextual information from different
descriptions to it. The carefully designed CAOS injects contextual
information in text modality, while CMAKT transfers contextu-
alized knowledge from cross-modal alignment. They cooperate
with each other in our end-to-end framework for stable context
learning. In experimental results, we outperform state-of-the-arts
significantly, which proves the effectiveness of our method.
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