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A B S T R A C T

Deep neural networks have shown vulnerability to adversarial attacks. Adversarial examples generated with
an ensemble of source models can effectively attack unseen target models, posing a security threat to practical
applications. In this paper, we investigate the manner of ensemble adversarial attacks from the viewpoint
of network gradients with respect to inputs. We observe that most ensemble adversarial attacks simply
average gradients of the source models, ignoring their different contributions in the ensemble. To remedy
this problem, we propose two novel ensemble strategies, the Magnitude-Agnostic Bagging Ensemble (MABE)
strategy and Gradient-Grouped Bagging And Stacking Ensemble (G2BASE) strategy. The former builds on a
bagging ensemble and leverages a gradient normalization module to rebalance the ensemble weights. The latter
divides diverse models into different groups according to the gradient magnitudes and combines an intragroup
bagging ensemble with an intergroup stacking ensemble. Experimental results show that the proposed methods
enhance the success rate in white-box attacks and further boost the transferability in black-box attacks.
. Introduction

In the past few years, deep learning has been widely used in
any computer vision tasks, such as image classification [1], object
etection [2] and action recognition [3]. However, recent research
as shown that deep learning models can easily be fooled by ad-
ersarial examples that are crafted by maliciously adding designed
erturbations to the inputs [4,5]. These examples are imperceptible
o human eyes but lead to incorrect outputs, posing potential threats
o face recognition [6], autonomous driving [7] and other real-world
pplications [8,9].

Crafting adversarial examples, i.e., adversarial attack, has drawn
normous attention since it can evaluate the adversarial robustness.
here are two main typical adversarial attack protocols, i.e., white-
ox attacks [4,5] and black-box attacks [10,11]. In white-box attacks,
ttackers have full knowledge of the target model, including architec-
ures, parameters and potential defense modules [12]. In contrast, in
lack-box attacks, attackers cannot access any information of the target
odel. Nonetheless, in such a scenario, it is probable to utilize trans-

erability, which means adversarial examples crafted on one white-box
urrogate model can be misclassified by unseen target models [13–15].

A series of methods have been proposed to enhance the attack
bility of adversarial examples in both white-box and black-box set-
ings, including (1) single-model attack [4,11,16–18] and (2) ensemble
ttack [11,13]. Many attempts have been made on the former, by im-
roving attacking algorithms on a single model. For example, different
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tricks, such as momentum and input transformations, are applied to
avoid adversarial examples trapping in local optima. The latter attacks
an ensemble of deep learning models rather than a single model. In
white-box attack, it can generate a cross-model adversarial example to
fool all models in the ensemble. In black-box attack, if an example is
adversarial for multiple models in the ensemble, it is hypothesized that
this example remains adversarial for other unseen models. Almost all
top-ranked solutions in prior competitions of adversarial attacks are
based on ensemble-based methods [19]. However, existing ensemble
attacks simply fuse the outputs of multiple models evenly. Ensemble
strategies has not been thoroughly investigated yet.

In this paper, we observe that existing ensemble strategies [20]
obtain a loss in attack capability when multiple models have noticeably
different gradient magnitudes. The reason is shown as a toy example in
Fig. 1. Considering Liu et al. [13] have demonstrated that the gradient
directions of different source models are orthogonal to each other when
conducting ensemble adversarial attacks, the gradient magnitude plays
a vital role in the final search direction of adversarial examples. In the
baseline, the model with the largest gradient magnitude dominates the
ensemble direction, ignoring the effects of other models. Such a conflict
decreases the attack success rate on the other two models and therefore
hinders model diversity for boosting transferability.

To overcome this drawback, we propose two novel ensemble strate-
gies, dubbed magnitude-agnostic bagging ensemble (MABE) and
gradient-grouped bagging and stacking ensemble (G2BASE). In MABE,
the input gradients are normalized according to the gradient amplitude
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Fig. 1. Illustration of different ensemble strategies. The baseline method ensembles
three orthogonal gradient vectors, shown as the blue solid lines. The final gradient di-
rection, shown as the red line, is dominated by the gradient with the largest magnitude.
The magnitude-agnostic bagging ensemble (MABE) applies gradient normalization on
three models and obtains normalized gradient vectors, shown as the yellow line. The
gradient-grouped bagging and stacking ensemble (G2BASE) contains multiple steps and
only fuses gradient vectors with similar magnitudes in each step. The end point in one
step is taken as the start point in the next step.

so that each model contributes to the final gradient direction and
therefore boosts diversity. In G2BASE, according to gradient ampli-
tudes, diverse models are divided into different groups. For intra-group
ensemble, the gradient magnitudes of the models in each group are
similar to each other. For inter-group ensemble, the gradient magni-
tudes between groups are significantly different. The bagging strategy
is used in intra-group, and the stacking method is applied in inter-
group. This group strategy avoids domination of a specific model and
greatly facilitates attack ability. To conclude, MABE is based on the
framework of bagging ensembles and efficiently achieves improvement
through introducing a normalization module. G2BASE, by contrast, is
more effective and flexible, but a bit time-consuming due to the group
selection module and the stacking strategy. Experimental results show
that both proposed methods boost attack performance.

In summary, the major contributions of this work are:
• We find a drawback of the existing ensemble strategies from

the viewpoint of gradient, i.e., they simply average the gradients and
therefore ignore the different contributions of models in the ensemble.

• We provide a new insight into ensemble adversarial attack, i.e., to
alleviate the conflict between models with different gradient mag-
nitudes, and propose two novel ensemble attack methods, namely,
magnitude-agnostic bagging ensemble (MABE) and gradient-grouped
bagging and stacking ensemble (G2BASE), to boost the attack perfor-
mance.

The remainder of the paper is organized as follows. Section 2 briefly
discusses the related work. In Section 3, we elaborate the two proposed
methods, GABE and G2BASE. We then present the experimental results
and analysis in Section 4. Finally, Section 5 concludes this paper.

2. Related work

Adversarial attack methods can be categorized into single-model
attack and ensemble attack. We briefly introduce the two types of
attack in this section.

2.1. Single-model adversarial attack

Goodfellow et al. [4] introduce the fast gradient sign method
(FGSM) to craft white-box adversarial examples by a one-step gradient
update along the direction of the sign of the gradient at each pixel.
Madry et al. [21] propose the projected gradient descent (PGD) attack,
starting from a random point within the regularized ball space of the
input example and iteratively updating the adversarial example. Dong

et al. [11] propose the momentum iterative method (MIM), which uses
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momentum in the optimization step to speed up the convergence rate
and avoid getting trapped in a local optima. Xie et al. [16] optimize
the adversarial perturbations over the diverse transformation of the
input image at each iteration, namely, the diverse input method (DIM).
To generate more transferable adversarial examples against defense
models, Dong et al. [17] propose the translation invariant method
(TIM), which uses a set of translated images to optimize adversar-
ial perturbations. Recently, Lin et al. [18] propose two new attack
methods, the Nesterov iterative fast gradient sign method (NI-FGSM)
and the scale invariant attack method (SIM), to further improve the
transferability of adversarial attacks.

These methods are all focused on improving attacking algorithms
on a single model and the attack performance is closely related to the
choice of this specific model. They can be naturally integrated into
ensemble adversarial attacks to further promote the attack ability.

2.2. Ensemble adversarial attack

Ensemble methods have been widely adopted in previous studies
to enhance the performance of neural networks [22–24]. For example,
bagging [20] and stacking [25] can both improve the accuracy and
robustness of neural networks. Recently, ensemble methods have been
introduced into adversarial attacks.

Liu et al. [13] proposed an ensemble-based approach to generate
adversarial examples, which prevents the noise from overfitting a single
model architecture and thus bolsters the transferability. Dong et al. [11]
further investigate three manners of organizing the base models and
demonstrate that the ensemble of averaging logits outperforms the
others for boosting the attack effectiveness. Hang et al. [26] propose
two types of ensemble-based black-box attack strategies to produce
adversarial examples with more powerful transferability. Li et al. [27]
apply feature-level perturbations to an existing model to potentially
create a huge set of diverse models and propose a longitudinal ensemble
method specifically for their networks. Che et al. [28] divide a large
number of pretrained source models into several batches and introduce
long-term gradient memories in their new ensemble algorithm for
specific networks or tasks (e.g., pix-to-pix image translation).

Despite achieving impressive results, none of the above methods
consider the negative impact of gradient amplitudes. When attacking
an ensemble model composed of diverse gradient amplitudes, the gen-
erated adversarial examples can fool only parts of models and therefore
are at the risk of lowering transferability. This work solves this problem
by introducing a gradient normalization module or model grouping to
leverage the diversity of models with similar gradient magnitudes and
alleviate the conflict between models with different gradients.

3. Method

In this section, after brief descriptions of preliminaries, we elaborate
the two proposed strategies, MABE and G2BASE.

3.1. Preliminaries

We describe the ensemble adversarial attack in this subsection. For
clarity, we focus on a nontargeted attack, which crafts adversarial
examples misclassified as wrong labels. Denote the data as (𝑥; 𝑦) ∼ 𝐷,
attacking a single target model 𝑓 solves the optimization problem with
regard to 𝛿

max
𝛿

𝐽 (𝑙 (𝑥 + 𝛿) , 𝑦) ,

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝛿‖𝑝 < 𝜖, (1)

where 𝐽 is the classification loss, usually cross entropy (CE) loss with
softmax as the activation. 𝑦 is the ground-truth label, 𝑙 (𝑥 + 𝛿) represents
the logits of the model 𝑓 , and the input values are softmax. The
perturbation is bounded by the l𝑝 norm with a small constant 𝜀, and
we focus on the l norm in this paper.
∞
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Fig. 2. Illustration of the magnitude-agnostic bagging ensemble.

To generate more transferable adversarial examples, the ensemble
dversarial attack utilizes an ensemble model as the substitute and
erforms white-box attack on it. Dong et al. [11] report three different
nsemble methods, including ensembles in logits, ensembles in predic-
ions and ensembles in loss. All methods simply add model outputs
ogether and then average. The only difference is where to combine
he outputs of multiple models.

Ensemble in logits modifies the objective in (1) as

ax
𝛿

𝐽

( 𝑘
∑

𝑖=1
𝛼𝑖𝑙𝑖 (𝑥 + 𝛿) , 𝑦

)

, (2)

where k is the number of models, ∑𝑘
𝑖=1 𝛼𝑖𝑙𝑖 (𝑥 + 𝛿) is the ensemble

model, and 𝛼𝑖 is the ensemble weight of the 𝑖th model and satisfies
∑𝑘

𝑖=1 𝛼𝑖 = 1.
Ensemble in loss directly averages in loss as

Max
𝛿

𝑘
∑

𝑖=1
𝛼𝑖𝐽 (𝑙𝑖 (𝑥 + 𝛿) , 𝑦). (3)

To boost the ensemble adversarial attack, we propose two novel
ensemble strategies. We have elaborated on their drawbacks from the
viewpoint of gradient information in Section 1. In the following sub-
sections, we present our ensemble strategies, enabling us to efficiently
craft adversarial examples in both white-box and black-box attack
protocols.

3.2. Magnitude-agnostic bagging ensemble

The magnitude-agnostic bagging ensemble (MABE) employs a bag-
ging structure of ensemble learning, as shown in Fig. 2. This method
is based on the framework of ensembles in loss. The main difference is
that MABE leverages the gradient normalization module to balance the
contributions of each substitute model to the final adversarial gradient
direction.

For one-step methods, such as FGSM, and the first step of iteration-
based methods, the 𝑥𝑗−1 in Fig. 2 is the clean sample 𝑥0. Otherwise,
it represents the adversarial example at the 𝑗 − 1 iteration. MABE
inputs 𝑥𝑗−1 into each substitute model and computes the loss 𝐽𝑖 =
𝐽 (𝑙𝑖 (𝑥 + 𝛿) , 𝑦).

Afterwards, the gradient alignment module takes all losses as inputs
and reconstructs the total loss by the following equation:

𝐽 =
𝑘
∑

𝑖=1
𝛼𝑖

𝐽𝑖
‖

‖

∇𝛿𝐽𝑖‖‖2
. (4)

Here, we analyze the relationship between the ensemble in loss
nd MABE. As both methods are based on the update of gradients, we
ompare their ensemble gradients with respect to the perturbation 𝛿.
or ensemble in loss, its final gradient is

𝛿𝐽 =
𝑘
∑

𝑖=1
𝛼𝑖∇𝛿𝐽 (𝑙𝑖 (𝑥 + 𝛿) , 𝑦). (5)

Each term ∇𝛿𝐽 (𝑙𝑖 (𝑥 + 𝛿) , 𝑦) is only related to one single model 𝑓𝑖.
hen one model has a small gradient magnitude, it has mild effects on

he total gradient.
For our MABE, the gradient is

𝛿𝐽 =
𝑘
∑

𝛼𝑖
∇𝛿𝐽 (𝑙𝑖 (𝑥 + 𝛿) , 𝑦)

‖ ‖

. (6)

𝑖=1 ‖

∇𝛿𝐽 (𝑙𝑖 (𝑥 + 𝛿) , 𝑦)
‖2

3

Fig. 3. Illustration of gradient-grouped bagging and stacking ensembles.

Each term can be seen as a unit vector to ensemble the final gradient
direction. In this way, we directly align the gradients of source models,
ensuring the contributions of models with small gradient magnitudes.

In other words, when there is a large difference between the mag-
nitudes of ensemble models, MABE effectively utilizes the diversity
of each model rather than focusing on one principle model. Without
the normalization module in MABE, the adversarial direction in the
generation process may only cross the decision boundary of the model
with the largest gradient magnitude. In this scenario, this ensemble
strategy is highly likely to degrade to a single-substitute method.
Instead, the gradient direction in MABE is more likely to cross the
decision boundaries of each ensemble model. Recall the key idea
of ensemble adversarial attacks: if an adversarial example can fool
multiple substitute models, it is more likely to disorder the target
model. Therefore, MABE has a greater possibility to cross the decision
boundary of the target model.

3.3. Gradient-grouped bagging and stacking ensemble

The gradient-grouped bagging and stacking ensemble (G2BASE)
combines the bagging and stacking structure of ensemble learning,
as shown in Fig. 3. G2BASE first divides source models into different
groups and then utilizes bagging and stacking ensemble strategies for
intro-groups and inter-groups, respectively. In this case, the models are
divided into 𝑙 groups with the proposed Algorithm 1. For example,
𝑘𝑙 models including the 1st and 4th models are selected in group
1 and ensemble with the bagging way. Afterwards, different groups
ensemble with the stacking method, and the order of groups in stacking
is fixed in each iteration. We observe that for different batches of inputs
𝑥𝑗−1, the gradient magnitudes of a fixed classifier have low variance.
Thus, the grouping process is unnecessary to perform in each iteration.
Instead, when a new batch of clean examples is fed in, the grouping of
source models has been finished. Therefore, G2BASE is computationally
inexpensive compared with traditional ensemble methods.

In G2BASE, all substitute models are divided into several groups
according to their input gradient magnitudes. The main intuition is
to ensure that the input gradient magnitudes of intra-groups are close
while inter-groups are far enough. Denote the magnitude of the 𝑖th
model’s gradient w.r.t. the perturbation as 𝑔𝑖. To measure the distance
etween gradient magnitudes of two models, we use the following
quation:
(

𝑔𝑖, 𝑔𝑗
)

= log
(

max
{

𝑔𝑖, 𝑔𝑗
})

− log
(

min
{

𝑔𝑖, 𝑔𝑗
})

. (7)

If this distance is lower than the predefined threshold ℎ, these two
models are divided into the same group. The grouping process can
be seen as a clustering problem and solved with Algorithm 1. After-
wards, we run the optimization process by utilizing different ensemble
intragroup and intergroup strategies.

First, the models in the same group compose an ensemble model
via the bagging strategy. Different from MABE, which relies on the
framework of ensembles in loss, G2BASE is more flexible to combine
with other bagging strategies. Each intragroup can be ensembled via
either an ensemble in logits method or the proposed MABE. Thus,
the intragroup obtains a lower variance by averaging the outputs of
independent models.
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In another aspect, different groups compose an ensemble model in
he stacking ensemble strategy. The traditional stacking method collects
he outputs of each base model to create a new dataset, and then applies
his dataset to train a meta model at a high level. Similarly, in our
ethod, the outputs of the last bagging ensemble model are fed into

he next model as inputs. For example, one group 𝐺𝑖 takes 𝑥∗ as its
input and optimizes the formulation

max
𝛿𝑖

𝐽 (𝐺𝑖, 𝑥
∗ + 𝛿𝑖, 𝑦), (8)

obtaining the adversarial example 𝑥∗𝑖 = 𝑥∗ + 𝛿𝑖. Iteratively, the next
group 𝐺𝑖+1 will take 𝑥∗𝑖 as input and optimize the formulation

max
𝛿𝑖+1

𝐽 (𝐺𝑖+1, 𝑥
∗
𝑖 + 𝛿𝑖+1, 𝑦). (9)

We categorize ensembles in loss and ensembles in logits as bagging
ensemble methods. Here, we analyze the relationship between the
bagging ensemble and G2BASE.

The group selection algorithm is essential in G2BASE. If the threshold
h is too large, then all models are divided into the same group, and
G2BASE equals the bagging ensemble. When a suitable h is selected,
all models in a single group have similar gradient magnitudes, which
is similar to indirectly normalizing the gradients and the effects of all
models are considered. Moreover, the stacking strategy also boosts the
diversity of ensembles. The outputs of different groups are updated
in different iterative steps, so the final adversarial example considers
many model combinations in different steps and probably crosses the
decision boundaries of all ensembled models.

4. Experiments

In this section, we introduce the setup for experiments first. Then,
we report the results against diverse undefended and defended models
and make comparisons with state-of-the-art benchmarks. Finally, we
make some analysis on the proposed methods.

4.1. Setup

Dataset. We conduct experiments on CIFAR-10 [29] and Ima-
geNet [30]. Due to limitation of compute resources, for ImageNet, we
evaluate on 2000 randomly chosen images, of which each category
contains 2 images. For both datasets, our evaluation is repeated 5 times
with different random seeds, and the experimental results are averaged.

Threat Model. We evaluate with both black-box and white-box
threat models. In the black-box threat model, the adversarial examples

are generated by attacking a source model and then fed into the target
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Table 1
Natural accuracy of models on CIFAR-10 and ImageNet.

CIFAR-10 Accuracy (%) ImageNet Accuracy (%)

IncV3 93.27 RN50 74.93
DN169 92.84 DN121 74.97
RN18 92.59 VGG19bn 72.89
VGG11bn 91.93 IncV3 76.41
AdvRN20 86.32 Mnas 71.90
AdvRN56 85.46 WRN101 78.37
AWP 85.36 AdvInc 76.80
FS 90.00 AdvIR 79.61
HE 85.14 AdvEnsInc 74.31
AdvWR 85.36 AdvEnsIR 78.85

AdvRN 55.01
AdvDe 64.68

model to test the success rate. The white-box threat model can be
treated as directly using the target model as the source model. For
all methods, the perturbation 𝛿 is bounded with the l∞ norm, and its
maximum budget is set to 𝜀 = 8 for CIFAR-10 and 𝜀 = 16 for ImageNet,
with pixel values in [0, 255].

Source and target models. We ensemble models with diverse
architectures and parameters as the substitute source model to generate
adversarial examples. For CIFAR-10, source models contain Incep-
tionV3 (IncV3), DenseNet121 (DN121) [31] and our defense models
with adversarial training, AdvResNet20 (AdvRN20) [32] and AdvRes-
Net56 (AdvRN56) [32]. Target models include some pretrained models,
such as ResNet18 (RN18) [32] and VGG11 with batch normaliza-
tion (VGG11bn) [33], and some defense models, such as an adver-
sarial trained WideResNet model (AdvWR) [34]. We also test with
some strong defense models including adversarial weight perturbation
(AWP) [35], feature scattering (FS) [36] and hypersphere embedding
(HE) [37]. For ImageNet, the model pool also includes both nor-
mally trained models and defense models. Pretrained models consist
of DenseNet121 (DN121) [31], ResNet50 (RN50) [32], InceptionV3
(IncV3) [38] and VGG19 with batch normalization (VGG19bn) [33]
and MnasNet (Mnas) [39] and WideResNet101 (WRN101) [34]. De-
fense models include some adversarially trained models,
AdvResnext101Denoise (AdvDe) [40], AdvResNet121 (AdvRN) [40],
AdvInceptionV3 (AdvInc) [41] and AdvInceptionResNetV2 (AdvIR)
[41]. Moreover, we evaluate with strong defense models through
ensemble adversarial training (AdvEnsInc [41] and AdvEnsIR [41]).
The natural accuracy of these models is reported in Table 1.

Baselines. We compare the proposed ensemble attack methods with
ensembles in loss and ensembles in logits. All these ensemble strategies
need to be combined with adversarial attack methods that perform on
a single model, including FGSM, PGD and MIM in our experimental
setting. For example, when using FGSM as the base method, we attack
the ensemble model for only one step. When using MIM, instead, we
iteratively attack the ensemble model and compute the gradient with
momentum. For G2BASE, the optimization toward constructing the
adversary conducted per group is ensembled in logits.

Metric. Following the evaluation method in previous works [11,
3], we compare different attack methods via the nontargeted attack
uccess rate, i.e., the proportion of constructed adversarial examples
isclassified by the target model. It is formulated as

1
𝑛

𝑛
∑

𝑖=1
h(𝑓𝑡(𝑥𝑖) ≠ 𝑓𝑡(𝑥∗𝑖 )), (10)

where 𝑛 denotes the number of test data and 𝑓𝑡 represents the target
model. 𝑥𝑖 is the 𝑖th test sample and 𝑥∗𝑖 is the corresponding adversarial
example. h (⋅) = 1 means the adversarial example is misclassified by
the target model, and otherwise h (⋅) = 0. In the nontargeted protocol,
the attack succeeds if the adversarial examples are misclassified by the
target model as any wrong labels. Accordingly, a higher success rate
of adversarial examples on the target models represents better attack

performance.
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Table 2
White-box attack success rate (%±std) on CIFAR-10. The ensemble model includes IncV3, DN169, AdvRN20 and AdvRN56.

Base Ensemble method IncV3 DN169 AdvRN20 AdvRN56

FGSM

Ensemble in loss 54.48 ± 0.78 48.04 ± 0.34 29.84 ± 0.46 28.81 ± 0.68
Ensemble in logits 51.27 ± 0.21 44.16 ± 1.15 22.60 ± 0.49 21.71 ± 1.18
MABE 57.53 ± 0.51 56.88 ± 0.71 62.59 ± 0.61 60.81 ± 0.11
G2BASE 81.16 ± 0.90 69.52 ± 0.31 70.21 ± 0.29 73.22 ± 0.35

PGD

Ensemble in loss 90.75 ± 0.44 71.19 ± 0.17 20.15 ± 1.05 19.51 ± 0.89
Ensemble in logits 91.48 ± 0.15 94.22 ± 0.74 19.56 ± 1.08 18.87 ± 0.40
MABE 91.34 ± 0.90 94.71 ± 0.62 79.38 ± 0.10 78.08 ± 0.33
G2BASE 92.21 ± 0.20 92.50 ± 0.32 81.83 ± 0.63 82.20 ± 0.60

MIM

Ensemble in loss 90.55 ± 0.23 84.95 ± 0.08 26.87 ± 0.25 25.90 ± 0.16
Ensemble in logits 89.16 ± 0.09 91.17 ± 0.43 24.60 ± 0.27 23.60 ± 0.34
MABE 88.61 ± 0.73 90.63 ± 0.52 78.77 ± 0.36 77.55 ± 0.44
G2BASE 94.42 ± 0.25 98.16 ± 0.07 85.74 ± 0.41 85.20 ± 0.63
Parameters setting. The number of iterations is set as 20, which
s widely used in prior adversarial attack experiments. For all experi-
ents, the ensemble weight 𝛼𝑖 is set to 𝛼𝑖 = 1∕𝑘, 𝑖 = 0, 1,… , 𝑘 − 1, for

𝑘 source models. The threshold in Algorithm 1 is set to ℎ = 0.5.

4.2. Experimental results

In this subsection, we study the performance of our attack in both
white-box and black-box protocols. Considering that the target model
may contain a defended model, attackers will naturally ensemble adver-
sarially trained models in the local substitute. To simulate this scenario,
we employ diverse models including pretrained models and defense
models as our source models.

White-box results. We present the white-box results on two datasets
in Tables 2 and 3, respectively. We observe our methods achieve
better performance than baselines on all models. More importantly,
the proposed methods apparently increase the success rate on defended
models. For instance, in Table 3, when using MIM as the base method,
the attack success rates of ensembles in logits on two defended Ima-
geNet models are only 69.67% and 65.85%, respectively, while G2BASE
achieves 91.49% and 90.75%. The huge gain comes from the full use of
the gradient information of adversarially trained models. The baselines
ignore the contribution of gradient information from defended models
due to their small magnitude. In contrast, by directly (MABE) or
implicitly (G2BASE) redistributing the contributions of different models
to the final ensemble gradient, our methods outperform in all cases.

Black-box results. To simulate the black-box protocol, we first
perform attacks on the ensemble source model to craft adversarial ex-
amples. The resultant examples are then fed into unseen target models
with different architectures and parameters. As shown in Tables 4 and
5, our methods consistently improve the transferability to a great extent
and defeat all the other benchmark methods with a significant mar-
gin. In the CIFAR-10 experiments, MABE and G2BASE achieve similar
results, largely surpassing baselines. Even against defense models, the
attack transferability achieves an improvement of around 5%. In the
ImageNet experiments, our G2BASE always ranks first among the four
methods, demonstrating its effectiveness in boosting transferability. For
example, when using FGSM as the base method, G2BASE increase the
attack success rate of ensembles in logits on AdvEnsIR by 17.96%.
Moreover, with PGD as the base method, the proposed G2BASE obtains
the highest success rate of 73.92% on AdvEnsIR, surpassing the result
of the ensemble in logits, 30.37%.

Visualization results. Fig. 4 displays one original image in Ima-
geNet and the corresponding adversarial examples generated by run-
ning the proposed MABE and G2BASE on the ensemble model. We
show that the manipulations to the clean image are hardly visible.
Therefore, our ensemble methods can obtain high attack performance
while ensuring imperceptibility.

Fig. 5 displays four original images and their corresponding ad-
versarial perturbations generated with ensembles in logits and the
proposed G2BASE on the ensemble model. For G2BASE, we observe
5

Fig. 4. One original image (left) and its corresponding adversarial examples generated
by running the proposed MABE (middle) and G2BASE (right) on the ensemble model
composed of RN50, DN121, VGG19bn and IncV3.

Fig. 5. Original images (top) and corresponding adversarial perturbations (×5 for better
view, actually they are imperceptible), generated by running ensemble in logits (middle)
and the proposed G2BASE (bottom) on the ensemble model composed of RN50, DN121,
AdvRN and AdvDe. Both ensemble methods are based on MIM.

that the resulting perturbations are perceptually similar to the original
images, i.e., they have salient semantic features of ground-truth images.
On the other hand, for ensembles in logits, the perturbations often
look more similar to random noises. A previous study found that
adversarial examples generated by attacking adversarial robust models
possess similar high-level features with corresponding natural images.
Thus, our method possesses the potential to fully leverage the gradient
information of adversarially trained models and extract transferable
features in the attacking process.

4.3. Analysis of the proposed methods

We have shown the effectiveness of our methods to achieve high
attack success rate while maintaining imperceptibility and the superior
performance compared with baseline methods. In this subsection, we
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Table 3
White-box attack success rate (%±std) on ImageNet. The ensemble model includes RN50, DN121, AdvRN and AdvDe.

Base Ensemble method RN50 DN121 AdvRN AdvDe

FGSM

Ensemble in loss 90.01 ± 0.96 88.37 ± 0.73 64.80 ± 1.05 52.23 ± 1.27
Ensemble in logits 91.50 ± 1.25 91.97 ± 0.38 56.18 ± 0.92 48.49 ± 1.66
MABE 90.96 ± 0.69 90.09 ± 0.71 77.52 ± 1.48 75.41 ± 0.59
G2BASE 93.35 ± 0.90 93.46 ± 0.49 72.25 ± 0.80 68.70 ± 1.35

PGD

Ensemble in loss 99.89 ± 0.09 99.67 ± 0.13 61.04 ± 1.46 52.45 ± 1.00
Ensemble in logits 100.00 ± 0.00 100.00 ± 0.00 61.54 ± 0.84 55.17 ± 1.58
MABE 100.00 ± 0.00 100.00 ± 0.00 90.02 ± 0.88 89.97 ± 1.08
G2BASE 100.00 ± 0.00 100.00 ± 0.00 90.53 ± 0.72 89.87 ± 0.88

MIM

Ensemble in loss 99.97 ± 0.03 99.90 ± 0.05 67.17 ± 0.98 57.43 ± 1.47
Ensemble in logits 100.00 ± 0.00 100.00 ± 0.00 69.67 ± 1.33 65.85 ± 1.44
MABE 100.00 ± 0.00 100.00 ± 0.00 89.63 ± 0.82 89.29 ± 1.06
G2BASE 100.00 ± 0.00 100.00 ± 0.00 91.49 ± 0.51 90.75 ± 0.85
Table 4
Black-box attack success rate (%±std) on CIFAR-10. The source model ensembles IncV3, DN169, AdvRN20 and AdvRN56.

Base Ensemble method AdvWR AWP FS HE VGG11bn RN18

FGSM

Ensemble in loss 17.60 ± 0.45 17.26 ± 0.64 13.05 ± 0.35 16.30 ± 0.48 36.39 ± 0.74 40.05 ± 0.49
Ensemble in logits 16.95 ± 0.43 16.73 ± 0.48 12.46 ± 1.07 15.52 ± 0.73 33.09 ± 0.99 36.26 ± 0.63
MABE 21.00 ± 0.56 20.71 ± 0.44 17.77 ± 1.07 19.96 ± 0.64 46.15 ± 0.37 50.41 ± 0.91
G2BASE 21.43 ± 0.16 21.09 ± 0.11 18.44 ± 1.31 20.30 ± 0.67 61.34 ± 0.49 65.78 ± 0.58

PGD

Ensemble in loss 16.08 ± 0.13 15.59 ± 0.52 11.37 ± 0.41 14.90 ± 1.19 28.20 ± 1.02 42.16 ± 0.86
Ensemble in logits 16.13 ± 0.92 15.64 ± 0.56 11.39 ± 0.94 14.91 ± 0.93 32.28 ± 0.71 50.72 ± 0.79
MABE 21.22 ± 0.16 20.88 ± 0.28 18.13 ± 0.43 20.10 ± 0.84 58.75 ± 0.54 71.27 ± 0.13
G2BASE 21.08 ± 0.16 20.74 ± 0.14 18.05 ± 0.73 19.95 ± 0.64 60.27 ± 0.42 71.19 ± 0.14

MIM

Ensemble in loss 17.11 ± 0.36 16.66 ± 0.30 12.32 ± 0.55 15.83 ± 0.11 49.70 ± 0.93 65.72 ± 0.36
Ensemble in logits 16.89 ± 0.46 16.44 ± 0.51 12.28 ± 0.18 15.62 ± 0.44 50.07 ± 0.75 66.89 ± 0.74
MABE 21.66 ± 0.23 21.44 ± 0.30 18.61 ± 0.53 20.48 ± 0.12 62.59 ± 0.69 73.36 ± 0.54
G2BASE 21.37 ± 0.43 21.24 ± 0.51 18.61 ± 0.61 20.28 ± 0.53 65.27 ± 0.57 76.70 ± 0.65
Table 5
Black-box attack success rate (%±std) on ImageNet. The source model ensembles RN50, DN121, AdvRN and AdvDe.

Base Ensemble method AdvInc AdvIR AdvEnsInc AdvEnsIR VGG19bn IncV3

FGSM

Ensemble in loss 48.36 ± 0.94 44.96 ± 0.69 40.16 ± 1.54 32.71 ± 0.68 74.83 ± 0.56 62.03 ± 0.43
Ensemble in logits 45.17 ± 1.43 42.31 ± 0.84 38.18 ± 1.17 31.23 ± 0.77 74.84 ± 0.87 60.07 ± 0.68
MABE 64.84 ± 1.56 60.36 ± 1.44 55.43 ± 1.07 46.81 ± 1.64 78.04 ± 0.97 71.47 ± 0.94
G2BASE 61.49 ± 1.16 57.54 ± 0.61 56.19 ± 1.31 49.19 ± 1.56 78.29 ± 0.69 70.80 ± 0.98

PGD

Ensemble in loss 36.39 ± 0.39 33.95 ± 0.30 36.56 ± 0.64 31.37 ± 0.58 86.66 ± 0.79 60.02 ± 0.94
Ensemble in logits 38.65 ± 1.45 32.84 ± 0.36 35.22 ± 0.88 30.37 ± 0.72 85.88 ± 0.59 58.93 ± 0.57
MABE 67.69 ± 1.11 61.65 ± 1.20 66.61 ± 0.84 60.21 ± 1.84 88.59 ± 0.91 77.19 ± 0.68
G2BASE 80.54 ± 1.16 76.66 ± 1.04 78.94 ± 1.11 73.92 ± 1.53 87.18 ± 1.01 81.95 ± 0.82

MIM

Ensemble in loss 47.86 ± 0.99 46.72 ± 0.98 43.46 ± 0.54 36.17 ± 0.88 92.38 ± 0.93 75.35 ± 0.36
Ensemble in logits 51.99 ± 0.96 50.59 ± 1.51 46.49 ± 1.11 39.16 ± 0.64 94.82 ± 0.85 80.34 ± 0.76
MABE 73.00 ± 1.70 69.10 ± 1.30 70.05 ± 1.55 63.12 ± 1.88 89.30 ± 0.64 82.51 ± 0.34
G2BASE 77.29 ± 0.66 72.09 ± 1.01 72.37 ± 1.63 65.12 ± 2.03 92.35 ± 0.57 85.11 ± 0.65
take a further step to analyze the mechanism of our methods. We first
explore the reason of performance boosting with our methods and then
study effects of key hyperparameters in our methods.

Why are our methods effective? In transfer-based black-box at-
ack, the key assumption is that, if an example is adversarial for
ultiple source models, this example remains adversarial for other un-

een target models. Therefore, the cornerstone of strong transferability
s a high attack success rate on the source model. But we have shown
hat baseline ensemble methods cannot fool the defended source model
ith a satisfactory success rate. The reason is that the baseline methods
oes not utilize gradient information from defended models due to their
mall magnitude. Our methods remedy this problem and can therefore
ain the improvement.

For comparison, we then conduct an experiment by employing four
ndefended models as local source models. Different from previous
etting, the four undefended models have similar gradient magnitudes.
ccording to our analysis, due to the similarity of gradient magnitudes,
ach single model should contribute to the final ensemble result. Re-
ults in Tables 6 and 7 are in line with our expectations. We find our
ethods obtain similar results with baselines.

On the other hand, using undefended models as source models leads

o low transferability on defended models. For example, all methods

6

Fig. 6. The effect of hyperparameter h on attack success rates.

obtain a success rate lower than 40% on AdvEnsIR. This demonstrate
the necessity of employing diverse models containing defense models
as the source model. In this scenario, the baselines behave poor while
our methods achieve a superior attack success rate.
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Table 6
White-box attack success rate (%±std). The source model ensembles four undefended models, RN50, DN121,
VGG19bn and IncV3.

Base Ensemble method RN50 DN121 VGG19bn IncV3

FGSM

Ensemble in loss 85.24 ± 0.81 84.18 ± 1.07 84.04 ± 0.51 71.06 ± 1.34
Ensemble in logits 88.23 ± 0.72 89.03 ± 0.62 93.20 ± 0.35 81.26 ± 0.49
MABE 88.49 ± 0.86 88.33 ± 0.87 91.88 ± 0.32 79.30 ± 0.45
G2BASE 88.31 ± 1.31 89.20 ± 0.90 93.18 ± 0.48 81.16 ± 0.39

PGD

Ensemble in loss 99.39 ± 0.26 99.07 ± 0.32 99.29 ± 0.24 96.98 ± 0.37
Ensemble in logits 100.00 ± 0.00 99.99 ± 0.01 99.99 ± 0.01 99.87 ± 0.13
MABE 100.00 ± 0.00 100.00 ± 0.00 99.99 ± 0.01 99.99 ± 0.01
G2BASE 100.00 ± 0.00 99.99 ± 0.01 99.94 ± 0.06 99.40 ± 0.15
Table 7
Black-box attack success rate (%±std). The source model ensembles four undefended models, RN50, DN121, VGG19bn and IncV3.

Base Ensemble method AdvInc AdvIR AdvEnsInc AdvEnsIR Mnas WRN101

FGSM

Ensemble in loss 43.29 ± 1.46 41.73 ± 1.32 37.65 ± 1.25 30.84 ± 0.51 74.02 ± 0.63 65.23 ± 0.52
Ensemble in logits 44.47 ± 1.33 43.50 ± 1.30 39.03 ± 1.32 31.79 ± 0.51 75.62 ± 0.18 67.58 ± 0.77
MABE 44.41 ± 0.89 43.33 ± 1.37 38.40 ± 1.70 31.72 ± 0.37 75.54 ± 1.06 66.86 ± 0.99
G2BASE 44.38 ± 1.42 43.44 ± 1.21 39.09 ± 1.26 31.85 ± 0.55 75.73 ± 0.33 67.70 ± 0.90

PGD

Ensemble in loss 35.98 ± 0.87 35.16 ± 0.54 36.16 ± 1.04 30.10 ± 0.60 85.54 ± 0.54 84.40 ± 1.65
Ensemble in logits 36.06 ± 1.19 32.25 ± 0.60 33.36 ± 1.54 28.09 ± 0.76 85.27 ± 0.83 85.22 ± 0.88
MABE 36.03 ± 0.82 35.40 ± 0.40 36.54 ± 1.06 30.61 ± 1.04 84.10 ± 0.45 84.18 ± 1.17
G2BASE 37.69 ± 0.46 37.44 ± 0.56 37.82 ± 0.93 31.86 ± 0.89 89.98 ± 0.68 91.27 ± 0.58
A

t

R

Effects of parameters. G2BASE is the most effective among the
tested ensemble methods. The threshold h is the dominant hyperpa-
rameter in G2BASE, and here, we explore its effect on the attack perfor-
mance. Specifically, we vary h while fixing the other parameters when
enerating adversarial examples. Similar to previous experiments, we
eport the attack success rate of target models on crafted adversarial
mages to measure the attack effectiveness.

Fig. 6 illustrates the effect of h on attack success rates against
iverse models, with adversarial examples generated on the ensemble
odel composed of RN50, DN121, AdvRN and AdvDe. We observe

hat when h changes from 0.01 to 0.5, the attack success rate shows
mild improvement. When h increases, the attack success rate drops

ramatically. Note that when h is large, e.g., ℎ = 2, all models are in the
ame group so that G2BASE degrades as the bagging ensemble method.

. Conclusions

In this work, we discover that gradient magnitude is of vital im-
ortance to ensemble adversarial attacks. Based on this discovery,
e propose two novel ensemble strategies to balance the effects of
ifferent models in the ensemble process. Consequently, the proposed
ethods take full advantage of the gradient information of each model

n the ensemble, resulting in a significant boosting of the attack success
ate. We conduct extensive experiments to validate the effectiveness of
ur approach and confirm its superiority to state-of-the-art baselines.
herefore, our attack can serve as a strong benchmark of ensemble
dversarial attacks to measure the robustness of defense models.
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