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   Abstract— Cryptocurrency,  as  a  typical  application  scene  of
blockchain, has attracted broad interests from both industrial and
academic  communities.  With  its  rapid  development,  the  cryp-
tocurrency  transaction  network  embedding  (CTNE)  has  become
a hot topic. It embeds transaction nodes into low-dimensional fea-
ture  space  while  effectively  maintaining  a  network  structure,
thereby  discovering  desired  patterns  demonstrating  involved
users’ normal and abnormal behaviors. Based on a wide investi-
gation  into  the  state-of-the-art  CTNE,  this  survey  has  made  the
following efforts: 1) categorizing recent progress of CTNE meth-
ods, 2) summarizing the publicly available cryptocurrency trans-
action  network  datasets,  3)  evaluating  several  widely-adopted
methods to  show their  performance in  several  typical  evaluation
protocols, and 4) discussing the future trends of CTNE. By doing
so, it strives to provide a systematic and comprehensive overview
of  existing  CTNE  methods  from  static  to  dynamic  perspectives,
thereby  promoting  further  research  into  this  emerging  and
important field.
    Index Terms—Big  data  analysis.,  cryptocurrency  transaction  net-
work  embedding  (CTNE),  dynamic  network,  network  embedding,
network representation, static network.
  

I.  Introduction

C RYPTOCURRENCY  is  a  typical  application  of  block-
chain  for  facilitating  verified  transactions  through  Inter-

net [1]. Different from the traditional currency requiring cen-

tral  authority  to  supervise  transactions,  it  establishes  dis-
tributed  consensus-based  protocols  for  efficient  and  secured
transactions [2], [3]. With the rapid progress and widely appli-
cations  of  the  blockchain  technology  [4]−[6],  it  developed
rapidly in the past decade [7], [8]. To date, represented by the
well-known  Bitcoins,  there  are  more  than  5000  active  cryp-
tocurrencies in the market [9]−[11].

Therefore,  cryptocurrency  data  analysis,  as  an  emerging
topic  in  academic  communities,  has  attracted  lots  of  atten-
tions. Vujičić et al. [11] conduct a brief overview of two most
frequently  adopted  cryptocurrencies,  i.e.,  Bitcoin  and  Ether-
eum,  and  further  analyze  their  differences.  Conti et  al. [12]
conduct  a  comprehensive  survey regarding Bitcoin’s  security
and privacy, thereby further discussing the feasibility of their
security  and  privacy  protection  schemes.  Wang et  al. [13]
review the blockchain-enabled smart contracts that play a key
role in cryptocurrency. Tschorsch and Scheuermann [14] sur-
vey  the  fundamental  Bitcoin  protocol  and  its  relationship  to
security  and  privacy.  Khalilov  and  Levi  [15]  present  a  com-
prehensive  investigation  into  the  anonymity  and  privacy  of
cryptocurrency systems.

Owing  to  the  blockchain  technology,  the  cryptocurrency
transaction  records  are  verifiable  and  immutable  [16],  [17].
The  growing list  of  transaction  records  stored  in  the  chain  is
publicly accessible, which contains a wealth of user behavior
patterns [4], [18], [19]. Cryptocurrency transaction data analy-
sis is of great significance owing to the following reasons:

1)  Studies  on  financial  data  mining  are  limited  due  to  the
confidentiality of traditional financial data. Fortunately, cryp-
tocurrency  transactions  are  mostly  accessible  on  the  chain,
which  opens  the  opportunity  to  conduct  studies  on  financial
data analysis and pattern mining; and

2) Cybercrimes like money laundering and smuggling trade
are  frequently  encountered  in  the  application  of  cryptocur-
rency  due  to  its  anonymity  and  decentralization  [20],  [21].
Therefore, it is extremely interesting to perform data analysis
and  pattern  mining  on  cryptocurrency  transaction  data  for
identifying abnormal transactions, tracking illegal cash flows,
and establishing cryptocurrency security [22]−[25].

Cryptocurrency  transaction  records  among  numerous  users
can be well modeled into a static or dynamic network. Hence,
cryptocurrency  transaction  network  embedding  (CTNE)
becomes  an  important  topic  in  the  area  of  cryptocurrency
transaction data analysis. In recent years, network embedding
methods have proven to be highly efficient in mining the rich
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information  hidden  in  an  intricate  network  by  building  the
low-dimensional latent representation to its nodes, thereby

facilitating pattern analyses [26]−[30], e.g., node classifica-
tion, link prediction, community detection, network visualiza-
tion.  Collectively,  network  embedding  is  widely  adopted  to
analyze  various  complex  networks,  i.e.,  biological  [31]−[33],
citation [34]−[36], and social networks [37]−[42].

Traditionally, network embedding is primarily dependent on
matrix  eigenvector  decomposition,  i.e.,  matrix  factorization
[33],  [43]−[45]  and  non-negative  matrix  factorization  [46]−
[48]. Recently, Grover and Leskovec [32] propose a node-to-
vector  algorithm  that  maximizes  the  likelihood  of  neighbor-
hood preservation via  embedding involved nodes  into  a  low-
dimensional  feature space.  Cao et  al. [36]  propose deep neu-
ral network-based graph representation that works by embed-
ding nodes into a low-dimensional feature space. Perozzi et al.
[37]  propose  a  DeepWalk  algorithm that  introduces  the  deep
learning principle into the random walk sequence. Wang et al.
[38] propose a structural deep network embedding model that
embeds a  network into  a  nonlinear  latent  space to  reserve its
topology.

Motivated  by  the  above  mentioned  successes  of  network
embedding, CTNE has attracted widespread attentions, yield-
ing a rapidly increasing number of related studies. However, a
survey regarding its state-of-the-arts is missing.

This  paper  presents  a  comprehensive  survey  of  existing
CTNE  methods.  The  existed  CTNE  methods  are  categorized
into  static  and  dynamic  methods  and  summarized  in Fig. 1.
Either  of  them  can  be  further  divided  into  five  branches:  1)
random walk, 2) neural network, 3) graph neural network, 4)
matrix/tensor  factorization,  and  5)  others.  We  discuss  the

application  of  these  networks  embedded  in  cryptocurrency
transaction networks, as presented in Sections III-A and III-B.
This work intends to make the following contributions:

i)  Summarizing  the  progress  of  CTNE  from  static  to
dynamic  perspectives,  where  the  state-of-the-art  is  carefully
reviewed and categorized;

ii)  Summarizing  typical  evaluation  metrics  and  commonly
adopted datasets for CTNE, as well as several empirically val-
idated CTNE methods on two large-scale datasets to illustrate
their performance; and

iii) Discussing the CTNE development trends.
Section II details the background. Section III reviews state-

of-the-art  CTNE  methods.  Section  IV  summarizes  typical
evaluation  metrics  and  datasets  for  CTNE,  and  conducts  the
empirical studies. Section V discusses CTNE’s future research
directions  and  potential  applications.  Eventually,  Section  VI
draws the conclusions.  

II.  Background

This  section  covers:  1)  the  introduction  to  cryptocurrency
transaction networks,  and 2)  the existing network embedding
methods from static to dynamic perspectives.  

A.  Cryptocurrency Transaction Networks
As  a  digital  cash  system  of  virtual  assets  protected  by

blockchain  technology,  cryptocurrency  enables  users  to  trade
directly  without  any  trustiness  authorization  [2]−[4].  More
specifically, in cryptocurrency, the blockchain stores data with
encrypted  chained  blocks  and  validates  data  with  distributed
consensus  algorithms.  In  addition,  it  adopts  cryptography  to
guarantee  the  security  and  privacy  of  data  access  and  trans-
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Fig. 1.     Classification of cryptocurrency transaction network embedding. Kindly note that blockchain is the underlying technology of cryptocurrency, it does
not affect the transactions data evidently. The most significance of the blockchain technique is to provide the unchangeable transactions records on the cryp-
tocurrency  transaction  network.  Hence,  the  classifications  illustrated  does  not  depend  on  different  blockchain  techniques,  but  on  different  embedding  tech-
niques.
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mission  as  well  as  utilizes  self-executed  program  scripts  to
handle data. [3], [4], [11], [49].

Notably,  Bitcoin  is  recognized  as  the  first  decentralized
cryptocurrency.  Owing  to  its  anonymity  and  low  transaction
costs, it has become the most widely-adopted cryptocurrency,
and taken a dominant share of the cryptocurrency market [20],
[49],  [50].  After  it,  Ethereum  is  the  second  largest  public
blockchain  platform.  Unlike  Bitcoin,  Ethereum  provides  a
Turing-complete  script  language  that  allows  the  users  to
design an arbitrary smart contract or transaction.

Blockchain  stores  the  whole  cryptocurrency  transaction
data, e.g., amount value, sender, receiver, and transaction time
in  blocks.  Nearly  all  data  are  explicitly  accessible.  Hence,
these transaction data can be abstracted into a huge and com-
plex  network,  where  each  node  represents  the  transaction
address  of  a  user,  and  each  edge  represents  the  transaction
process  between  two  nodes.  Note  that  such  a  cryptocurrency
transaction network (CTN) has the following features:

1)  Directed  since  each  transaction  is  related  to  a  unique
sender and receiver only;

2)  Weighted  since  the  amount  value  varies  with  transac-
tions;

3)  Attributed  since  each  transaction  can  be  measured  from
several  different  dimensions,  thus  resulting  in  multiple
attributes;

4)  Temporal  since  cryptocurrency  transactions  accumulate
as time elapses.  

B.  Network Embedding
1) Static Network Embedding: Considering a static network,

it  can  be  simply  described  by  an  adjacency  matrix  whose
embedding mostly means decomposing this adjacency matrix
to  learn  latent  feature  vectors  of  nodes  and  edges  [51],  [52].
Qiu et al. [33] propose network embedding as a matrix factor-
ization  (NetMF)  algorithm  that  adopts  the  approximation
closed-form of the Deepwalk’s implicit matrix. Qiu et al. [43]
further propose network embedding as a sparse matrix factor-
ization  (NetSMF)  algorithm,  which  achieves  a  sparsification
of the NetMF matrix by leveraging the spectral graph sparsifi-
cation technique. Wang et al. [53] propose a modularized non-
negative matrix factorization (M-NMF) model  by incorporat-
ing  community  structures  into  the  embedding  objective  for
preserving both the microscopic and mesoscopic structures of
a  target  network.  The  approaches  based  on  alternating  direc-
tion  method  of  multipliers  (ADMM)  [54]  and  non-negative
latent  factor  analysis  (NLFA)  [55]  are  also  implemented  to
facilitate  static  network  embedding.  On  the  other  hand,  vari-
ous  random  walk-based  embedding  methods  emerge.  Their
examples  are  node2vec  [32],  DeepWalk  [37],  and  Line  [39].
Neural  network-based  embedding  methods,  e.g.,  deep  neural
networks  for  graph  representations  (DNGR)  [36]  and  struc-
tural  deep  network  embedding  (SDNE)  [38]  are  also  investi-
gated.

2)  Dynamic  Network  Embedding: Recently,  research  on
dynamic  network embedding emerges,  since  a  static  network
is only an abstraction of the real application scene concerning
a dynamic network. Li et al. [56] propose a dynamic attributed
network embedding (DANE) framework, which adopts matrix

perturbation  theory  to  keep  the  freshness  of  the  embedding
results in an online manner. Zhu et al. [57] propose a dynamic
high-order  proximity  preserved  embedding  (DHPE)  method
that adopts generalized singular value decomposition (GSVD)
to  maintain  the  high-order  proximity  of  the  embedding  vec-
tors in a dynamic network. Chen et al. [58] propose a SuRep
method  that  utilizes  matrix  factorization  techniques  to  suc-
cinctly  represent  a  dynamic  network.  Zhiyuli et  al. [59]  pro-
pose  a  damping-based  positive-negative  sampling  (DNPS)
algorithm  that  precisely  learns  the  dynamic  and  hierarchical
structures  of  a  dynamic network.  Xiang et  al. [60]  propose a
time  interval  graph  convolutional  network  (TI-GCN)  model
that embeds a dynamic network’s each snapshot based on the
embeddings  of  the  previous  ones.  Zhou et  al. [61]  propose  a
semantic  evolution  method  for  dynamic  network  embedding
(DynSEM).  To  conclude,  existing  dynamic  network  embed-
ding  methods  are  mostly  straightforward  combinations  of
static  network  embedding  methods,  which  somehow  limits
their  scalability  when  the  dynamic  patterns  are  becoming
increasingly complex, e.g., a network varies continuously.  

III.  CTNE Methods

Note that a CTNE method takes a static or dynamic graph as
its fundamental input:

1) Static Graph: As depicted in Fig. 2, a static graph ignores
the  temporal  dynamics.  Let G =  (V, E)  denote  a  static  CTN
with V and E being the node and edge sets respectively. Thus,
∀e ∈ E can be defined as e = (u, v, w) with u being a sender,
v a receiver, and w a transaction amount value.
 

Time t Time t′

...

Accounts active in transaction before time t

Accounts active in transaction during time t to t′

Active transactions 

Inactive transaction during time t to t′

Static graph Dynamic graph

Time t + 1

 
Fig. 2.     Illustration of static and dynamic graphs.
 

∈ T

2)  Dynamic  Graph: As  illustrated  in Fig. 2,  a  dynamic
graph includes the temporal dynamics of a cryptocurrency net-
work. Let G = (V, E, T) denote a dynamic CTN as V = {V(t)}t ∈ T
denotes  a  node  set, E =  {E(t)}t ∈ T denotes  a  edge  set,  and T
denotes  a  time-span  set.  Thus, ∀t ,  the  snapshot G(t) =
(V(t), E(T))  denotes  the  static  state  of G during  the t-th  time
span.

We next  review state-of-the-art  CTNE methods from static
to  dynamic  perspectives.  In  addition,  in Tables I and II,  we
summarize the main characteristics and classification of exist-
ing  static  and  dynamic  CTNE  methods,  and  illustrate  their
pros and cons.  

A.  Static CTNE Methods
1) Random Walk-Based Methods
A  random  walk-based  method  extracts  the  network  topol-

ogy by calculating the distance among nodes [62].  As shown
in Tables I(a)−I(c),  the  random  walk  methods  are  mainly
adopted  in  CTNE,  i.e.,  node2vec  [32],  graph2vec  [63],  and
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TABLE I 

Summary of Static CTNE Architectures

Architecture Description Characteristics

Random walk-
based methods

(a) Node2vec Input  CTN

v1

v1

v0

v0

v0

v5

v5

v2

v2

v6

v6

v4

v4

v3

v3
Random paths

a = 1
a = 1/p

a = 1/q

Breadth-first
sampling (BFS)

Depth-first
sampling (DFS)

Walk1

Walk2

It can effectively explore
different  neighborhoods
by  defining  the  flexible
neighborhood  of  each
node  and  designing  a
biased random walk pro-
cess.

Pros.  a)  A  random
walk-based method is
easy  to  implement
since  it  only  consid-
ers the node pairs that
co-occur  during  the
random walk process.
b)  It  is  interpretable
owing  to  the  flexibly
stochastic  definition
of node similarity.

Cons.  The  computa-
tion  cost  is  high  and
representation  learn-
ing ability is limited.

(b) Graph2vec

Anonymous walk

Input CTN

2 1 3 1 3

2 1 4 3 1

Random paths

v1
v1 v0 v2 v0 v2

v2 v5 v0 v5 v0

v1 v0 v5 v3 v0

v0
v3

v5

v2 v6

v4

Walk1

Walk2

Walk2

Walk1

Walk3

It  extracts  rooted  sub-
graphs  from  a  target
graph,  and  then  conduct
representation  learning
to all sub-graphs.

(c) Signed ran-
dom walk (RW)

Input  CTN

Random paths

+

Positive sign

Negative sign

−

+
−

−

v1

v1 v0 v3 v4

v0 v2 v5 v6

v3v0

v5

v2
v6

v4

Walk1

Walk2

It  adopts  a  signed  net-
work  that  considers  the
sign  attribute  (i.e.,  posi-
tive or negative) for each
edge.

Graph neural net-
work-based

methods

(d) Graph convo-
lutional network

(GCN)

Graph
convolutional

layer
…

CTN graph Feature matrix X
N

N

…
…
…
…
…

…
…

…
…

Neighbor
aggregation

Input It extends the concept of
convolution  to  the  graph
embedding  domain,  the-
reby  achieving  high  pra-
cticability  in  CTN  emb-
edding.

Pros.  a)  It  encodes
graph  structures  and
node  features  effec-
tively.  b)  The  graph
attention layer is com-
putationally  efficient
since  it  does  not  req-
uire  expensive  matrix
operations and is par-
allel  on  all  nodes  in
the graph.

Cons.  It  ignores  the
dynamics  of  a  CTN
and  is  lack  of  inter-
pretability.

(e) Graph atten-
tion network

(GAT)
                        

Graph
attention

layer

CTN graph Feature matrix X
N

N

…
…
…
…
…

…
…

…
…

Input

Weight matrix W Softmax
function

W

W

W W

Computes
attention

coefficients

W

W W

W

It  further  incorporates
the attention mechanisms
for  precisely  aggregat-
ing similar nodes.

Deep neural net-
work-based

methods
(f) Deep neural
network (DNN)

Features x1

Features x2

Features xN

…

z1

z2

zN

Hidden layer Output layer Input layer

… … … …

It  is  a  multi-layer  struc-
ture.  Each  layer  consti-
tutes  a  non-linear  infor-
mation  processing  unit,
which  is  used  to  learn
multi-level feature repre-
sentation.

Pros.  It  adopts  non-
linear activation func-
tions  to  precisely  lea-
rn  the  network  struc-
ture.

Cons.  It  is  computa-
tionally expensive and
lack  of  interpretabil-
ity.
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signed random walk. Note that they all are based on the core
idea of random walk, i.e., the network structure has a random
path  created  by  a  certain  probability  distribution  of  a  point
movement on a regular lattice.

a) Node2vec: As shown in Table I(a), Node2vec facilitates a
second-order  random  walk  strategy  to  sample  the  neighbor-
hood nodes,  thus smoothing the interpolation between width-
first  sampling  (BFS)  and  depth-first  sampling  (DFS).  As
shown  in Table I(a), p and q denote  the  return  and  in-out
parameters that adjust the transition probability during a walk-
ing  process.  For  CTNE,  Yuan et  al. [64]  utilize  node2vec  to
extract the latent features of the Ethereum CTN accounts. Tao
et al.  [65] propose a random walk with a flying-back proper-
ties (RWFB) method, which extracts the features of a Bitcoin
CTN  via  multi-dimensional  analysis  regarding  degree  distri-
bution,  clustering  coefficient,  shortest  path  length,  assort-
activity analysis, and rich club coefficient.

b)  Graph2vec: As  shown  in Table I(b),  this  method  repre-
sents  the  entire  graph with  a  series  of  root  subgraphs  around
each node. It utilizes anonymous walk embedding to generate
subgraphs  for  capturing  the  graph  state  corresponding  to  the
index  of  the  initially-visited  node  during  walking.  Consider-
ing CTNE, Yuan et al. [66] embed the transaction topology of
the sub-network of each target  account into the latent  feature
space via Graph2vec.

c)  Signed  random  walk  (RW): As  shown  in Table I(c),  it
incorporates the positive and negative signs of the edges into
the  random  walking  process,  thereby  modeling  the  social
advantage of each node and its neighbors. Note that a random
walk  process  is  designated  more  likely  to  visit  a  potential

“friend”,  i.e.,  a  positively-linked  node  rather  than  a  potential
enemy,  i.e.,  a  negatively-linked  node.  Given  a  signed  CTN,
Ma et al. [67] propose a signed network embedding approach
based on the framework of generative adversarial networks to
learn its low-dimensional node representation while maintain-
ing its link structures and edge signs. It incorporates the graph
softmax function and signed random walk into a generator for
approximating the underlying true connectivity distribution of
a signed CTN. Li et al. [68] propose a signed supervised ran-
dom walk method that is able to capture CTN users’ different
preferences on their neighbors, so as to better promote the task
of personalized user ranking.

2) Graph Neural Network-Based Methods
A graph neural network (GNN)-based model aggregates the

features  of  adjacent  nodes  and computes  new feature  vectors
in a layer-by-layer way. As shown in Tables I(d) and I(e), the
commonly  adopted  graph  neural  network-based  methods  in
CTN can be divided into two categories: Table I(d) graph con-
volution  network  (GCN)-based  ones,  and Table I(e) graph
attention network (GAT)-based ones.

d)  Graph  convolution  network  (GCN): As  shown  in
Table I(d),  GCN  aggregates  the  CTN  node  information  from
neighborhood  by  convolution.  Specifically,  the  graph  convo-
lution layer collects information according to the graph struc-
ture, and then updates the state of hidden nodes accordingly. It
can precisely represent the non-Euclidean structure of the tar-
get CTN [69]. Patel et al. [70] propose a one class graph neu-
ral  network  (OCGNN)-based  anomaly  detection  framework
that  incorporates  the  support  vector  data  description (SVDD)
into  a  GCN  for  learning  the  structure  of  an  Ethereum  CTN.

TABLE I
Summary of Static CTNE Architectures (Continued)

Architecture Description Characteristics

Matrix factoriza-
tion-based meth-

ods

(g) Matrix factor-
ization (MF)                         

×  
N

C

N

C

W HA

...

N

N

A target matrix is mapp-
ed  into  low-rank  latent
space  and  decomposed
into  two  latent  feature
matrices  with  rank C,
where  the  achieved  fea-
ture  matrices  are  inter-
preted  as  the  CTNE
results.

Pros.  a)  It  captures
the  hidden  informa-
tion in CTN, such as ab-
normal  transactions;
b)  It  has  excellent
scalability.

Cons. a) It ignores the
dynamics  of  a  CTN;
b)  The  generally  lin-
ear  structure  restricts
its representation lear-
ning ability.

(h) Singular
value decomposi-

tion (SVD)
                        

X

N

M

N

N ×  

U

M

N

S

M

M×  

V

0 0 0
0 0

0

0 0
0

0 0 0

0
0 0

0

It decomposes the matrix
into  three  simple  matri-
ces:  two  orthogonal  ma-
trices  and  a  diagonal
matrix.

(i) Nonnegative
matrix factoriza-

tion (NMF)
                        

×  
N

C

N

C

W HA

0
0
... …

0
0

N

N

It  applies  the  non-nega-
tivity  constraints  to  each
involved  node  for  better
representing the ‘non-ne-
gative’ conceptions  such
as  the  possibility  that  a
node  belongs  to  a  spe-
cific community.

(j) Probabilistic
matrix factoriza-

tion (PMF)                         ×  
N

C

N

C

W H

...

N

N

Gaussian distribution

  
σ2

σ2 σ2
 

A

It adds the probability an-
alysis process to the dec-
omposition  process  of
the  target  CTN’s  adja-
cency matrix.
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Huang et al. [71] propose a mix-grain GCN model that adopts
the fine-grained and coarse-grained aggregators to address the
issue of insufficient information collection as well as learn the
embedding of  a  large-scale  graph efficiently.  Tam et  al. [72]

propose  an  EdgeProp  method  based  on  an  end-to-end  GCN,
which is applied to node and edge embedding of a large-scale
time evolution graph.  Derr et  al. [73] propose a signed GCN
that applies the balance theory to interlayer information aggre-

 

TABLE II 

Summary of Dynamic CTNE Architectures

Architecture Description Characteristics

Dynamic ran-
dom walk-based

methods

(a) Dynamic ran-
dom walk
(DRW)

Dynamic CTN

Time t

v1

v3
v0

v2

v4

v5

v6
v1

v3
v0

v2

v4

v5
Time 2

Time 1

v1

v3v0

v2
v4

Random walks

Random walks

Random walks

Random paths

v1 v0 v2

v1 v0 v3

Walk1

Walk1

Walk2

Walk2

… …

…
…

… …

Time 1 

v1 v0 v2

v1 v3 v2
Time 2

v1 v0 v3

v1 v3 v2
… …

Time t

…
…

Walk2

Walk2

After  selecting  the  initial
edge from the initial snap-
shot of the network, repeat
selecting  the  next  time-
efficient  neighbor  from
the  given  node  until
traversing  the  network
slice  at  the  initial  time.
The  same  random walk  is
then  continued  in  snap-
shot order.

Pros.  a)  It  integrates
the  weight  and  tempo-
ral into the feature vec-
tors.  b)  It  can  capture
the  temporally  valid
links  from  a  dynamic
network.

Cons.  a)  It  is  hard  to
find  the  optimal  sam-
pling  strategy.  b)  It
adopts the same proba-
bility  to  perform  ran-
dom  walk,  which  can
vary in real cases.

Long short-term
memory-based

methods

(b) Long short-
term memory

(LSTM)

Time 1 Time t Time t + 1 

Self-attention
mechanism

v1 v1

v0 v0

v0 v0
v4 v4

…

…
…

Forget gate
Input gate

Cell gate

Output gate

*
tanh

* +

* tanh

*
tanh

* +

* tanh

*
tanh

* +

* tanh…

 Node vector x1 Node vector xt Node vector xt + 1

Input
timeline 

LTSM

…

… ……

Output ... ......

v3 v3

v1

v0

v2 v4

v5

v3

It retains long-term depen-
dencies and connect infor-
mation  from  past  to
present.  It  contains  three
types  of  gates:  1)  forget
gate,  deciding  what  infor-
mation  to  forget  from  the
previous;  2)  input  gate,
deciding  what  new  infor-
mation  to  remember;  and
3)  output  gate,  deciding
which  part  of  the  output
cell state.

Pros.  a)  It  adopts  self-
attention  to  enhance
the  embedding  and
maintain  the  node
diversity.  b)  The
LSTM  layer  can  simu-
late the dynamic evolu-
tion of latent space.

Cons.  It  is  computa-
tionally  expensive  and
without interpretability.

Tensor factoriza-
tion-based meth-

ods
(c) Tensor factor-

ization (TF)

1 0 0 … …

1 1 0 … …

… …

…

0 1 1 …

…
…

…
…

. . .
. ..

. ..

…

… … … … …

… … … … …

… …

…

… … … …

…
…

…
…

. . .
. ..

. ..

…

0 1 0 … …

1 0 1 … …

… …

…

1 0 0 …

…
…

…
…

. . .
. ..

. ..

…

1 0 1 … …

1 1 1 … …

… …

…

1 0 1 …

…
…

…
…

. . .
. ..

. ..

…

Receiver

Sender

Tensor decomposition

+ +

Vectors associated
to time dimension

Vectors associated to
receiver dimension 

Vectors associated
to sender dimension

Building three-way topological tensor

Time t 

……

Time 2  
Time 1 

…

It  considers  the  target
dynamic  CTN  as  a  three-
way  topological  tensor,
and  then  decompose  it
into  several  rank-one  ten-
sors following the Canoni-
cal  Polyadic  Decomposi-
tion  (CPD)  or  Tucker
frameworks.

Pros.  a)  It  can  effec-
tively  capture  tempo-
ral  patterns  in  a
dynamic CTN. b) It has
excellent scalability.

Cons.  It  models  the
temporal  dynamics  in
the  target  CTN  from
the  numerical  perspec-
tive  only,  yet  lacking
of  considerations  from
the  modeling  perspec-
tive.

Multi-graph neu-
ral network-based

methods

(d) Dynamic
graph attention

network (DGAT)

Input

…

Time t + 1

…

Time tTime t + 1 

N

N

…

…

…

…

…

…

…

…

…

Time t 

N

N

…

…

…

…

…

…

…

…

…

Time 1 
Graph attention layer

…

… Time 1 

Softmax function

N

N

…

…

…

…

…

…

…

…

…

…

It  efficiently  captures  the
evolutionary patterns from
the  graph  sequences  by
learning the impact of pre-
vious multiple graph snap-
shots on the current one as
well  as  utilizes  a  self-
attention  mechanism  for
neighborhood  aggrega-
tion.

Pros.  It  can  effectively
capture  temporal  pat-
terns in a graph sequen-
ce.

Cons.  It  is  computa-
tionally  expensive  and
lack of interpretability.

(e) Dynamic
graph convolu-
tional network

(DGCN)

Time t + 1

……

Time tTime t + 1

N

N

…

…

…

…

…

…

…

…

…

Time t 

N

N

…

…

…

…

…

…

…

…

…

Time 1 
Graph convolutional layer

…
N

N

…

…

…

…

…

…

…

…

…

Input

RNN

Time 1 ……

It  combines  GCN  with
recurrent  neural  network
(RNN),  where  the  former
is adopted for structure in-
formation  extraction,  and
the  latter  is  adopted  for
sequence modeling.
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gation  and  propagation,  thereby  achieving  a  complex  CTN’s
embedding in an efficient way.

By combining the virtues of statistical relation learning and
GCN, Qu et al. [74] propose a graph Markov neural network
model that identifies node representation and label dependen-
cies.  Agrawal  and  Alfaro  [75]  present  a  deep  structured
embedding  model  that  learns  edge  representations  based  on
aggregation  of  paths.  It  is  capable  of  embedding an  arbitrary
edge  attribute  without  feature  extraction.  Verma et  al. [76]
propose a GraphMix model that adopts a full-connection net-
work  to  improve  the  training  efficiency  of  a  GCN-based
embedding model. Huang et al. [77] propose a signed directed
GNN model that adopts multiple-layers to capture high-order
structure information in a Bitcoin CTN. Kudo et al. [78] pro-
pose a GCN with expended balance theory, which aggregates
the  edge signs  and directions  for  identifying fraudulent  users
in CTN. Liu et al. [79] propose an identity inference approach
by  graph  deep  learning,  where  blockchain  accounts  and
related  transactions  are  represented  by  graphs  and  the
accounts  are  represented  as  nodes  with  low-dimensional  fea-
tures via GNN-based graph learning.

e) Graph attention network (GAT): As shown in Table I(e),
GAT further  applies  the  shared  linear  transformation  to  each
node,  and  then  computes  the  attention  coefficients  for  better
aggregating nodes with similar behavior patterns in the target
CTN. Huang et al. [80] propose a signed GAT that simultane-
ously combines balance and state theories to achieve accurate
CTN  embeddings.  Li et  al. [81]  propose  a  signed  network
embedding  via  a  graph  attention  model  that  leverages  the
graph  attentional  layer  to  aggregate  multi-source  information
based on the balance theory. Wu et al. [82] propose a hierar-
chical  attention  signed  network  model  that  precisely  main-
tains  the  balance  and  state  theories  with  hierarchical  atten-
tions.

3) Deep Neural Network-Based Methods
f) Deep neural network (DNN): As shown in Table I(f), The

target  CTN  is  embedded  though  a  DNN.  The  input  features
are propagated from the input layer, via the hide layer, and to
the  output  layer.  During  the  propagation,  the  state  of  each
layer only affects the state of the next layer. When the output
layer fails in achieving the expected output, it can be switched
to  error  signal  back-propagation  [83].  Based  on  the  principle
of transfer learning [84], Liu et al. [85] design an asymmetric
tri-training  back  propagation  neural  network  model  for  accu-
rately predict the unlabeled relationships in a Bitcoin CTN.

4) Matrix Factorization-Based Methods
As  shown  in Tables I(g)−I(j),  matrix  factorization-based

CTNE  models  depend  on  latent  feature  matrices  describing
the topology of a target CTN (such as its adjacency or Lapla-
cian  matrices).  They  can  be  divided  into  the  following
branches:

g)  Matrix  factorization  (MF): As  shown  in Table I(g),  it
maps each involved node in the target CTN to the same low-
dimensional  latent  feature  space  by  decomposing  the  adja-
cency matrix of the target  CTN into two low-rank latent fea-
ture  matrices.  By  doing  so,  each  node  is  represented  by  a
dense  feature  vector  that  can  facilitate  subsequent  tasks  like

link  prediction.  Meo  [86]  propose  a  pairwise  trust  prediction
method through a matrix factorization algorithm, which incor-
porates  the  trustor  and  trustee  behavior  biases  into  the  learn-
ing  objective  for  predicting  the  intensity  of  trust  and  distrust
relations in CTN.

h)  Singular  value  decomposition  (SVD): As  depicted  in
Table I(h),  SVD  factorizes  adjacency  matrix A into  three
matrices,  i.e.,  two  orthogonal  matrices  and  one  diagonal
matrix  to  achieve  the  low-dimensional  embeddings  of  each
involved node.  However,  its  computational  cost  is  huge.  The
widely  adopted  SVD  algorithm  is  also  utilized  to  implement
CTNE [87]. Chen et al. [9] apply the standard SVD to a Bit-
coin CTN to discover the relationship between node behavior
and Bitcoin price.

i)  Nonnegative  matrix  factorization  (NMF): As  shown  in
Table I(i),  NMF is a classical low rank method, which incor-
porates non-negative constraints, resulting in part-based repre-
sentations  and  correspondingly  enhanced  problem  inter-
pretability [88]−[90]. It has been applied to CTNE scenes. Yu
et  al. [91]  propose  a  double  NMF  model  that  integrates  the
node  in-degree  as  a  regularization  term  into  the  learning
objective to build a node transaction probability matrix. Wang
and  Mu  [92]  propose  a  regularized  convex  NMF  model  that
considers  graph  regularization,  thus  constraining  positively-
connected  nodes  to  enter  the  same  community  and  ensuing
negatively-connected  nodes  to  represent  the  hidden  structure
in  a  target  CTN.  Reference  [93]  proposes  an  analogous  pre-
serving  overlapping  community  detection  method.  It  extracts
node  similarity  and  geometric  structures  from  link  topology,
which  are  further  fused  to  implement  accurate  community
detection via a graph-regularized binary semi-NMF model.

j)  Probabilistic  matrix  factorization  (PMF): According  to
Table I(j),  different  from the other matrix factorization meth-
ods,  PMF  adopts  a  probabilistic  linear  model  with  Gaussian
noise  to  correlate  a  target  CTN  with  potential  variables  lin-
early  [94].  Muzammal et  al. [95]  decompose  a  target  CTN
into several sub-graphs, and then adopt Bayesian probabilistic
matrix  factorization  to  extract  latent  features  from  them  to
achieve its low-rank embeddings.

5) Other Methods
Liu et al. [96] propose a signed local naive Bayesian model,

which achieves highly accurate link prediction on small-scale
CTNs. Qiu et al. [97] propose a directed edge weight predic-
tion model  based on a  decision tree  ensemble,  which utilizes
network topology without dependence on involved nodes’ pri-
vate  attribute  information.  Liu et  al. [98]  propose  a  single
motif naive Bayesian model that not only explains the predic-
tion  mechanism  of  the  single  edge-dependent  motif  based
method,  but  also  considers  the  roles  of  different  nodes  and
edges when adopting multiple motif information for sign pre-
diction  in  a  CTN.  Pang et  al. [99]  propose  a  sign  prediction
method  based  on  tri-domain  relationship  pattern  method,
which adopts  the  three-domain relationship pattern  to  predict
the  signs  of  links  on  the  unlabeled  domains  from  a  Bitcoin
CTN.  Liu et  al. [100]  propose  a  three-way  decisions  func-
tional network model that incorporates the three-way decision
into  functional  network  modeling,  thereby  implementing
three-way decision making to for precisely identifying bound-
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ary samples with high performance.  

B.  Dynamic CTNE Methods
The previous  section  discusses  existing  static  CTNE meth-

ods.  However,  a  real  CTN  commonly  changes  over  time  as
shown  in Fig. 2.  Therefore,  it  is  highly  significant  to  study
dynamic CTNE methods.

1) Dynamic Random Walk-Based Methods
a)  Dynamic  random  walk  (DRW): Most  existing  dynamic

random walk-based CTNE methods are based on a static algo-
rithm like DeepWalk and node2vec. As shown in Table II(a),
DRW considers  the  temporal  dependence,  adopts  the  tempo-
ral walk for CTN, and then obtains the random walk sequence
on  each  time  slice.  For  instance,  Lin et  al. [101]  propose  a
temporally-weighted multidigraph embedding algorithm based
on DeepWalk, which is designed to learn significant node rep-
resentation from a dynamic CTN.

2) Long Short-Term Memory-Based Methods
b) Long short-term memory (LSTM): As shown in Table II(b),

LSTM  firstly  generates  a  temporal  embedding  vector,  which
reflects  the  changes  of  network  topology,  and  then  enhances
the embedding and maintains the diversity of nodes through a
self-attention mechanism.  The LSTM memory architecture  is
utilized to preserve the important  features of  the target  CTN,
and the forget gate and output gate are adopted to preserve the
basic relations and drop disturbance information. This method
leads  to  an  effective  and  scalable  model  for  capturing  long-
term temporal dependencies [102].

Wang et al. [103] integrate self-tokenization into a sequence
modeling framework based on LSTM, thereby predicting the
future links in a temporal network. Jiao et al. [104] propose a
temporal  network  embedding  method  based  on  a  variational
autoencoder.  It  combines  a  self-attention  mechanism  and
LSTM, thus not  only generating low-dimensional  embedding
vectors for nodes, but also maintaining the dynamic nonlinear
features of a temporal network.

3) Tensor Factorization-Based Methods
c)  Tensor  factorization  (TF): As  shown  in Table II(c),  a

three-way tensor can be defined according to a dynamic CTN
with  its  first  dimension  being  the  sender  set,  the  second
dimension  the  receiver  set,  and  the  third  dimension  the  time
slots. When there is a transaction between a specific sender

account  and  a  specific  receiver  at  a  specific  time  slot,  the
corresponding entry in the built tensor is filled, and otherwise
it is unknown as depicted in Table II(c). Note that a three-way
tensor  is  a  natural  yet  highly-precise  way  to  describe  a
dynamic CTN, where the temporal dynamics can be taken into
consideration in a natural way.

Considering  dynamic  CTNE  methods,  existing  tensor  fac-
torization-based methods are based on the Canonical Polyadic
decomposition  or  Tucker  factorization  frameworks.  For
instance,  Charlier et  al. [105],  [106]  adopt  a  CPD-based ten-
sor  factorization  model  to  represent  smart  contract  data,  and
then  utilize  a  log-normal-mean-reverting  stochastic  model  to
predict  future  smart  contract  sequences.  They  prove  their
method’s  efficiency.  However,  few  studies  fall  to  this  cate-
gory and the community’s further efforts are required.

4) Multi-Graph Neural Network-Based Methods

These methods are able to capture the dynamic evolution of
target  CTN.  They can be  further  divided into  dynamic  graph
attention  network  (DGAT)  and  dynamic  graph  convolutional
network (DGCN)-based ones.

d) Dynamic graph attention network (DGAT): According to
Table II(d),  a  DGAT  method  accepts  multiple  graph  snap-
shots as the input according to the time line, and then adopts
the self-attention mechanism to aggregate the graph neighbor-
hood  for  capturing  the  temporal  tendency.  The  graph  atten-
tion layer mainly captures weights implicitly through an end-
to-end  neural  network  architecture.  Li et  al. [69]  propose  a
dynamic  GCN  that  facilitates  spatial  and  temporal  convolu-
tion in an interleaving manner.

It  adopts  an  S-stack  temporal  self-attention  architecture,
which  integrates  the  effects  of  several  previous  graph  snap-
shots  into  the  current  one  with  self-adapting  importance,
therefore  effectively  capturing  the  evolutionary  patterns  hid-
den in a dynamic CTN. Li et al. [107] propose a graph tempo-
ral  edge  aggregation  framework  that  integrates  an  attention
mechanism into  LSTM to represent  the  temporal  interactions
among involved nodes. Wang et al. [108] propose a co-evolu-
tionary GNN model.

e) Dynamic graph convolutional network (DGCN): Accord-
ing  to Table II(e),  A  DGCN-based  method  accepts  multiple
graph  snapshots  as  the  input  according  to  the  time  line.  The
graph topology information is extracted by GCN, and the tem-
poral  information  is  captured  by  a  recurrent  neural  network
(RNN). Bonner et al. [109] propose a temporal neighborhood
aggregation  method  by  combining  graph  convolution  with
recurrent  vertex  representation,  thereby  capturing  both  topo-
logical  and  temporal  variations  from a  dynamic  graph.  Dave
and Hasan [110] propose a graphlet and node-based time-con-
serving  embedding  framework  based  on  neural  networks,
where  an  edge  representation  vector  learning  model  is
designed to embed the edges with similar triangle completion
time into the latent space. Pareja et al. [111] propose an evolv-
ing GCN model that captures the temporal patterns by evolv-
ing GCN parameters  following the RNN principle.  Wu et  al.
[112]  propose  a  dynamic  graph evolution  network  prediction
model that adopts a recurrently structured GNN to represent a
dynamic graph.  Cai et  al. [113] propose an end-to-end struc-
tural  temporal  GNN  model  that  detects  anomalous  edge  by
mining  the  unusual  and  temporal  sub-graphs.  Malik et  al.
[114],  [115]  incorporate  a  tensor  M-product  into  GCN,  thus
capturing correlations over time to learn the embedding.

5) Other Methods
Ao et  al. [116]  propose  a  temporal  high-order  proximity

aware community detection model, which can efficiently ana-
lyze  the  temporal  user  behavior  in  Ethereum  block  transac-
tions.  It  consists  of  an  temporal-motif  mining  algorithm,  a
high-order  proximity  computing  algorithm  and  a  temporal
motif-aware community detection algorithm. Cao et al. [117]
propose  a  novel  graph  representation  learning  framework
based  on  ordinary  differential  equations  used  to  model  the
continuous dynamics of CTN, thus capturing the temporal pat-
terns in a natural way.  

C.  Summary
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We summarize the progress of CTNE from the static to the
dynamic  perspectives,  where  the  state-of-the-art  is  compre-
hensively reviewed and categorized.  The main characteristics
of existing studies are summarized in Tables I and II,  includ-
ing the proposed models,  tasks,  datasets,  and evaluation met-
rics. Both static and dynamic CNTE models are mostly related
to  GNN,  GCN and GAT [69]−[74],  [76]−[81],  [103],  [107]−
[114].  Relatively  fewer  studies  have  been  conducted  on  ran-
dom walks and tensor factorization, where the latter possesses
the  potential  to  achieve  highly  accurate  representations  to
establish dynamic CTNE.

Considering the limitations of existing CTNE methods:
a)  They  mostly  focus  on  static  CNTE,  while  ignoring  the

temporal nature of CTN in real applications. Dynamic CTNE
methods are relatively scarce and deserve more studies.

b)  Existing  studies  on  dynamic  CNTE  mostly  focuses  on
(graph) neural  network-based methods.  However,  their  scala-
bility is rather limited due to the high computational and stor-
age  costs  in  spite  of  their  excellent  representation  learning
ability.  From  this  point  of  view,  it  is  urgent  to  facilitate
research  on  relatively  light-weight  CTNE  models  like  a  ten-
sor  factorization-based  one  for  performing  highly  scalable
CTNE on large-scale networks.  

IV.  Metric and Dataset
  

A.  Metric
In  this  section,  we  summarize  and  briefly  introduce  the

commonly-adopted evaluation metrics for a CTNE model. As
shown  in Tables III and IV,  most  existing  studies  focus  on
node classification and link prediction, whose evaluation met-
rics are listed as follows.

1) Precision: It reflects whether the missing edge in the tar-
get  CTN  is  accurately  predicted.  Higher  precision  denotes
more accurate predictions, which is defined as
 

Precision =
T P

T P+FP
(1)

where TP denotes  the  correctly  predicted  link  count,  and FP
denotes the number of falsely predicted ones.

2) Recall: It denotes the fraction of missing links that have
been  retrieved  over  the  total  number  of  potentially  existing
ones, which is defined as
 

Recall =
T P

T P+FN
(2)

where FN denotes the number of potential links missed by the
evaluated CTNE model.

3)  Average  Precision  (AP): It  is  a  metric  that  balances  the
precision and recall.  As the recall  threshold increases  from 0
to 1, AP increases as precision increases.

4) F1: It is an important metric in the statistical analysis of
node classification because  it  is  a  harmonic  average of  accu-
racy and recall. By combining (1) and (2), F1 is calculated as
 

F1 =
2×Precision×Recall

Precision+Recall
. (3)

5) Macro-F1: It refers to the calculating the average of pre-
cision and recall of each category for F1.

6)  Accuracy: It  focuses  on  overall  performance,  and  is

defined  as  the  proportion  of  correctly  predicted  links  in  all
potential links. It is calculated as
 

Accuracy =
T P+T N

T P+T N +FP+FN
(4)

where TN denotes the number of links that is not in the target
CTN and also correctly ignored by the CTNE model.

7) RMSE: The root mean squared error describes the differ-
ence between the real link weights and the predicted ones by a
CTNE model, i.e.,
 

RMS E =

√√√√ n∑
i=1

(yi− ŷi)2

n
(5)

n yi
ŷi

where  denotes  the  number  of  the  samples,  denotes  the
actual  value  in  the  test  set,  and  denotes  the  estimated  one
generated by the learning model.

8) MAE: The mean absolute error measures the absolute dif-
ference  between  the  real  link  weights  and  the  predicted  ones
by a CTNE model, i.e.,
 

MAE =

n∑
i=1
|yi− ŷi|

n
. (6)

9)  PCC: The  Pearson  correlation  coefficient  measures  the
linear  correlation  between  two  variables,  i.e.,  the  real  link
weights and the predicted ones by a CTNE model in our con-
text, and large PCC denotes strong linear relationship between
them. It is defined as
 

PCC =

(
n∑

i=1

(
xi−x̄
σx

) ( yi−ȳ
σy

))
n−1

(7)

x̄ ȳwhere  and  denote the average values of the sample values
of variables x and y, and σx and σy denote the standard devia-
tion of the sample values of x and y, respectively.

10) AUC: It measures the probability that the predictions for
the  randomly selected  positive  samples  are  higher  than  those
for  the  randomly  selected  negative  samples.  Note  that  high
AUC stands for high model performance.  

B.  Datasets
The  entire  cryptocurrency  data  are  currently  open  for

access,  providing  unprecedented  opportunities  for  CTNE
research.

Mostly adopted datasets are summarized as follows:
1)  Mt.  Gox [9]: It  is  the  bitcoin  history  transaction  dataset

leaked  by  the  world’s  leading  bitcoin  intermediary  in  early
2014,  which  recorded  the  largest  bitcoin  transactions  from
April  2011  to  November  2013.  It  includes  119  343  transac-
tion nodes and 2 682 719 transaction edges.

2)  Blockchain  transaction  [70]: It  is  a  collection  of
Ethereum transaction data from August 2016 to January 2017.
It does not contain time information, and only contains 50 422
edges among 25 257 nodes.

3) API-Ethereum [71]: It contains the Ethereum transaction
data of 2 815 028 edges among 1 402 220 nodes.  Each node
contains 13 features extracted from the transaction records.

4) Bitcoin-Alpha: It is collected from a bitcoin trading plat-
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form Bitcoin-Alpha. Due to the fact that bitcoin accounts are
anonymous,  users  need  to  set  up  an  online  trust  network  to
reserve safety. Members of Bitcoin-Alpha rate other members
on a scale from −10 (full distrust) to 10 (full trust) in steps of
1,  which  helps  preventing  transactions  with  fraudulent  and

risky  users.  The  dataset  covers  transactions  from  October
2010 to January 2016, with 3784 users and 12 729 entries.

5)  Bitcoin-OTC: is  collected  from  a  bitcoin  trading  plat-
form  Bitcoin-OTC.  Like  the  Bitcoin-Alpha  dataset,  Bitcoin-
OTC is a who-trusts-whom network dataset, with scores rang-

 

TABLE III 

Summary of Static CTNE

Reference Model Task Baseline Metric Dataset Application

[9] SVD − − − Mt. Gox transaction
network*

Market analy-
sis

[64] Node2vec Node classification DeepWalk, Non-embedding
method Precision, Recall, F1 Ethereum transaction

network*
Phishing
detection

[65] RWFB − − − Bitcoin blockchain
network*

Phishing
detection

[66] Line-
Graph2Vec Classification prediction Node2Vec, WL-kernel, orig-

inal Graph2Vec Precision, Recall, F1 Ethereum transaction
network*

Phishing
detection

[67] SNEGAN Link prediction, reconstruc-
tion

DeepWalk, Node2vec,
GraphGAN, DNE-SBP

AUC, Average preci-
sion Bitcoin-Alpha1 −

[85] BPtri-train Trust relationship predictions SVM, Random Forest,
TranFG

Accuracy, Precision,
Recall, F1

Bitcoin-Alpha1, Bit-
coin-OTC2 −

[70] OCGNN Node classification Isolation Forest Accuracy, F1 Ethereum blockchain
network3

Anomaly
detection

[71] Mix-grained
GCN Node classification GCN, GraphSAGE, Fast-

GCN, SGC Accuracy Ethereum* −

[72] EdgeProp Node classification
LR, Random Forest, Gradi-
ent Boosting Decision Tree,

DeepWalk, Line, Graph-
SAGE

Accuracy, Precision,
recall F1

Ethereum transac-
tions*

Identifying
Illicit

Accounts

[73] SGCN Link prediction Signed Spectral Embedding,
SiNE, SIDE AUC, F1 Bitcoin-Alpha1, Bit-

coin-OTC2 −

[74] CMNN
Object classification, link

classification,
unsupervised node represen-

tation learning

DeepWalk, GCN, GAN,
PRM, LP, RMN, MLN F1 Bitcoin-Alpha1, Bit-

coin-OTC2 −

[75] LEAP Link prediction, user rating
prediction

WLNM, SEAL, Adamic-
Adar, Katz, PageRank,

node2vec
AUC Bitcoin-Alpha1, Bit-

coin-OTC2 −

[76] GraphMix Link classification DeepWalk, GMNN, GCN F1 Bitcoin-Alpha1, Bit-
coin-OTC2 −

[77] SDGNN Link prediction
Random, Deepwalk,

Node2vec, LINE, SiNE,
SIGNet, BESIDE, FeExtra,

SGCN, SiGAT

Binary-F1, Micro-F1,
Macro-F1, AUC

Bitcoin-Alpha1, Bit-
coin-OTC2 −

[78] GCNEXT Node classification Rev2, R-GCN, SIDE, SGCN AUC Bitcoin-Alpha1, Bit-
coin-OTC2

Fraud detec-
tion

[80] SiGAT Link prediction Deepwalk, Node2vec, LINE,
SiNE, SIDE SIGNet, SGCN

Accuracy, F1, Macro-
F1, AUC Bitcoin-Alpha1 −

[81] SENA Link prediction TSVD, SiNE, SIDE, SGCN,
SiGAT AUC, F1 Bitcoin-Alpha1, Bit-

coin-OTC2 −

[82] HASN Link prediction
DeepWalk, LINE, SINE,

SIDE, FExtra, SGCN,
SiGAT

Accuracy, Micro-F1,
Macro-F1, AUC Bitcoin-Alpha1 −

[86] PTP-MF Link prediction FG RMSE Bitcoin-Alpha1, Bit-
coin-OTC2 −

[91] DouNMF Link prediction AA, ACT, CN, CRA, Jac-
card, Salton Generalized AUC Bitcoin-OTC2 −

[92] RC-NMF Link prediction CN, Jaccard, Salton, Res-
NMTF Generalized AUC Bitcoin-OTC2 −

[93] SPOCD Overlapping community
detection

LPOCSIN, SPM, ReSNMF,
SDMID, MEAs-SN F1 Bitcoin* −

[95] PLF Link prediction Bayesian PMF, NeLP Precision, Recall, F1 Bitcoin-Alpha1, Bit-
coin-OTC2 −

[96] SLNB Link prediction FriendTNS, Status theory AUC, Precision Bitcoin-Alpha1, Bit-
coin-OTC2 −

[97] DEWP Link prediction FG, reciprocal, TidalTrust,
SEC RMSE, PCC Bitcoin-Alpha1, Bit-

coin-OTC2 −

[98] SMNB Link prediction SEDM AUC, PCC Bitcoin-Alpha1, Bit-
coin-OTC2 −

[99] SP-TDRP Link prediction SLATTL, SLATL, TTL, TL,
EasyTTL, EasyTL Accuracy, F1 Bitcoin-Alpha1, Bit-

coin-OTC2 −

[100] 3WD-FN Link prediction LR, LP, LS, e-Trust, FN Precision, Recall, F1,
Accuracy

Bitcoin-Alpha1, Bit-
coin-OTC2 −

1 http://www.btcalpha.com; 2 http://www.bitcoin-otc.com; 3 https://github.com/vatsalpatels/Graph-DL-Based-Anomaly-Detection-in-Ethereum.git; * Not
available.
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ing from −10 to 10. In addition, the dataset covers bitcoin rat-
ings  from  November  2010  to  January  2016,  with  881  users
and 35 592 entries.

6)  Client-Ethereum  [79]: It  is  collected  by  the  Ethereum
client,  which  synchronizes  all  historical  transaction  records
from the Ethereum blockchain. Also, the dataset has 116 293 867
transactions  and  16  599  825  active  accounts  from  January
2018 to December 2018.

7)  Ethereum-Role  [72],  [107]: It  is  an  Ethereum  transac-
tions  dataset  consisting  of  2.18  million  nodes,  3.75  million
edges and 445 ground truth labels.

Each  node  and  each  edge  respectively  have  23  and  5  fea-
tures acquired from the transaction records.

8)  Phishing  Small  and  Phishing  Large  [107]: They  are
Ethereum phishing datasets. Their data are binary-classified to
detect  phishing  accounts  in  the  Ethereum  payment  network.
The former has  1 329 729 nodes,  2  161 573 edges and 3360
ground truth labels, while the latter has 2 973 489, 5 355 155
and 6165 in correspondence.

9)  Smart  Contract  [105],  [106]: It  was  collected  from  the
Ethereum platform from August 2015 to March 2016. During

this  period,  about  two  million  transactions  have  happened
between 241 385 senders and 359 798 receivers.

10)  Bitcoin  Transaction  [102]: It  contains  297  816  881
accounts and 298 325 122 transactions from January 2009 to
February  2018.  The edges  are  weighted  according to  the  bit-
coin amount transferred among accounts. As shown in Table V,
we  summarize  the  commonly  adopted  CTN  datasets.  Most
datasets are temporally dynamic and highly incomplete.  

C.  Experiments and Results
In this section, we test eight models in terms of link predic-

tion.  As  shown  in Table VI,  M1−M4  are  the  static  while
M5−M8  are  dynamic  CTNE  models.  M1−M8  all  adopt  the
default  hyper  parameter  settings  as  reported  in  prior  studies
[77],  [80],  [95],  [111],  [115],  [118].  Since static CTNE mod-
els have no temporal settings, datasets adopted by M1−M4 are
cleaned to remove the time information.

The  experiments  are  conducted  on  two  real-world  bitcoin
datasets,  i.e.,  Bitcoin-Alpha  (D1)  and  Bitcoin-OTC  (D2).  In
particular,  for  static  link prediction,  each dataset  is  randomly
split  into  ten  disjoint  subsets  for  implementing  80%−20%

 

TABLE IV 

Summary of Dynamic CTNE

Reference Model Task Baseline Metric Dataset Application

[68] SSRW Link prediction SPNR, TNS, SFM, RWR GeneralizedAUC Bitcoins* −

[69] DynGCN Temporal link prediction,
edge classification

GCN, GCN-GRU,
EvolveGCN Accuracy, F1 Bitcoin-Alpha1, Bit-

coin-OTC2 −

[79] I2GL Node classification DeepWalk, PARW, rGCN Precision, Recall, F1 Ethereum transaction
network*

Phis92hing
detection

[101] T-EDGE Node classification DeepWalk, Node2vec Micro-F1, macro-F1 Ethereum3 −

[103] GLSM Temporal link prediction LPGNN, GAN, AA, MF,
GG, TMF, JC AUC Bitcoin* −

[109] TNA Temporal link prediction GAE, GVAE, TO-GAE, TO-
GVAE, DynAE, DynRNN AUC, AP Bitcoin-Alpha1 −

[107] GTEA Node classification
XGBoost, GCN, Graph-
SAGE, GAT, APPNP,

ECConv, EGNN, TGAT
Accuracy, macro-F1

Ethereum-Role
Dataset, Ethereum

Phishing Large
Dataset4

−

[108] CoEvoGNN Node attribute prediction,
link prediction

GCN, GAT, GraphSAGE,
DynamicTrian, DySAT,

DCRNN, STGCN
MAE, RMSE, AUC,

F1, Precision
Bitcoin-Alpha1, Bit-

coin-OTC2 −

[110] GraNiTE Temporal link prediction LINE, Node2vec, Graph-
SAGE, AROPE, VERSE MAE Bitcoin-OTC2 −

[111] EvolveGCN Temporal link prediction,
node classification

GCN, GCN-GRU, DynGEM,
dyngraph2vec Mean AP, F1 Bitcoin-Alpha1, Bit-

coin-OTC2 −

[112] EvoNet Temporal link prediction ER, SBM, BA, Power, Kron-
Rand, Kron-Fix AUC Bitcoin-Alpha1, Bit-

coin-OTC2 −

[113] StrGNN Node classification DeepWalk, Node2vec, Spec-
tral Clusteing, Netwalk AUC Bitcoin-Alpha1, Bit-

coin-OTC2
Anomaly
detection

[114] TensorGCN Edge classification WD-GCN, EvolveGCN,
GCN Accuracy, F1 Bitcoin-Alpha1, Bit-

coin-OTC2 −

[115] TM-GNN Edge classification, tempo-
ral link prediction

WD-GCN, EvolveGCN,
GCN Accuracy, F1 Bitcoin-Alpha1, Bit-

coin-OTC2 −

[105] non-negative
CP Link prediction − AUC Smart contracts* −

[106] Tensor Link predictions − AUC Smart contracts* −

[116] THCD Community detected Louvain, Motif, EdMot Modularity Ethereum* Market analy-
sis

[117] Graph-ODE Link prediction, node classi-
fication

GCN, GraphSage, DNE,
CTDNE, EvolveGCN Mean AP, AUC Bitcoin-Alpha1, Bit-

coin-OTC2

[104] TVAE Link prediction
DeepWalk, Line, GAT-AE,

DynamicTriad, DynAERNN,
TNE, DySAT

Mean AP, AUC Bitcoin-Alpha1, Bit-
coin-OTC2 −

1 http://www.btcalpha.com; 2 http://www.bitcoin-otc.com; 3 https://github.com/lindan113/xblock-network_analysis/tree/master; 4 https://www.kaggle.com/xblo-
ck/ethereumphishing-transaction-network; * Not available.
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training-testing.  For  dynamic  link  prediction,  each  dataset  is
divided into  time series,  with  the  first  80% form the  training
set and the last 20% for the testing set.

Precision,  Recall  and F1 are  chosen as  the  evaluation met-
rics. Tables VII and VIII compare  the  performance  of  static
and  dynamic  CTNE  models  on  D1  and  D2,  respectively.
Table IX summarizes the total time cost of compared models.
Thus, we find that:

1) For Static Link Prediction, the Prediction Precision of a
Neural  Network  Model  is  Better: As  shown in Table VII,  on
D1,  M4’s  precision,  recall  and  F1  are 0.4319, 0.1315,  and
0.2060, respectively. It is 99.07%, 49.43% and 96.36% higher
than M1’s 0.0040, 0.0665 and 0.0075, respectively.

2) The Accuracy of Dynamic Link Prediction Model Is Gen-
erally Higher Than That of Static One: As shown in Tables VII
and VIII,  the  precision  of  the  dynamic  link  prediction  model

is  superior  to  the  static  one.  For  example,  on  D1,  the  preci-
sion  of  M5−M8 is 0.7506, 0.8760, 0.7133,  and 0.6911,  whi-
ch  is  42.46%,  50.70%,  39.45% and  37.50% higher  than
M4’s corresponding values, respectively. However, the differ-
ence  among  M5−M8’s  recall  and  F1’s  M1−M4  is  insignifi-
cant.

3) Dynamic Link Prediction Model Needs More Time Con-
sumption Than Static One: As shown in Table IX, on D1, total
time cost of M5−M8 is 2809, 5865, 4019 and 4355, which is
19.08%, 61.24%, 43.44% and 47.81% higher than M4’s corre-
sponding time, respectively.  

V.  Future Development Trends

Based on the above literature review, we present the future
development trends in this section.

1) Efficient Dynamic CTNE Models: As shown in Table V,
most  of  the  cryptocurrency transaction  datasets  are  temporal.
However,  existing  CTNE  models  are  mostly  static.  On  the
other hand, according to Table IV and Section III-C, existing

 

TABLE V 

Summary of Cryptocurrency Transaction Datasets

Dataset Nodes Edges Time Refer-
ence

Mt. Gox 119 343 2 682 719 2011.04−2013.11 [9]

Blockchain
transaction 25 257 50 422 2016.08−2017.01 [70]

API-
Ethereum 1 402 220 2 815 028 − [71]

Bitcoin-
Alpha 3784 12 729 2010.09−2016.01 −

Bitcoin-OTC 5881 35 592 2010.11−2016.01 −

Client-
Ethereum 16 599 825 116 293 867 2018.01−2018.12 [79]

Ethereum-
Role 2 180 689 3 745 858 2018.01−2018.12 [72],

[107]

Phishing
Small 1 329 729 2 161 573 − [107]

Phishing
Large 2 973 489 5 355 155 − [107]

Smart con-
tracts 359 798 2 000 000 2015.08−2016.03 [105],

[106]
 

 

TABLE VI 

Compared Models

No. Name Description

M1 PMF A probabilistic linear matrix factorization model with
Gaussian observation noise [95].

M2 Bayesian PMF An extended PMF model that introduces a complete
Bayesian prior into PMF [95].

M3 SiGAT A SiGAT model that incorporates graph motifs into
GAT [80].

M4 SDGNN A SDGNN model that redesign aggregators and loss
function [77].

M5 EvolveGCN-O A EvolveGCN-O model that recurrent hidden state
realized by GRU [111].

M6 EvolveGCN-H A EvolveGCN-H model that recurrent input-output
relationship realized by LSTM [111].

M7 WD-GCN
A Waterfall Dynamic-GCN model that combines
LSTMs and GCNs to exploit structural and temporal
information of data [118].

M8 TM-GNN A TM-GNN model that incorporates tensor M-prod-
uct technique into GCN [115].

 

 

TABLE VII 

Performance Comparison Among M1−M4
(Precision/Recall/F1)

No. D1 D2

M1 0.0040/0.0665/0.0075 0.0061/0.0576/0.0111

M2 0.0010/0.0172/0.0019 0.0010/0.0091/0.0017

M3 0.2781/0.1100/0.1559 0.2184/0.1315/0.1642

M4 0.4319/0.1315/0.2060 0.2445/0.1412/0.1790
 

 

TABLE VIII 

Performance Comparison Among M5−M8
(Precision/Recall/F1)

No. D1 D2

M5 0.7506/0.0332/0.0635 0.6957/0.0221/0.0429

M6 0.8760/0.0331/0.0638 0.6479/0.0230/0.0444

M7 0.7133/0.0873/0.1556 0.6035/0.1314/0.2158

M8 0.6911/0.0385/0.0730 0.9753/0.0550/0.1042
 

 

TABLE IX 

Total Time Cost Among M1−M8 (Seconds)

No. D1 D2

M1 286 214

M2 529 234

M3 1495 1528

M4 2273 1964

M5 2809 4582

M6 5865 6989

M7 4019 3161

M8 4355 3540
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dynamic CTNE models commonly focus on GNN, and GAT,
which lead to  high time complexity.  Is  it  possible  to  achieve
highly efficient dynamic CTNE models with the guarantee of
high  representation  learning  ability  [119]−[132]?  This  ques-
tion remains unveiled and calls for future efforts.

2)  Multi-Attributed  CTNE  Models: In  a  CTN,  most  edges
and  nodes  are  attributive.  For  instance,  the  edges  of  the  Mt.
Gox  transaction  network  [9]  possesses  four  attributes:  cur-
rently traded Bitcoin count,  transaction time, the dollar count
for  Bitcoins,  and  the  price  per  Bitcoin.  However,  existing
CTNE models only focus on the time and Bitcoin count, while
ignoring  the  other  attributes.  From  this  point  of  view,  it
appears  necessary  to  embed  a  multi-attributive  CTN  into  a
multi-attributed  CTNE  model  to  precisely  represent  a  target
CTN’s structure and semantic characteristics.

3)  Applications  in  Market  Analysis: Since  the  birth  of  Bit-
coin,  block-chain-based cryptocurrencies  have attracted  more
and more investors and played an indispensable role in today’s
financial markets. Meanwhile, huge price fluctuation in cryp-
tocurrency can be frequently encountered. Therefore, whether
artificial  manipulation  exists  in  cryptocurrency  has  attracted
extensive  attention,  which  is  a  critical  applications  scene  of
CTNE research.

4)  Application  in  Anomaly  Detection: Blockchain  technol-
ogy  provides  anonymity  protection,  which  brings  conve-
nience  to  users,  but  also  become  a  hotbed  of  crime  [133]−
[137].  Fortunately,  the  transparency  of  blockchain  and  the
irreversibility  of  cryptocurrency  transactions  provide  resear-
chers with the opportunity to detect abnormal transactions. As
shown in Tables III and IV, anomaly detection includes phish-
ing  account  detection  [64]−[66],  [79],  fraud  detection  [78],
and anomaly account detection [72], [113]. However, existing
models  are  limited  by  their  unsatisfactory  accuracy,  which
should be carefully addressed as an important issue.  

VI.  Conclusions

With  the  successful  application  of  blockchain  technology,
cryptocurrency is becoming more and more popular in people’s
daily life. Benefitting from the open and transparent nature of
the blockchain technology,  great  convenience is  provided for
researchers to study the complete traces of financial activities
in  cryptocurrencies.  Therefore,  CTNE  has  attracted  wide
attentions.  This  paper  thoroughly  reviews  the  latest  research
of  CTNE  from  static  to  dynamic  versions.  Firstly,  CTN  and
the  research  status  of  network  embedding  models  are  intro-
duced.  Afterwards,  the  progress  of  CTNE  from  the  static  to
dynamic perspectives is introduced, where the state-of-the-art
is comprehensively reviewed, categorized and discussed. Sub-
sequently,  the  typical  CTNE  evaluation  metrics  and  datasets
are  summarized.  Several  popular  CTNE  models  are  also
empirically  validated  to  show  their  performance.  Eventually,
potential opportunity and direction of future research are sum-
marized.  We  hope  that  this  review  can  stimulate  researchers
and  engineers  to  perform  more  and  more  research  of  CTNE
and its applications.
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