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Abstract-In this paper, we solve the Hoc robust optimal 
control problem for discrete-time nonlinear systems with con
trol saturation constraints using the iterative adaptive dynamic 
programming algorithm. First, a heuristic dynamic programming 
algorithm is derived to solve the Hamilton-Jacobi-Isaacs equation 
associated with the Hoc control problem, and a convergence 
analysis is provided. Then, a dual heuristic dynamic program
ming algorithm with nonquadratic performance functional is 
developed to overcome the control saturation constraints. Finally, 
to facilitate the implementation of the algorithm, four neural 
networks are used to approximate the unknown nonlinear system, 
the control policy, the disturbance policy, and the value function. 

I. INTRODUCTION 

D DRING the last decades, adaptive dynamic program
ming (ADP) [1], [2] has received much attention as an 

intelligent scheme for solving the optimal control problems 
by an online data-based procedure, and the exact knowledge 
of the system is not required. Existing ADP approaches can 
be classified into several main schemes [3]: heuristic dy
namic programming (HDP), dual heuristic dynamic program
ming (DHP), globalized dual heuristic dynamic programming 
(GDHP), and their action-dependent (AD) versions, ADHDP, 
ADDHP, ADGDHP. The optimal state feedback control policy 
for nonlinear systems can be found by solving the Hamilton
Jacobi-Bellman (HJB) [4] equation, while it reduces to Riccati 
equation for linear quadratic regulator (LQR) problem. How
ever, the theoretical solution of the HJB equation is difficult 
to obtain due to its inherently nonlinear nature. Many efforts 
using ADP have been made to solve the HJB equation [5]
[7]. Reinforcement learning (RL) [8] is a machine learning 
method for an agent or controller to learn the optimal control 
policies based on the observed responses from the environment 
or system. In recent years, RL has been applied to feedback 
control [9]. The main algorithms of RL, i.e., policy iteration 
(PI) and value iteration (VI) have been developed to solve 
the HJB equation of the optimal control problems. PI algo
rithms contain policy evaluation and policy improvement [10]
[12], where an initial stabilizing control policy is required. 
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VI algorithms solve the optimal control problem without 
requirement of an initial stabilizing control policy [13]-[17]. 
However, most of the previous researches on ADP algorithms 
provide an online or offline approach to the solution of optimal 
control problems assuming that the system is not affected by 
disturbance. But the disturbance exists in reality and affects 
the control performance. The ADP algorithm considering the 
disturbance is the interest of our paper. 

As a kind of robust optimal control methods, the Hoo 
optimal control seeks to not only minimize a cost function, 
but also attenuates a worst-case disturbance [18]. The Hoo 
control problem was converted into an L2-gain optimal control 
problem [19] using the concept of dissipative system [20]. It 
relies on solving the Hamilton-Jacobi-Isaacs (HJI) equation 
which reduces to the game algebraic Riccati equation (GARE). 
The HJI equation is more difficult to solve than the HJB 
equation for the nonlinear dynamical systems. Furthermore, 
the Hoo control has a strong connection with zero-sum game 
[21], where the controller is a minimizing player and the 
disturbance is a maximizing player. The Nash equilibrium 
solution is usually obtained by means of offline iterative 
computation, and the exact knowledge of the system dynamics 
is required. 

In [22], Vrabie and Lewis presented an ADP algorithm for 
determining online the Nash equilibrium soulution for the two
player zero-sum differential game with linear continuous-time 
dynamics. For continuous-time nonlinear systems, Abu-Khalaf 
et a1. [23], [24] derived an Hoo suboptimal state feedback 
controller for constrained input systems. This method was 
offline and there existed two iterative loops. In [25], Zhang et 
a1. used four action networks and two critic networks to obtain 
the saddle point solution of the game, and the full knowledge 
of the system dynamics was required. In [26], Vamvoudakis 
and Lewis presented an online adaptive learning algorithm 
based on PI to solve the continuous-time two-player zero
sum game for nonlinear systems with known dynamics. In 
[27], Dierks and Jagannathan solved the HJI equation online 
and forward-in-time using a novel single online approximator
based scheme to achieve optimal regulation and tracking 
control of affine nonlinear continuous-time systems. In [28], 
AI-Tamimi et a1. solved online the zero-sum game of linear 
discrete-time (DT) system using HDP and DHP. In [29], 
Mehraeen et al. developed an iterative approach to solve 
offline the approximate HJI equation by using the Taylor 
series expansion of the value function and derived sufficient 
conditions for the convergence of the approximate HJI solution 



to the saddle point. 
To our knowledge, there still exist no results to solve the HJI 

equation for unknown discrete-time nonlinear systems with 
control saturation constraints. In this paper, we propose two 
value iteration methods based on HDP and DHP to solve 
the HJI equation for discrete nonlinear systems, in which the 
knowledge of the internal system dynamics is not needed. 
The method in [29] has two iterative loops, i.e., the control 
and disturbance policies are asynchronously updated. In our 
scheme, only one iterative loop is used, and the initial stabi
lizing control policy is not required. To prove the convergence 
of this scheme, we use relaxed dynamic programming method 
introduced in [30], [31]. To facilitate the implementation of the 
algorithm, four neural networks are used to approximate the 
unknown nonlinear system, the control policy, the disturbance 
policy, and the value function. 

The rest of the paper is organized as follows. Section II 
provides the problem formulation and DT HJI equation for 
nonlinear systems. In Section III, we derive the value iteration 
algorithm, give the convergence analysis, and then solve the 
control constraints problem. Section IV discusses the NN 
implementation of the iterative ADP algorithm and is followed 
by concluding remarks in Section V. 

II. PROBLEM FORMULATION 

Consider the discrete-time affine nonlinear dynamical sys
tems described by 

where Xk E 0 � IRn is the state vector, Uk = U(Xk) E 
Ou � IRm is the control input, and Wk = W(Xk) E IRq 
is the disturbance input. I(Xk) E IRn, g(Xk) E IRnxm and 
h(Xk) E IRnxq are smooth and differentiable functions. We 
denote Ou = {u(xk)l lui(Xk)1 � Ui, i = 1, . . .  ,m}, and let 
U = diag{ul, ... , um} be the constant diagonal matrix. We 
assume that the following assumptions hold throughout the 
paper. 

Assumption 1: 1(0) = 0, and Xk = 0 is an equilibrium 
state of the system. 

Assumption 2: 1 + gu + hw is Lipschitz continuous on a 
compact set 0 � IRn containing the origin. 

Assumption 3: The system (1) is controllable in the sense 
that there exists a continuous control policy on 0 that asymp
totically stabilizes the system. 

In this paper, we define the infinite horizon cost function as 
follows: 

00 

J(x o) = L {XfQXk + P(Uk) - 'Y2wf Wk} 
k=O 

00 

= L l(Xk, Uk, Wk),  (2) 
k=O 

where Q is positive definite matrix, P( Uk) E IR is also 
positive definite, and 'Y is a prescribed positive constant. 
For unconstrained control problem, P(Uk) can be chosen as 
quadratic form. To overcome control saturation constraints, we 

employ a non-quadratic functional [16] 

P(Uk) = 2 foUk 

'I/J-T(U-1s)URds, (3) 

where 'I/J-l(Uk) = [�-l(U lk)' . . .  ' �-l(Umk)V, R is positive 
definite diagonal matrix, s E IRm, 'I/J E IRm, 'I/J-T denotes 
('I/J-l)T. �O is a bounded one-to-one function satisfying 
I�OI � 1 and belonging to CP(p � 1) and L2(0), and it is a 
monotonic odd function with its first derivative bounded by a 
constant M. The hyperbolic tangent function �(.) = tanh(·) 
is one example satisfying these conditions. Besides, it is 
important to note that P(Uk) is positive definite since �-l(.) 
is a monotonic odd function and R is positive definite. 

Note that the control policy U(Xk) must not only stabilize 
the system on 0 but also guarantee that (2) is finite, i.e., the 
control policy must be admissible [7]. 

Definition 1: (Admissible Control Policy) A control policy 
u( x) is said to be admissible with respect to (2) on 0, denoted 
by u(x) E \li(0), if u(x) is continuous on a compact set 
o � IRn, u(O) = 0, u(x) stabilizes (1) on 0 and for \fx o E 0, 
J (x o) is finite. 

For the admissible control policy U(Xk) and disturbance 
policy W(Xk), define the value function as 

2 T } - 'Y Wi Wi . (4) 

The Hamilton function can be defined as 

According to [21], this control problem can be referred to 
a two-player zero-sum differential game, where the infinite
horizon value function is to be minimized by the control 
policy player U(Xk) and maximized by the disturbance policy 
player W(Xk). Our goal is to find the the feedback saddle point 
solution (u'k, wk) or the Nash equilibrium such that 

V*(x o) = minmax {V(x o,Uk,Wk)} (6) 
Uk Wk 

or V(U'k,Wk) � V(u'k, w'k) � V(Uk,W'k) for all Uk and Wk. 
The sufficient condition for the existence of a saddle point is 

min max {V(x o, Uk, Wk)} = max min {V(x o, Uk, Wk)} . (7) 
Uk Wk Wk Uk 

According to Bellman's optimality principle, the optimal value 
function V*(Xk) satisfies the DT HJI equation [28] 

V*(Xk) = minmax {l(xk,Uk,Wk) + V*(Xk+l)} . (8) 
Uk Wk 

The optimal control policy U*(Xk) and the worst case distur
bance W*(Xk) should satisfy 8H(Xk,Uk,Wk)/ 8uk = 0 and 
8H(Xk, Uk, Wk)/ 8 wk = O. Therefore, we obtain 

U*(Xk) = U'I/J (- �(U R)-lgT(Xk) 8V*(Xk+l) ) , (9) 
2 8Xk+l 



and 

*( ) 1 -2hT( ) 8V*(Xk+l) W Xk = -"( Xk !:l . 2 UXk+1 
Then, the DT HJI equation becomes 

(10) 

This equation reduces to GARB in the zero-sum linear 
quadratic case. However, in the general nonlinear case, the 
value function of the optimal control problem cannot be 
obtained. 

For the problem of disturbance attenuation, we need the 
definition of the L2-gain for DT nonlinear system. 

Definition 2: (L2-gain) The nonlinear system (1) with state 
feedback control policy Uk and disturbance policy Wk E L2 is 
said to have an L2-gain less than or equal to "( if 

f= {XrQXk + 2 rk 

1/J-TCU-IS)URdS} :::; f= "(2wr Wk. 
k=O io k=O 

(12) 
If there exists a neighborhood around the origin such that 
VWk E L2 the trajectories of the closed-loop system (1) 
starting from the origin remain in the same neighborhood, and 
(12) satisfies, the disturbance Wk is locally attenuated by a real 
value "( > O. Let "(* stands for the smallest "( for which the 
system is stabilized. Then, we can find a suboptimal Hoc state 
feedback controller for any "( > "(*. 

III. ITERATIVE ADA PTIVE DYNAMIC PROGRAMMING 

ALGORITHM FOR Hoc CONTROL 

This section consists of three subsections. The iterative HDP 
algorithm is developed to solve the Hoc control problem for 
DT nonlinear system in the first subsection. The corresponding 
convergence proof is presented in the second subsection, and 
the iterative DHP algorithm is given in the third subsection. 

A. Derivation of Iterative HDP Algorithm for Hoc Control 

Since direct solution of the HJI equation is computationally 
intensive, we present an iterative HDP algorithm based on 
Bellman's principle of optimality. 

First, we start with an initial value function Vo ( . ) = 0 which 
is not necessarily optimal and set "( > O. Then, we find VI (Xk) 
by solving 

Vi+I(Xk) = min max {XrQXk + 2 
{Uk 

1/J-T({j-ls)URds 
Uk Wk io 

- "(2wr Wk + Vi(J(Xk) + g(Xk)Uk + h(Xk)Wk) } 
(13) 

with i = O. The greedy policies Ui(Xk) and Wi(Xk) are updated 
by 

(14) 

and 

(16) 

with i = o. After VI (Xk) is found, we repeat the same value 
iteration process for i = 1,2, . . . .  Furthermore, it should 
be satisfied that Vi(O) = 0, Vi ?: O. Note that i is the 
iteration index and k is the time index. As a value iteration 
algorithm, this iterative ADP algorithm does not require an 
initial stabilizing controller. In the next section we will prove 
the convergence, i.e., Vi --+ V*, Ui --+ u* and Wi --+ W* as 
i --+ 00. 

B. Convergence Analysis of Iterative HDP Algorithm for Hoc 
Control 

Theorem I: (Monotonicity Property) Define the control 
policy sequence {Ui} as in (14), the disturbance policy se
quence {Wi} as in (15), and the value function sequence {Vi} 
as in (16) with Vo(-) = o. Then Vi+I(Xk) ?: Vi(Xk), Vi and 

Proof It is easy to see that VI (Xk) ?: VO(Xk) as UO(Xk) = 

WO(Xk) = O. Assume that Vi(Xk) ?: Vi-I(Xk), Vi and Xk. 

Vi+I(Xk) = min max {XrQXk + 2 rk 

1/J-T({j-IS)URds 
Uk Wk io 

- "(2wr Wk + Vi(J(Xk) + g(Xk)Uk + h(Xk)Wk) } 
?: min max {xr QXk + 2 

{Uk 

1/J-T (U-I s)U Rds 
Uk Wk io 

- ,,(2wr Wk+ Vi-I (J(Xk) +g(Xk)Uk +h(Xk)Wk) } 
= Vi(Xk). (17) 

Therefore, we complete the proof by mathematical induction. 
• 

Next, we will demonstrate the convergence of iterative HDP 
algorithm for Hoc control according to the work of [30] and 
[31]. 

Theorem 2: (Convergence Property) Suppose the condition 
0:::; V*(J(x)+g(x)u(x)+h(x)w(x)) :::; Ol(x, u, w) holds uni
formly for some 0 < 0 < 00 and that 0 :::; a V* :::; Vo :::; ,BV*, 
o :::; a :::; 1 and 1 :::; ,B < 00. The control policy sequence { Ui}, 
the disturbance policy sequence {Wi} and the value function 
sequence {Vi} are iteratively updated by (14), (15) and (16). 
Then the value function Vi approaches V* according to the 
inequalities 

[ a-I ] [ ,B- 1 ] 1+ (1+ 0-I)i V*(x):::; Vi(x):::; 1+ (1+ 0-I)i V*(x). 

Define Voc(Xk) = limi-toc Vi(Xk), then 

Voc(Xk) = V*(Xk). 

(18) 

(19) 



Proof" First, we will demonstrate that the system defined 
in this paper satisfies the conditions of Theorem 2. According 
to Assumption 2 that f + gu + hw is Lipschitz continuous, 
the system state cannot jump to infinity by any one step of 
finite control input, i.e., f(x) + g(x)u(x) + h(x)w(x) is finite. 
Considering that V* (x, U, w) is finite for any finite state and 
control and that l(x, u, w) is positive definite function, there 
exists some 0 < () < 00 that makes 0:::; V*(f(x)+g(x)u(x)+ 
h(x)w(x)) :::; ()l(x, u) hold uniformly. Besides, for any finite 
initial value function Va, there exist a and (3 such that 0 :::; 
aV* :::; Vo :::; (3V* is satisfied, 0 :::; a :::; 1 and 1 :::; (3 < 00. 

Next, we will demonstrate the left hand side of the inequal
ity (18) by mathematical induction, i.e., [ a-I ] 1 + (1 + ()-l)i V*(x):::; Vi(x). (20) 

When i = 1, since 

a-I 1 + () (()l(xk, U(Xk), W(Xk)) - V*(Xk+1)) :::; 0, 0:::; a :::; 1, 
and aV* :::; Vo, 't/Xk, we have 

V1 (Xk) = min max {l(xk' Uk, Wk) + VO(Xk+1)} Uk Wk 
2: min max {l(xk' Uk, Wk) + aV*(Xk+1)} Uk Wk 
2: min max { (I + ()a -()1) l(xk' Uk, Wk) Uk Wk 1 + 

+ (a- 7� �)V*(Xk+1) } 
= [ 1 + ( 1:�� 1) ] ��nn;�{I(xk,uk'Wk) 

+ V*(Xk+1)} 
= [ 1 + (t+ �� 1) ] V*(Xk). 

(21) 

(22) 

Assume that the inequality (20) holds for i - 1. Then, we have 

Vi(xk) = min max {l(xk' Uk, Wk) + Vi-1 (Xk+1)} Uk Wk 
2: min max { [ 1+( 

a
()--�A ·_1 ]V*(Xk+1) Uk Wk 1 + • 

+ l(xk' Uk, Wk) } 
2: min max { [I + 

(�- l)r] l(xk' Uk, Wk)+ Uk Wk + 1 • 

[ a - 1 (a - 1)()i- 1 ] * } 1 + (1 + ()-1 )i-1 - (() + l)i V (Xk+1) 

[ (a -1)()i ] . 
= 1+ (() )" mmmax{l(xk,uk, wk) + l' Uk Wk 

+ V*(Xk+d} 
= [ 1 + (1

(:�!;)i ] V*(Xk). 

(23) 

Thus, the left hand side of the inequality (18) is proved and 
the right hand side can be shown by the same way. 

Lastly, we will demonstrate the convergence of value func
tion as the iteration index i goes to infinity. When i ---+ 00, for 
o < () < 00, we have 

and 

Therefore, we can get 

(26) 

The proof is completed. • 
Remark 1: From the above demonstration, we know that 

we can find upper and lower bounds for every iterative value 
function based on the optimal value function. As the iterative 
index i increases, the upper bound will exponentially approach 
the lower bound. When the iterative index i goes to infinity, the 
upper bound will be nearly equal to the lower bound, which is 
just the optimal value function. From Theorem 2, we can also 
find the convergence speed of the value function. According to 
the inequality (18), smaller () will lead to faster convergence 
speed of the value function. Moreover, it should be mentioned 
that conditions in Theorem 2 can be satisfied according to 
Assumptions 1-3, which are some mild assumptions for 
general control problems. Specially, when Vo(-) = 0, we can 
have a = 0, (3 = 1. From the inequality (18), we have 

[ 1- (1 + �-l)i ] V*(x) :::; Vi(x) :::; V*(x). (27) 

According to the results of Theorem 2, we can derive the 
following corollary. 

Theorem 3: Define the control policy sequence {ud as in 
(14), the disturbance policy sequence {Wi} as in (15), and the 
value function {Vi} as in (16) with Vo(-) = O. If the system 
state Xk is controllable, then the control pair (Ui,Wi) converges 
to the saddle point (u*,w*) as i ---+ 00. 

Proof" According to Theorem 2, we have proved that 
limi--+oo Vi(xk) = Voo(Xk) = V*(Xk), so 

That is to say the value function sequence {Vi} converges to 
the optimal value function of the DT HJI equation. Consider
ing (9) and (14), (10) and (15), the corresponding control pair 
(Ui,Wi) converges to the saddle point (u* ,w*) as i ---+ 00. • 

C. Derivation of iterative DHP Algorithm for Hoo Control 

We find that there exists an integral term to compute in (16), 

i.e., 2JoUi(Xk)1jJ-TCU-1S)URds. To reduce the computing 
burden, we develop iterative DHP algorithm to solve Hoo 
control for DT nonlinear systems with control saturation 



and 

(32) 

The initial costate function is chosen as AOO = 0, and the 
iterative process of DHP algorithm is as the same as HDP 
algorithm. 

Remark 2: In this paper, we assume that the value function 
V(x) is smooth so that the costate function A(X) exists. 
Furthermore, the costate function sequence is also convergent, 
i.e., Ai � A*, Ui � u* and Wi � W* as i � 00, which is not 
included due to the space limitations. 

IV. IM PLEMENTATION O F  THE ITERATIVE ADA PTIVE 

DYNAMIC PROGRAMMING ALGORITHM 

In Section III, we have demonstrated the convergence of the 
iterative ADP algorithm under the assumption that the costate 
function (30), the control policy (31), and the disturbance 
policy (32) update equations can exactly be solved at each 
iteration. However, it is difficult to solve these equations for 
unknown nonlinear systems. In this section, we will use neural 
networks (NN) to implement the iterative ADP algorithm. 

The structure diagram of the iterative DHP algorithm is 
given in Fig. I. In the DHP algorithm, there are four neural 
networks, which are model network, critic network, action 
network, and disturbance network. The model network ap
proximates the unknown nonlinear system, the critic network 
approximates the costate function Ai(Xk), the action network 
approximates the control policy Ui(Xk), and the disturbance 
network approximates the disturbance policy Wi(Xk). 

/ ....... _----------------------------------! 

,/ i qilic A;+, (Xk) ,,¢Iwork 
j' 

aX'+1 T 2Qx, 
ax, i-t�o---"--"-! 

\ \ ......................................................... 1 
\_----------------------------------------------------------------------j 

Fig. I. The structure diagram of DHP algorithm 

We chose the two-layer feed-forward NN as our function 
approximation scheme. The first step is to train the model 
network. The output of model network is denoted as 

Xk+l = w;,a(zk) = w;,a(v;,zk)' (33) 

where Zk = [Xk Ui(Xk) Wi(Xk)]T is the input vector of model 
network. The error function for training model network is 
defined as 

em(Xk) = Xk+l - Xk+l, (34) 

and the objective function to be minimized is defined as 

1 T Em(Xk) = 2em(xk)em(xk). (35) 

When the weights of model network converge, these weights 
are kept unchanged. Then, the estimated value of the control 
coefficient matrix g(Xk) is given by 

'( ) _ 8(w;,(k)a(zk)) 
9 Xk - 8 ' Uk (36) 

and the estimated value of the disturbance coefficient matrix 
h(Xk) is given by 

h'( ) = 
8(w;,(k)a(zk)) Xk 8 . Wk 

The output of the critic network is denoted as 

(37) 

- T T Ai+l(Xk) = wcCi+l)a(vc(i+l)Xk)' (38) 

The target costate function is given in (30), where Ai(Xk+l) = 

W�i)a(v�i)Xk+l)' Then, the error function for training critic 
network is defined as 

ec(i+l)(Xk) = 'xi+l(Xk) - Ai+1(Xk), (39) 

and the objective function to be minimized is defined as 

1 T Ec(i+l) (Xk) = 2ecCi+l) (xk)ecCi+1) (Xk)' (40) 

In the action network, the state Xk is used as input to obtain 
the optimal control. The output can be formulated as 

(41) 

The target of control input is calculated in (31). The error 
function of the action network can be defined as 

(42) 



The weights of the action network are updated to minimize 
the following objective function: 

1 T Ea(i) (Xk) = "2ea(i) (xk)ea(i) (Xk)' (43) 

In the disturbance network, the state Xk is used as input to 
obtain the worst case disturbance policy. The output can be 
formulated as 

(44) 

The target of disturbance input is calculated in (32). The error 
function of the disturbance network can be defined as 

(45) 

The weights of the disturbance network are updated to mini
mize the following objective function: 

1 T Ed(i) (Xk) = "2ed(i) (xk)ed(i) (Xk). (46) 

With these objective functions, many methods like gradient 
descent algorithm and Levenberg-Marquardt algorithm can be 
used to tune the weights of NN. 

V. CONCLUSIONS 

In this paper, the Hoo control for discrete-time nonlinear 
systems using iterative adaptive dynamic programming al
gorithm is developed. The heuristic dynamic programming 
algorithm is derived to solve the Hamilton-Jacobi-Isaacs equa
tion, and the convergence analysis is rigorously proved. The 
dual heuristic dynamic programming algorithm with non
quadratic performance functional is given to overcome the 
control saturation constraints. Four neural networks are used to 
approximate the unknown nonlinear system, the control policy, 
the disturbance policy, and the value function. 
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