
 

Enhancing Iterative Learning Control With
Fractional Power Update Law

Zihan Li , Dong Shen , Senior Member, IEEE, and Xinghuo Yu , Fellow, IEEE

 
   Abstract—The  P-type  update  law  has  been  the  mainstream
technique used in iterative learning control (ILC) systems, which
resembles linear feedback control with asymptotical convergence.
In  recent  years,  finite-time  control  strategies  such  as  terminal
sliding mode control have been shown to be effective in ramping
up convergence speed by introducing fractional power with feed-
back.  In  this  paper,  we  show  that  such  mechanism  can  equally
ramp up  the  learning  speed  in  ILC systems.  We first  propose  a
fractional  power  update  rule  for  ILC  of  single-input-single-out-
put  linear  systems.  A  nonlinear  error  dynamics  is  constructed
along  the  iteration  axis  to  illustrate  the  evolutionary  converging
process.  Using  the  nonlinear  mapping  approach,  fast  conver-
gence towards the limit cycles of tracking errors inherently exist-
ing  in  ILC  systems  is  proven.  The  limit  cycles  are  shown  to  be
tunable to determine the steady states. Numerical simulations are
provided to verify the theoretical results.
    Index Terms—Asymptotic  convergence,  convergence  rate,  finite-
iteration tracking, fractional power learning rule, limit cycles.
  

I.  Introduction

MOST production systems operate in a batch mode, where
the  plant  repeatedly  completes  a  given  task  in  a  finite-

time interval.  In such systems,  traditional  control  methodolo-
gies  based  on  the  feedback  principle  fail  to  improve  control
performance from one batch to another. To effectively use the
experience  in  previous  batches,  iterative  learning  control
(ILC)  has  been  proposed  and  has  attracted  substantial  atten-
tion [1]. It improves control performance by refining the input
signal based on tracking errors generated in previous batches,
in  addition  to  establishing  an  inherent  feedback  principle
between successive batches for input generation and a connec-
tion  between  ILC  and  conventional  control  methodologies.
Various theoretical issues have been comprehensively investi-
gated,  such  as  nonrepetitive  uncertainties  [2],  data-driven
methods  [3],  novel  control  structure  [4],  networked  informa-
tion communication [5], and stochastic learning control [6].

In  the  literature,  two  fundamental  design  paradigms  have

been longstanding principal ideas of ILC. The first is the con-
traction mapping (CM) method based on the fixed point prin-
ciple [7]–[9]. The tracking error is linearly added to the input,
referred to as the P-type update law, such that a contraction is
established for the input/output error along the batch axis. The
other is  the adaptive ILC (AILC) method associated with the
Lyapunov function  for  analysis  [10]–[12].  The  system is  lin-
early  parameterized,  and  unknown  parameters  are  iteratively
estimated  following  the  P-type  update  law.  Asymptotic  con-
vergence  of  tracking  errors  is  ensured  generally  as  the  batch
number  increases  to  infinity.  However,  the  improving  effect
degrades as the error magnitude is reduced because of the lin-
ear learning structure in both paradigms. This is an outstand-
ing issue and designing a novel paradigm with an accelerated
convergence rate is of great interest and importance.

This  observation  motivates  studies  on  finite-iteration  con-
vergence  of  ILC  [13],  [14].  However,  it  was  limited  to  the
exponentially  decreasing  trend  of  tracking  error  strongly
related  to  the  CM method.  Further,  it  only  guarantees  finite-
iteration convergence to a prior specified bounded zone rather
than zero. In other words, the inherent convergence rate is not
accelerated,  especially at  the later stage where the output has
approached  the  neighbourhood  of  the  desired  reference.  To
solve  this  problem,  one  promising  direction  is  to  introduce  a
batch-varying  gain  sequence  into  the  scheme  [15].  However,
the  gain  adaptation  mechanisms  are  primarily  for  stochastic
systems to address the noise effect.

It  should be noted that  the convergence behaviors of  exist-
ing paradigms are generally unsatisfactory when tracking per-
formance is required to reach a high level of precision. In par-
ticular,  the  constant  and  manually  selected  varying  learning
gains cannot assist  in effectively utilizing the available infor-
mation for update at this stage. This inspires us to look beyond
the P-type update law in both paradigms, investigating a non-
linear  update  schema  which  may  deliver  superior  perfor-
mance.

In this paper,  we propose a fractional power update rule to
improve  convergence  speed,  inspired  by  finite-time  con-
trollers  (FTCs)  [16]–[18]  and  terminal  sliding  mode  control
(TSMC) [19]–[21].  With  continuous-time sliding  model  con-
trol,  FTC can be realized by designing fractional  power slid-
ing manifolds, resulting in TSMC. Furthermore, many control
laws have been designed to enable finite-time convergence by
using the fractional-power Lyapunov function [22]–[24]. Note
that  finite-time  convergence  may  be  reduced  to  a  bounded
zone  for  discrete-time  systems  [25],  [26].  Inspired  by  the
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above results, we replace the linear update term in the P-type
update  rule  by a  fractional  power  term to  accelerate  the  con-
vergence rate.

We  consider  ILC  of  the  single-input-single-output  (SISO)
time-invariant  linear  systems,  which  can  be  extended  to  the
time-varying case. The update rule is built  as a linear combi-
nation of  the input  and fractional-power tracking error  of  the
previous  iteration.  This  significantly  differs  from  the  tradi-
tional  linear  update  in  the  CM and  AILC methods.  The  pro-
posed update rule follows a nonlinear update mode in essence,
whereas  the  update  mode  is  linear  for  both  CM  and  AILC
methods.  Therefore,  the  analysis  methods  of  CM  and  AILC
are  no  longer  applicable.  We  establish  asymptotic  conver-
gence  (Theorems  1–3)  and  depict  limit  cycles  of  the  error
dynamics (Theorem 4) for the novel update approach over the
time interval using the nonlinear mapping approach. A nonlin-
ear error dynamics is constructed in relation to the batch num-
ber  and  its  evolution  behavior  is  carefully  investigated.  The
convergence  is  established  by  combining  two  key  evolution
properties,  i.e.,  strict  contraction  between  adjacent  iterations
for large tracking errors and locally asymptotical stability for
small  tracking  errors.  This  analysis  method  includes  the  CM
method as a special case. Numerical simulations are provided
to  demonstrate  possible  limit  cycles  and  accelerated  conver-
gence performance.

To the best of our knowledge, this study is the first to inves-
tigate  the  use  of  fractional  power  in  ILC  as  a  new  design
paradigm. The contributions are threefold. First, the proposed
algorithm  follows  a  nonlinear  update  mode  to  provide  more
possibilities  for  extending  learning  ability.  Second,  the  frac-
tional  power  term  can  be  regarded  as  a  product  of  a  regular
error and an error-based varying gain. Thus, the convergence
rate  is  adaptively  regulated  according  to  practical  perfor-
mance. Third, the fractional power update rule resembles fast
convergence  exhibited  in  FTC  and  TSMC.  In  addition,  the
conventional  P-type  update  rule  can  be  considered  as  a  spe-
cial  case of  the proposed update rule by letting the power be
equivalent  to  one.  The  novelty  of  this  study  lies  in  the  pro-
posal of a fractional power update rule for ILC systems, non-
linear mapping-based convergence analysis method, and com-
prehensive characterization of limit cycles of tracking errors.

The  remainder  of  this  paper  is  organized  as  follows.  Sec-
tion  II  presents  problem  formulation  and  preliminaries.  Sec-
tion  III  addresses  asymptotic  convergence  as  the  iteration
number  increases  and  depicts  limit  cycles.  Section  IV  pro-
vides  numerical  simulations  to  verify  the  theoretical  results.
Section V concludes the paper.

limk→∞ xk = ±x∗

{xk} x∗

−x∗ limk→∞ x2k = x∗ limk→∞ x2k+1 =

−x∗ limk→∞ x2k = −x∗ limk→∞ x2k+1 = x∗ ρ(A)
ect etc

ect
etc

ect = |etc|

Notations: We  use  to  denote  that  the
sequence  converges  to  a  limit  cycle  consisting of  and

.  It  is  understood  that  as , 
 or , .  denotes the

spectral radius of a matrix A. We use  and  to denote the
limit of the error sequence at time instant t, where  denotes
the  absolute  value,  and  denotes  its  possible  values,  i.e.,

.  

II.  Problem Formulation

Consider the following SISO system:

 

xk(t+1) = Axk(t)+buk(t)

yk(t) = cxk(t) (1)
xk(t) ∈ Rm uk(t) ∈ R yk(t+1) ∈ R

A ∈ Rm×m b ∈ Rm

cT ∈ Rm

t = 0,1, . . . ,n k ∈ N

where , ,  and  are  the  state,
input,  and  output,  respectively.  Matrices , ,
and  have  appropriate  dimensions.  Furthermore,

 and  are  the  time  and  iteration  labels,
respectively, where n represents the iteration length.

xk+1(0) = xk(0) ∀k
Assumption 1: For each iteration, the initial state is reset to

the same value, i.e., , .
Assumption  1  is  more  relaxed  than  the  well-known identi-

cal initialization condition (i.i.c.), which is widely used in the
literature.  In  this  study,  we  employ  this  assumption  to  sim-
plify  subsequent  derivations  and  highlight  our  main  innova-
tions.  Extensions  to  other  variants  of  the  initialization  condi-
tion can be studied in future research.

For (1), we apply the fractional power update rule
 

uk+1(t) = uk(t)+α|ek(t+1)|γsgn(ek(t+1)) (2)
0 < γ < 1 ek(t)

ek(t) ≜
yd(t)− yk(t) yd(t)

αcb > 0 sgn(·)

where α, ,  and  denotes  the  learning  gain,  frac-
tional  order,  and  tracking  error,  respectively.  Here, 

 where  denotes the reference. Both α and γ are
arbitrary  constants.  Throughout  this  article,  we  assume

. In addition,  represents the sign function.

uk+1(t) = uk(t)+αek(t+1)
ek(t+1)

|ek(t+1)|γsgn(ek(t+1))
|ek(t+1)|γsgn(ek(t+1))

|ek(t+1)|

Remark  1: We  compare  (2)  with  the  widely-used  P-type
update  rule .  We  observe  that  the
innovation term  in the P-type update rule is replaced
by  in  (2).  While  the  tracking  error
decreases  to  zero,  would  be  larger
than , implying that the update intensity of (2) will be
stronger  than  the  P-type  update  rule.  This  is  an  intuition  for
accelerating  the  convergence  rate  by  the  fractional  power
update rule (2). In addition, if we let γ be one, (2) becomes the
P-type  update  rule,  while  if  we  let γ be  zero,  (2)  becomes  a
bang-bang-like update rule [27]. In other words, the proposed
update  rule  bridges  the  P-type  and  bang-bang-like  update
rules.

δxk(t) = xk+1(t)− xk(t) δuk(t) = uk+1(t)−uk(t)Denote  and  as
the state- and input-difference of adjacent iterations. From (1),
we present the iteration of the tracking error
 

ek+1(t) = ek(t)− cδxk(t)

= ek(t)− cAδxk(t−1)− cbδuk(t−1)

= ek(t)−αcb|ek(t)|γsgn(ek(t))− cAδxk(t−1)

= ek(t)−αcb|ek(t)|γsgn(ek(t))

−α
t−1∑
j=1

cA jb|ek(t− j)|γsgn(ek(t− j)). (3)

Control Objective: Our objective is to establish the conver-
gence theory for the fractional power update rule (2) based on
the error dynamics given by (3) in this study. In particular, we
will  prove  the  iteration-wise  convergence  and  determine  the
convergence limit (cycles) for (2).

To  facilitate  the  analysis,  we  first  present  several  defini-
tions  and  technical  lemmas.  The  proofs  for  the  lemmas  are
given in the appendix for readability.

{xk} xkDefinition 1 (Limit cycle): For the sequence ,  is called
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±xc |xk | → xc
k > K xk xk+1

to converge to the limit cycle  if  and there exists
K such that for any ,  and  have the opposite sign.

a) ∼ f )Definition 2: We have following definitions :

f : Rn→ Rn f i(u) ≜ f ( f (· · · f (u)))︸          ︷︷          ︸
i

a) Given , define ;

b) u ∈ Rn r > 0
B(u,r) = {v ∈ Rn : ∥v−u∥ < r}

 For  and , a ball with a center u and radius r is
defined by ;

c) f (v) = v
∀ε > 0 ∃δ > 0 u ∈ B(v, δ) f i(u) ∈ B(v, ε)
i = 1,2, . . . ,

 Suppose v is  the  equilibrium  of f,  i.e., .  If  for
, ,  such  that  when , ,

 v is local stable;
d) B(v,r) limi→∞ f i(u) = v

u ∈ B(v,r) B(v,r)
 If there exists a ball  such that  for

every , v is an attractor in ;
e) If v is stable and locally attractive, v is locally asymptoti-

cally stable;
f) r =∞ If  in d) and v is stable, v is globally asymptotically

stable.

V : Rn→ R V(v) = 0
u , v V(u) > 0

u ∈ B ∆V(u) = V( f (u))−V(u) ≤ 0 V(x)
∀u , v u ∈ B ∆V(u) < 0

V(x)

Definition  3: Assume v is  the  equilibrium  of f.  Function
 is  continuous  satisfying  and  for  every

, . If there exists a ball with a center v such that
for  any , ,  is  called  a
Lyapunov  function  of f at v.  If  and , ,

 is called a strict Lyapunov function.
v ∈ Rn

f : Rn→ Rn
Lemma  1  ([28]): Assume  is  the  equilibrium  of

.  Suppose there  exists  a  ball  with  a  center v such
that f is  continuous  in  the  ball.  If  there  exists  a  Lyapunov
function of f at v, v is stable. If the Lyapunov function is strict,
v is locally asymptotically stable.

∥ f (u)− v∥ < ∥u− v∥ ∀u ∈ B v , u
uk+1 = f (uk)

Lemma 2: Assume v is  the equilibrium of f and B is  a  ball
with a center v. If , , , the itera-
tive sequence generated by  with any initial value
in B eventually converges to v.

xk+1 = f (xk)
f (x) x∗

| f ′(x∗)| > 1 x0
xk = x∗ xk↛ x∗

Lemma  3: Consider  an  iterative  sequence ,
where  is  continuously  differentiable.  Assume  is  the
equilibrium and .  For  any  initial  value ,  if  there
does not exist k satisfying , we have .

Then, we consider the case of nonlinear vector mapping as
follows:
 

X(k+1) = F(X(k)) (4)
X(k+1) = [x1(k), x2(k), . . . , xn(k)]T ∈ Rnwhere  and

 

F(X(k)) =


f1(x1(k), x2(k), . . . , xn(k))
f2(x1(k), x2(k), . . . , xn(k))

...

fn(x1(k), x2(k), . . . , xn(k))


.

∇ f (x1, x2, . . . , xn) ≜
[
fx1 , fx2 , . . . , fxn

]T ∇F(X) ≜[
∂ fi
∂x j

]
n×n

Define  and 

.
X∗ = [x∗1, x

∗
2, . . . , x

∗
n]T

X∗ = F(X∗) ρ(∇F(X∗)) < 1
B(X∗,r) X∗
X(0) = X0 ∈ B(X∗,r)
limk→∞ X(k) = X∗

Lemma  4: Suppose  is  the  equilibrium
of (4), that is, . If , there exists a ball

 with  center  and  radius r such  that,  for  any
 as  the  initial  value  of  (4),  we  have

.  

III.  Convergence Analysis of Fractional Power
Update Rule

In  this  section,  we investigate  the  convergence  of  the  frac-

t = 1

t = 2

tional power update rule (2) based on error dynamics (3). We
analyze the rule following the induction principle with respect
to the time label t.  The case of  corresponds to a special
case of the error dynamics (3) yielding a straightforward con-
vergence analysis.  For  the  case  of ,  an  additional  distur-
bance  term  arises  in  the  error  dynamics,  which  complicates
the analysis; however, the discussions of the following induc-
tive  cases  are  straightforward  following  this  case.  After  that,
the convergence limit cycles are summarized in Section III-D.  

t = 1A.  Case: 
t = 1Let us start with the case of  for (3)

 

ek+1(1) = ek(1)−αcb|ek(1)|γsgn(ek(1)). (5)
We  first  clarify  the  limit  (cycle)  of  (5)  provided  that  it

exists. In particular, we have two scenarios:
1) ee(1) ek+1(1)

ek(1) ee(1) ee(1) = 0
 Assuming  an  equilibrium  exists,  replacing 

and  in (5) with  leads to ;
2) ±ec(1) ek+1(1)

ek(1) ec(1) −ec(1)
ec(1) = αcb

2 |ec(1)|γsgn(ec(1)) ec(1) = (αcb
2 )

1
1−γ ec(1) > 0

ec(1) = −(αcb
2 )

1
1−γ ec(1) < 0

 Assuming  a  limit  cycle  exists,  replacing 
and  in (5) with  and , respectively, results in

; thus,  if 
and  if .

ee(1) = 0

ec(1) = ±
(
αcb

2

) 1
1−γ

Then, we obtain the possible limits: an equilibrium 
and a limit cycle .

Taking the absolute value for the both sides of (5), we have
 

|ek+1(1)| = |ek(1)−αcb|ek(1)|γsgn(ek(1))|

= |1−αcb|ek(1)|γ−1| · |ek(1)|. (6)
|ek(1)| ≥ (αcb)

1
1−γ |ek+1(1)| = φ(|ek(1)|) ≜ (1 −

αcb|ek(1)|γ−1)|ek(1)| A+ ≜ {a ≥ 0 :
i such that φi(a) = 0}

|ek(1)|

When , 
.  We  denote  the  set  there

exists  an  integer .  The  following  lemma
illustrates the convergence of .

|ek(1)| > 0
|e0(1)| ∈ A+ |ek(1)| = 0 k ≥ k1

k1 |e0(1)| ∈ [0,∞)\A+
limk→∞ |ek(1)| = (αcb

2 )
1

1−γ

Lemma 5: Suppose  satisfies the difference equa-
tion (6). If , we obtain  for , where

 is  a  suitable  number.  If ,  we  have
.

|e0(1)| ∈ A+ |ek(1)| ≡ 0 k ≥ k1
k1 |e0(1)| ∈ [0,∞)\A+

|e0(1)|

Proof: If ,  for  where an integer
 exists.  We  consider  the  case .  The  dis-

cussion is divided into two scenarios according to the range of
the initial value .

0 < |e0(1)| < (αcb)
1

1−γ

0 < |ek+1(1)| < (αcb)
1

1−γ 0 < |ek(1)| < (αcb)
1

1−γ

f (x) = |x−αcb|x|γsgn(x)| |ek+1(1)| =
f (|ek(1)|) 0 < x < (αcb)

1
1−γ f (x) = αcbxγ − x

f ′(x) = γαcbxγ−1−1 = 0 x = x0 ≜

(γαcb)
1

1−γ < (αcb)
1

1−γ x ∈ (0, x0) f ′(x) > 0 f (x)
|ek(1)| ∈ (0,

(αcb)
1

1−γ )

Scenario  A: .  We  first  prove  that
 if .  Construct  a

function: . It is evident that 
. For any , we have .

Calculating ,  we  have 
.  Then,  for ,  and 

is  monotonically  increasing.  Thus,  when 
,

 

|ek+1(1)| = f (|ek(1)|) ≤ f (x0) = γ
1

1−γ (
1
γ
−1)(αcb)

1
1−γ

= γ
γ

1−γ (1−γ)(αcb)
1

1−γ < (αcb)
1

1−γ .

|ek+1(1)| ∈ (0, (αcb)
1

1−γ )That is, .
ec1 ≜ (αcb

2 )
1

1−γ er ≜ (αcb)
1

1−γDefine , . Next, we prove that for
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|ek(1)| ∈ (0, (αcb)
1

1−γ ) |ek(1)| , ec1 | f (|ek(1)|)−
ec1| <

∣∣∣|ek(1)| − ec1
∣∣∣ ∇2 f = γ(γ−1)αcbxγ−2 < 0 f (x)

x ∈ (0, (αcb)
1

1−γ )∣∣∣∣ f (x)− f (0)
x

∣∣∣∣ ≤ 1 0 ≤ x ≤
ec1 ec1 y = x

y = f (x)
∣∣∣∣ f (er)− f (ec1)

er−ec1

∣∣∣∣ = ( αcb
2 )

1
1−γ

(αcb)
1

1−γ −( αcb
2 )

1
1−γ
=

1

2
1

1−γ −1
< 1 |ek(1)| ∈ (0, (αcb)

1
1−γ ) |ek(1)| ,

ec1

∣∣∣∣ f (ec1)− f (|ek(1)|)
ec1−|ek(1)|

∣∣∣∣ < 1 | f (ec1) − f (|ek(1)|)| <
∣∣∣ec1 −

|ek(1)|
∣∣∣

every , ,  we  have 
.  Because , 

is  a  strictly  concave  function  if .  Observing
the graph of f in Fig. 1, we have  for any 

 because  is  the  intersection  point  of  the  line  and

curve .  Moreover, 

. Therefore, for every , 

, ;  that  is, 
.

 

0 0.5 1.0

f (
x)

1.5 2.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

f (x) = x
f (x) = |x − αcb|x|γsgn(x)|

ec1

 
f (x) = |x−αcb|x|γsign(x)| f (x) = x αcb = 1

γ = 1
2

Fig. 1.     Graph of  and  with  and
.

 
ec1

(αcb
2 )

1
1−γ (0, (αcb)

1
1−γ )

0 < |e0(1)| < (αcb)
1

1−γ

limk→∞ |ek(1)| = (αcb
2 )

1
1−γ

Because  is the equilibrium of f, by Lemma 2, we obtain
that  is asymptotically stable in . In other
words,  for  every ,  we  can  obtain

.
|e0(1)| > (αcb)

1
1−γ |e0(1)| <A+

|ek(1)| < (1−αcb|e0(1)|γ−1)k |e0(1)| → 0

|ek(1)| ∈ (0, (αcb)
1

1−γ ) ∀k > K

Scenario B:  and . From (6), it
follows .  This  demon-
strates that there must exist a sufficiently large integer K such
that , . This brings us back to Sce-
nario A. ■

A ≜ {a : either a ∈ A+ or −a ∈ A+}
A

Denote .  It  is  clear  that
 consists of infinite discrete values.  The following theorem

is a corollary of Lemma 5.
e0(1) ∈ A

k1 ek(1) = 0 k ≥ k1

e0(1) ∈ [0,∞)\A limk→∞ |ek(1)| = (αcb
2 )

1
1−γ

ek(1) ek+1(1)

Theorem  1: Consider  the  error  dynamics  (5).  If ,
there  exists  such  that  for  every .  If

,  we  obtain ,  and
when k is  sufficiently  large,  and  have  opposite
signs.

ek(1) ek+1(1)

|ek(1)| < (αcb)
1

1−γ

e0(1) <A ek+1(1) = (1−
αcb|ek(1)|γ−1)ek(1)

We merely need to demonstrate that  and  have
opposite  signs  for  a  sufficiently  large  number  of  iterations.
Based  on  Lemma  5,  it  is  evident  that  pro-
vided  that .  Then,  from  the  iteration 

, the conclusion is valid.
ek(1)

±(αcb
2 )

1
1−γ e0(1) <A

ek(2)

Theorem 1 illustrates that  converges to the limit cycle
 for  most  initial  values  (i.e., ).  Next,  we

demonstrate the case of .  

t = 2B.  Case: 
e0(1) ∈ A k1

ek(1) = 0 k ≥ k1
t = 2 t = 1

e0(1) <A

If  the  initial  value ,  there  exists  such  that
 for  every  (see  Theorem 1).  Then,  the  discus-

sion for  degenerates to the case of  given in Section
III-A. We consider the case . The error dynamics (3)
becomes
 

ek+1(2) = ek(2)−αcb|ek(2)|γsgn(ek(2))

−αcAb|ek(1)|γsgn(ek(1)). (7)

k→∞ ek(1) ±(αcb
2 )

1
1−γ

ek(2)
±ec2 ek(2)

ec2

As ,  is  approximately between ;  thus,
 cannot have any equilibrium. We denote the limit cycle
 of ,  assuming  its  existence.  Then,  we  consider  the

following iteration to solve :
 

xk+1 = xk −αcb|xk |γsgn(xk)+ (−1)k M1 (8)

M1 = |αcAb|eγc1 ec1 = (αcb
2 )

1
1−γ f1(x)

f2(x)
where  and .  Define  and

 as follows:
 

f1(xk) = xk −αcb|xk |γsgn(xk)+M1

f2(xk) = xk −αcb|xk |γsgn(xk)−M1.

f1(−x) = − f2(x)
f1(x) f2(x)

M1

xk+1 = − f1(xk) = f2(−xk) xk+1 = − f2(xk) = f1(−xk)
xk+1 = − f1(xk) = f2(−xk)

τ
τ

It is evident that  for any x. The image con-
sisting of  and  is symmetric about the center of the
origin,  where  the  distance  from the  origin  to  the  intersection
between  the  function  and  the  vertical  axis  is .  Thus,  the
convergence  of  iteration  (8)  is  closely  related  to  that  of  the
iteration  or .
That is, if the iteration  converges to a
limit , the iteration (8) converges to a limit cycle determined
by the limit , and vice versa.

The  limits  for  (8)  are  equivalent  to  the  intersection  of  the
two sets of curves below:
 

curve group 1 :
{y = −x+αcb|x|γsgn(x)−M1
y = x

curve group 2 :
{y = −x+αcb|x|γsgn(x)+M1
y = x.

Because  the  roots  of curve  group  1 and curve  group  2 are
opposite of each other, we only need to consider one of them.
Let us consider the first curve group. To this end, we define an
iteration as follows:
 

xk+1 = −xk +αcb|xk |γsgn(xk)−M1 ≜ g(xk). (9)

xk

x∗ ±x∗

M1

The solution of the first curve group corresponds to the limit
of  generated  by  iteration  (9)  provided  that  the  iteration  is
globally convergent, which will be shown below. Moreover, if
(9) converges to ,  the iteration (8) will  converge to .  In
other  words,  the  equilibrium  of  (9)  corresponds  to  the  limit
cycle of (8). We investigate the convergence of (9), for which
different  values  of  will  correspond  to  different  scenarios.
We discuss these different scenarios separately.

M1

P1(a1,a1) P1
y = x y = g(x) a1

y′ = −1+γαcb|x|γ−1 x , 0 y′ =∞

1) The first scenario corresponds to a large . In this sce-
nario,  the  two  curves  in curve  group  1 only  intersect  at  one
point,  as  depicted  in Fig. 2(a).  The  intersection  point  is
denoted by .  Because  is the intersection point of

 and ,  is  the  equilibrium  of  (9).  Taking  the
derivative  of  the  first  curve  in curve  group  1,  we  obtain

 if  and  otherwise,  indicating
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limx→±∞ |g′(x)| = 1 u ∈ R u , a1
|g(u)−a1| < |u−a1| P1

x0 xk
a1

that .  Thus,  for  any  and ,  we
obtain .  By  Lemma  2,  is  globally
asymptotically  stable.  Therefore,  for  any  initial  value , 
generated by (9) converges to .

P2(a2,a2) Q2(b2,b2) P2
Q2

−M1 < 0 a2 < 0 b2 > 0
g(x)

g(x) = b2 b21
b22(= b2) b23 b21 < b22 < b23

2)  The  second  scenario  corresponds  to  the  situation  where
two curves are tangent at one point, as depicted in Fig. 2(b). In
this  scenario,  the  two  curves  have  two  intersecting  points,
denoted  by  and ,  where  denotes  a
crossing  point  and  is  a  point  of  tangency.  Because

,  we  obtain  and .  Observing  the  graph,
by  the  increasing  and  decreasing  trends  of  the  function ,
the  equation  has  three  roots,  denoted  by ,

, and  in Fig. 2(b), where . We have
the following propositions:

x ∈ [b22,b23] g(x) ∈ [b22,

b23] x ∈ [b21,b22] g(x) ∈ [b21,b22]
Proposition 1: For  any ,  we obtain 

. For any , we obtain .
x > 0 g′ = 0 x = β ≜ (γαcb)

1
1−γ

b22 < β < b23 x ∈ [b22,b23] g(x) ≥
g(b22) = b22 g(x) ≤ g(x0) < β < b23 ∀x ∈ [b22,b23]
g(x) ∈ [b22,b23] ∀x ∈
[b21,b22] g(x) ∈ [b21,b22]

Proof: For , letting , we obtain .
Because , for any , we obtain 

 and . That is, ,
.  In  the  same  way,  we  can  prove  that 

, . ■
x ∈ R \ [b21,b23] |g(x)| <

|x| 0 < ρ(x) < 1 |g(x)| < ρ(x)|x|
Proposition  2: For  any ,  we  obtain 
. Thus, there is  such that .

g(x)
|x| > M |g′(x)| < 1

y = |g(x)| y = |x|
x ∈ R \ [b21,b23]

Proof: According to the derivative expression of , there
exists a constant M such that for any , . Thus,
the  graph  of  is  strictly  below  the  graph  of 
when . ■

x ∈ (b21,b22) |g(x)−a2| < |x−a2| x ∈ (b22,

b23) |g(x)−b2| < |x−b2|
a2

[b21,b22] b2
[b22,b23]

x0 ∈ R K(x0)
xk ∈ [b21,b23] k > K(x0) x0 ∈ R
xk+1 = g(xk) xk→ a2 xk→ b2

For  any , ;  for  any 
, .  According  to  Proposition  1  and

Lemma  2,  we  obtain  that  is  asymptotically  stable  in  the
interval  and  that  is  asymptotically  stable  in  the
interval .  According  to  Proposition  2,  for  any  initial
value ,  there  must  exist  an  integer ,  such  that

 for .  Therefore,  for  any  and
, it holds that either  or .

M1

P3(a3,a3)
Q3(b3,b3) R3(c3,c3)
g(x) = b3 b31 b32 = b3 b33

b31 < b32 < b33
x ∈ [b31,b32] g(x) ∈ [b31,b32]

x ∈ [b32,b33] g(x) ∈ [b32,b33]

3) The third scenario corresponds to a small . In this sce-
nario, the two curves intersect at three points, as illustrated in
Fig. 2(c).  The  intersecting  points  are  denoted  by ,

,  and  in  ascending  order.  The  equation
 has  three  roots,  denoted  by , ,  and .

Besides,  assume .  Similar  to  the  second  sce-
nario,  we  obtain  that  for  any , ,
and  for  any , .  Moreover,  for  any

x0 ∈ R K(x0)
xk ∈ [b31,b33] k > K(x0) xk

x0

initial value , there must exist an integer  such that
 for ,  where  is  generated  by  (9).

Combining  this  with  Lemma  3,  for  any  initial  value ,  we
obtain the following conclusions:

A) xk0 xk0 = b3 k > k0
xk = b3

 If  there exists  such that ,  for  any ,  we
obtain ;

B) xk , b3 ∀k ∈ N xk→ a3 xk→ c3 If , , either  or .

f1(x) f2(x)

xk+1 = −xk +αcb|xk |γsgn(xk)+M1

Thus far, we have discussed all the scenarios that can occur
for the iteration (9) corresponding to curve group 1.  Because

 and  are symmetric about the origin, the results for
curve group 2 are exactly the same. In other words, the limit
of the iteration  is similar to
that  of  (9).  The limit  points  of  the former iteration and those
of  (9)  are  symmetric  about  the  origin.  Summarizing  these
results, we obtain the convergence of (8).

t = 1
xk+1 = −xk +αcb|xk |γsgn(xk)

e1c ±e1c

Remark 2: In the same way, we can show that for , the
iteration  has  the  same  conver-
gence  behavior  as  (5).  Specifically,  if  the  equilibrium of  this
iteration is ,  constitutes the limit cycle of (5).

ek(1)

ek+1(2) = ek(2) −
αcb|ek(2)|γsgn(ek(2))+ (−1)kαcAb|ek(1)|γ

M1
αcAb|ek(1)|γ

Now,  we  go  back  to  the  convergence  of  the  error  iteration
(7). When k is sufficiently large,  will vary between posi-
tive  and  negative  values.  From  the  previous  discussions,  (7)
behaves  the  same  as  the  iteration 

.  We  should  empha-
size  that  the  convergence  of  (7)  differs  from  that  of  (8)
because the additional term (other than the main iteration vari-
able)  in (8) is  a  constant ,  but  it  is  iteration-varying in (7)
because of .

g1,k(x) = x−αcb|x|γsgn(x)+ |αcAb| · |ek(1)|γ
g2,k(x) = x−αcb|x|γsgn(x)− |αcAb| · |ek(1)|γ

ek+1(2) =
−g1,k(ek(2)) x⋆ xk+1 = −g1,k(xk) ±|x⋆|

We  define  and
.  These  two curves

are  symmetric  about  the  origin.  We  demonstrate  that  (7)  has
the  same  convergence  behavior  as  the  iteration 

. That is, if  is a limit of , 
constitutes the limit cycle of (7).

ek(1)
ek(1) > 0

ek(1) < 0

It  has  been  proven  that  converges  to  a  limit  cycle.
Without  loss  of  generality,  we  assume  that  for  the
odd iteration k and  for the even iteration k. Then, the
convergence of (7) is equivalent to the convergence of the fol-
lowing iteration:
 

xk+1 =

{
g1,k(xk), k is an odd number
g2,k(xk), k is an even number.

(10)

xk+1 = g2,k(−xk)
x⋆ ±|x⋆|

Lemma  6: If  the  iteration  converges  to  a
limit , (10) converges to a limit cycle .

 

f (
x)

−1.0 −0.5 0
x

0.5 1.0
−1.0
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1.0

(a)

f (
x)

−1.5 −1.0 −0.5 0
x

0.5 1.51.0

(b)

f (
x)

−1.0 −0.5 0
x

0.5

(c)

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

y = x
f (x) = −x + αcb|x|γsgn(x) − M1

y = x
g (x) = −x + αcb|x|γsgn(x) − M1

y = x
g (x) = −x + αcb|x|γsgn(x) − M1

*

P1(a1, a1)

P2(a2, a2)
(0, −M1

*)

Q2(b2, b2)

P3(a3, a3)

Q3(b3, b3)

R3(c3, c3)

b21 b22 b23 b31 b32 b33

 
M1 y = −x+αcb|x|γsgn(x)−M1 y = x P1(a1,a1) y = −x+αcb|x|γsgn(x)−M1

y = x P2(a2,a2) Q2(b2,b2) y = −x+αcb|x|γsgn(x)−M1

y = x P3(a3,a3) P3(b3,b3) R3(c3,c3)

Fig. 2.     (a) When  is large,  and  have only one intersection point ; (b) The case that 
and  have two common points, where  is the intersection point and  is the tangent point; (c) The case that 
and  have three intersection points: , , and .
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Proof: The proof is conducted in two steps. In the first step,
we  prove  that  when k is  sufficiently  large,  the  two  adjacent
iterations of  (10) have opposite  signs.  In the second step,  we
prove the conclusion.

limk→∞ |αcAb| · |ek(1)|γ = M1
ε > 0 ||αcAb| · |ek(1)|γ −M1| < ε

x∗

x−αcbxγ − (M1−ε) = 0 xk > 0

Step  1: Note  that .  For  any
,  we  have  when k is  suffi-

ciently  large.  Suppose  is  the  positive  root  of  the  equation
.  Picking  an  arbitrary ,  we  ob-

tain the following two cases:
xk+1 =

xk −αcbxγk − |αcAb| · |ek(1)|γ < xk −αcbxγk − (M1−ε)
Case 1 (k is an even number): In this case, we have 

.  We  dis-
cuss the solution in two scenarios.

0 < xk ≤ x∗ xk+1 < 0i) If , we obtain ;
x∗ < xk xk+1 < 0 xk xk+1

xk+1 ≥ 0
ii) For the scenario of , if ,  and  have

opposite signs. Otherwise, if , we obtain
 

xk+2 = xk+1−αcbxγk+1+ |αcAb| · |ek+1(1)|γ

= xk −αcbxγk − |αcAb| · |ek(1)|γ

−αcbxγk+1+ |αcAb| · |ek+1(1)|γ

≤ xk −αcbxγk −αcbxγk+1+2ε.

xk > x∗ ε
xk+2 < xk k′ > k

0 < xk′ < x∗ xk′+1 < 0

Because  and  is  a  sufficiently  small  number,  we
obtain .  Thus,  there  must  exist ,  which  is  an
even number such that  after which .

xk > 0
k′ ≥ k 0 < xk′ < x∗ xk′+1 < 0
|xk | < x∗ k > k′ |xk′ | < x∗

0 < xk < x∗

xk+1 < 0 −x∗

x−αcb|x|γ + (M1−ε) = 0
xk+1 > −x∗ h(x) ≜ x−αcbxγ − (M1+ε) h(x)

x = x0 ≜ (γαcb)
1

1−γ x > 0
h(x) x > 0 h(x0) =

(1− 1
γ )(γαcb)

1
1−γ − (M1+ε) r(x) ≜ x−

αcbxγ − (M1−ε) = 0
|h(x0)| xk+1 > −x∗ |h(x0)|

Combining  these  two  scenarios,  for  any ,  there  must
exist  such that  and . We now prove
that  is true for all  once . Without loss
of generality, we suppose . Based on the above dis-
cussion,  we obtain .  Clearly,  is  the negative root
of .  Hence,  we  only  need  to  prove

.  Denote ,  where 
takes  the  minimum  value  at  when .
Hence,  the  minimum  value  of  for  is 

. We consider the root of 
.  If  the  positive  root  of  this  equation  is

larger  than , .  Substituting  into  the
equation, we obtain
 

r(|h(x0)|) = |h(x0)| −αcb|h(x0)|γ −M1

=

(
1
γ
−1

)
(γαcb)

1
1−γ

−αcb
[(

1
γ
−1

)
(γαcb)

1
1−γ +M1

]γ
=

{(1
γ
−1

)
− 1
γ

[ (1
γ
−1

)
+ (M1+ε)(γαcb)

−1
1−γ

]γ}
(γαcb)

1
1−γ +2ε

≤
[(

1
γ
−1

)
− 1
γ

(
1
γ
−1

)γ]
(γαcb)

1
1−γ +2ε.

1
2 ≤ γ < 1 1

γ ( 1
γ −1)γ > ( 1

γ −1) 0 < γ < 1
2

1
γ ( 1
γ −1)γ > ( 1

γ −1)γ+1 > ( 1
γ −1)

ε r(|h(x0)|) < 0 xk+1 > −x∗

xk+2 < x∗ xk xk+1

If ,  we  have .  If ,  we
have .  Therefore,  for  a  suffi-
ciently small , we obtain  and . Using
the  same  method,  we  can  prove .  Thus,  and 
have the opposite signs for sufficiently large k.

M1 limk→∞ g1,k(x) = 0

xk xk+1
0 < ξ1 < |xk | < ξ2 < x∗ x∗

x−αcb|x|γ + (M+ε) = 0 ε
ξ1 ξ2

Case 2 (k is an odd number): This scenario corresponds to a
small value of . Then,  has two different
positive roots. Using similar analysis to Case 1, we obtain that

 and  have  opposite  signs  for  sufficiently  large k.  In
addition, we obtain , where  represents
the largest root of the equation ,  is a
sufficiently small positive number, and  and  are two posi-
tive constants.

Step 2: Based on Step 1, for Case 1 with sufficiently large k,
we rewrite (10) as
 

xk+1 =

{
xk −αcb|xk |γsgn(xk)+ |αcAb| · |ek(1)|γ, xk < 0
xk −αcb|xk |γsgn(xk)− |αcAb| · |ek(1)|γ, xk ≥ 0.
xk+1 xkBecause  and  have  opposite  signs,  taking  absolute

values of both sides, we obtain
 

|xk+1| = −|xk |+αcb|xk |γ + |αcAb| · |ek(1)|γ. (11)
Similarly, for Case 2 with sufficiently large k, we obtain

 

|xk+1| = −|xk |+αcb|xk |γ − |αcAb| · |ek(1)|γ (12)
ξ1 < |xk | < ξ2

xk+1 = g2,k(−xk)
xk+1 = g2,k(−xk) xk > 0

xk+1 = g2,k(−xk)
xk < 0

where .  The  equilibriums  of  (11)  and  (12)  are
same to  that  of .  The image of  (12)  is  identi-
cal to that of  for , whereas the image of
(11)  is  symmetric  with  that  of  about  the  ori-
gin for . ■

ek(1)
ek+1(2) = g2,k(−ek(2))

Noticing  that  converges  to  a  limit  cycle,  the  conver-
gence of  is equivalent to that of (13).

  ek+1(1)
ek+1(2)

 =G2

 ek(1)
ek(2)


=

 −ek(1)+αcb|ek(1)|γsgn(ek(1))
−ek(2)+αcb|ek(2)|γsgn(ek(2))− |αcAb| · |ek(1)|γ


(13)

 

G2

 ek(1)
ek(2)

−  e1c

e2c


=

 −ek(1)+αcb|ek(1)|γsgn(ek(1))− e1c

−ek(2)+αcb|ek(2)|γsgn(ek(2))− |αcAb| · |ek(1)|γ − e2c


=

 −ek(1)+αcb|ek(1)|γsgn(ek(1))− e1c

−ek(2)+αcb|ek(2)|γsgn(ek(2))−M1− e2c


+

 0
M1− |αcAb| · |ek(1)|γ

 . (14)

Note that
 

∇G2 =

 γαcb|ek(1)|γ−1−1 0

−γαcAb|ek(1)|γ−1 γαcb|ek(2)|γ−1−1

 . (15)

For the limit cycle, we obtain
 

∇G2
([ e1c

e2c

])
=

 γαcb|e1c|γ−1−1 0

−γαcAb|e1c|γ−1 γαcb|e2c|γ−1−1

 .
e2c

±e2c etc
ect ect = |etc|

M1

Here,  is  a  solution  of curve  group  1 (it  may  contain
more than one value, which can be positive or negative), i.e.,

 is  the  limit  cycle  of  (8).  Note  that  has  an  indetermi-
nate sign, whereas  denotes its absolute value, i.e., .
From  (13),  we  obtain  (14),  where  is  given  in  (8).  From
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ek(2) ek(1)(14), convergence of  has no influence on . Define
 

G2k ≜G2

 ek(1)
ek(2)

 ,E2k ≜

 ek(1)
ek(2)

 ,E2c ≜

 e1c

e2c


EM1

2k ≜

 −ek(1)+αcb|ek(1)|γsgn(ek(1))− e1c

−ek(2)+αcb|ek(2)|γsgn(ek(2))−M1− e2c


ẼM1

2k ≜

 0
M1− |αcAb| · |ek(1)|γ

 .
Then, for iteration (13), we have the following analysis.

e2c
ρ(∇G2(E2c)) < 1

ρ(A)
(e1c,e2c)

U((e1c,e2c);r1) r1 ρ(∇G2(x)) <
1 ∀x ∈ U((e1c,e2c);r1) k→∞

ẼM1
2k → 0 K11 |e1c− ek(1)| < ε0
ε0 < r1 ∀k > K11

Scenario  A: Consider  that  (9)  has  one  equilibrium .
Based  on  the  discussion  of  (9),  we  know ,
where  denotes  the  spectral  radius  of  a  matrix A.  Thus,
there  must  exist  a  neighborhood  of ,  denoted  by

 with  being the radius, such that 
, .  As ,  the  second  entry  of  the

matrix . We select  such that  for
a fixed , .

ek(2) , e2c |g(ek(2))− e2c| <
|ek(2)− e2c| ϵ > 0 ek(2) ∈
R \ (e2c − (r1 − ε0), e2c + (r1−ε0)) | − ek(2)+
αcb|ek(2)|γsgn(ek(2)) − M1− e2c| = |g(ek(2)) − e2c| < |ek(2)−
e2c| − ϵ |αcAb||ek(1)|γ→ M1 K12
|M− |αcAb||ek(1)|γ|<ε<ϵ ∀k>K12 K1=max{K11,

K12} k > K1 ek(2) ∈ R \ (e2c− (r1−ε0),e2c+

(r1−ε0)) | − ek(2)+αcb|ek(2)|γsgn(ek(2))−M1−
e2c|+ |M1− |αcAb||ek(1)|γ| < |ek(2)− e2c| − ϵ +ε < |ek(2)− e2c|

| − ek(1)+αcb|ek(1)|γsgn(ek(1))− e1c| <
|ek(1)− e1c| ek(2) ∈ R \ [e2c− (r1−ε0),
e2c+ (r1−ε0)]

Based  on  the  analysis  of  (9),  when  the curve  group  1 has
only one intersecting point, for any , 

.  Thus,  there  exists  such that  for  any 
,  we  obtain 

 
.  Because , we can select  such

that , . Define 
.  When ,  for  any 

,  we  obtain 
.

Moreover, noticing that 
,  we obtain that,  for any 

,
 

∥G2(E2k)−E2c∥ = ∥EM1
2k + ẼM1

2k ∥ < ∥E2k −E2c∥. (16)

∞Here, the vector norm can be 1-, 2-, and -norm as we have
shown that the absolute value for each dimension of the vec-
tor decreases as iteration number increases.

k > K1 ek(2) ∈ (e2c− (r1−ε0),e2c+

(r1−ε0)) (ek(1),ek(2)) ∈ U((e1c,e2c);r1)
ρ(∇G2) < 1 ∥G2(E2k)−E2c∥ < ∥E2k−
E2c∥

Furthermore,  for  all  and 
,  we  obtain  and  thus

. By Lemma 4, we obtain 
.

E2k ∈ R2

∥G2(E2k)−E2c∥ < ∥E2k −E2c∥ ∀k > K1 E2c
G2(·) E2c

Combining the above two cases, for any , we obtain
, .  Because  is  the

equilibrium of , by Lemma 2,  is globally asymptoti-
cally stable.

a2 b2
E2k→ [e1c,a2]T E2k→ [e1c,b2]T a2

b2
ρ(∇G2(E2c)) < 1

e2c = a2 ρ(∇G2(E2c)) = 1 e2c = b2
∂2g2(x,y)
∂y2 |y=b2 = γ(γ−1)αcb|b2|γ < 0

g2(x,y) ≜ −y+αcb|y|γsgn(y)− |αcAb| · |x|γ

Scenario  B: (9)  has  two equilibriums  and .  We prove
that  either  or ,  where  and

 represent  the  abscissae  of  the  intersection  and  tangent
points  in Fig. 2(b),  respectively.  We  obtain 
with  and  with .  For  the  lat-
ter  case,  we  obtain ,  where

.
K21

k > K21 |ek+1(2)−a2| < |ek(2)−a2| ∀ek(2) ∈ R \ (a2−ε0,b2+

ε0) k > K21 ek(2)
(a2−ε0,b2+ε0)
k1 ≜min{k ∈ N |ek(2) ∈ (a2−ε0,b2+ε0)}

Similar  to Scenario  A,  there  exists  such  that  for  any
, , 

.  Therefore,  for ,  any  outside  the  interval
 will enter it after finite iterations. We denote

.  Then,  we  have  the

followings.
ek1 (2) ∈ (a2−ε0,b2−ε0)

ek(2) a2

a)  If ,  by a similar  analysis  of Sce-
nario A, we obtain that  converges to ;

ek1 (2) ∈ (b2−ε0,b2+ε0)
E2k→ [e1c,b2]T

E2k↛ [e1c,b2]T

[e1c,a2]T ek(2)↛ b2 ε1
K > 0 k > K |ek(2)−b2| > ε1

ε0
a2 ε0 < ε1 ek(1)→ e1c

K22 |αcAb|ek(1)|γ−
αcAb|e1c|γ| < ε1−ε0 ∀k>K22 K2=max{K21,K22}

K > K2 k > K
|ek(2)−b2| > ε1 ek(2)

b2+ε1 k > K2
b2−ε1 ek(2) < b2−ε0 a2

b)  If ,  we  have  two  subcases.  If
,  the  conclusion  has  been  proved;  otherwise,

we  consider  the  subcase  that  and  prove  that
the limit is . Because , there exists  such
that for any , there exists  such that .
Considering  the  arbitrariness  of  for  determining  the  ball
around , we choose a constant . Because ,
there  exists  a  sufficiently  large  such  that 

, . Now, we let .
It  is  evident that for any ,  there exists  such that

.  Therefore,  if  we  can  prove  that  cannot
be  greater  than  for  all ,  it  must  be  less  than

,  implying ,  which  is  convergent  to .
This claim is illustrated by Fig. 3.
 

ek(2) for k > K2Convergent to a2 Not applicable

a2 − ε0 a2 + ε0 b2 − ε1 b2 + ε1b2 − ε0 b2 + ε0a2 b2

 
ek(2)Fig. 3.     Illustration of possible  after sufficiently many iterations.

 
ek(2) > b2+ε1

k1
k2

(a2−ε0,b2+ε0) ek+k2 (2) < b2+ε0
k > K2

b2+ε1
∂2g2(x,y)
∂y2 |y≥b2 < 0 ek+1(2) < b2+ε0+ (ε1−ε0) =

b2+ε1 k > K2+ k2 (b2+ε1,∞)
ek(2) ek(2)

b2 b2−ε1

We prove the claim now. Assume that . Simi-
lar to the definition of , we know that after a sufficient num-
ber of iterations, say , the tracking error is drawn back to the
interval .  That  is, ,  where

.  We  will  demonstrate  that  the  tracking  error  will  be
unable  to  exceed  anymore.  Noticing  the  fact  of

,  we  obtain  that 
 for any . This implies that  is not

a  feasible  interval  for  the  tracking  error .  Thus,  if 
does  not  converge  to ,  it  must  be  less  than  after  a
finite number of iterations.

limk→∞[ek(1),ek(2)]T = [e1c,a2]T

limk→∞[ek(1),ek(2)]T = [e1c,b2]T

Combining  the  two  subcases,  we  can  conclude  that,  for
any  initial  value,  either  or

 holds.
a3 b3 c3

ρ(∇G2(E2c)) < 1 e2c = a3
e2c = c3 ρ(∇G2(E2c)) > 1 e2c = b3

(e1c,b3)
U((e1c,b3);r2) r2
x ∈ U((e1c,b3);r2) ρ(∇G2(x)) > 1

K3
ε0 k > K3 ek(2) ∈ (b3− (r3−ε0),b3+ (r3−
ε0)) ρ(∇G2(E2k)) > 1 ek(2)

[ek(1),ek(2)]T

[e1c,a3]T [e2c,c3]T

Scenario  C: (9)  has  three  equilibriums , ,  and  (see
Fig. 2(c)).  We  obtain  with  and

,  and  if .  For  the  latter  case,
there  exists  a  neighborhood  of ,  denoted  by

 with  being  the  radius,  such  that  for  every
,  we  obtain .  Similar  to  the

previous two scenarios, we can prove that there exists  and
 such  that  for  and 

, .  Therefore,  will  jump  out  of  the
interval after a finite number of iterations. Similar to Scenario
B,  we  can  prove  that  will  converge  to  either

 or .

ek(2)

By combining these scenarios, the convergence of the itera-
tion (13) has been proved. From Lemma 6, the convergence of

 generated by (10) can be obtained. Because of the equiv-
alence  between  (10)  and  (7),  the  convergence  of  (7)  is
obtained. It is summarized in the following theorem.

t = 2Theorem 2: Consider  error  dynamics  (3)  for  with  the
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(e0(1),e0(2)) e0(1) ∈ A k2
ek(1) = 0 k ≥ k2 limk→∞ ek(2) = ±e1c
limk→∞ ek(1) = ±e1c limk→∞ ek(2) = ±e2c |e1c| =
(αcb

2 )
1

1−γ e2c

initial error . If , there exists  such that
 for  and .  Otherwise,

 and .  Here, 
, and  is one root of the equation

 

x = −x+αcb|x|γsgn(x)−M1 (17)
M1 = |αcAb||e1c|γwith .

e0(1) e0(2)
|ek(2)|
e0(1) e0(2) |ek(2)|

K0
ek(2) ±e2c

k > K0 ek(2) ek+1(2)

Remark  3: For  different  initial  values  of  and ,
 converges  to  different  roots  of  (17).  However,  once

 and  are  determined,  the  limit  of  is  deter-
mined.  Moreover,  there  exists  a  sufficiently  large  integer 
such that the value of  is approximately between  for
all . Thus,  and  have opposite signs.

ek(2)Theorem 2 demonstrates the convergence of . The spe-
cific limit is straightforward following the analysis procedure.
In particular, we have the following results.

e0(1) ∈ A ek(2)
t = 1 ek(2)

ek(1)

1)  If ,  the  evolution  of  degenerates  to  the
case of . That is, the convergence of  is the same as
that of ;

e0(1) <A ek(2)
e1c

M∗ = 2( 1
γ −1)( γαcb

2 )
1

1−γ

2) If , the tracking error  converges to a limit
cycle. The limit cycle is influenced by . Three possible sce-
narios have been illustrated in Fig. 2. Considering the special
case  of Fig. 2(b),  where  the  curves  are  tangent,  we  calculate

,  as  shown  in Fig. 2(b).  Define  a  non-
linear equation by
 

x = −x+αcb|x|γsgn(x)− |αcAb||e1c|
γ

1−γ . (18)

The convergence limits are clarified as follows.
a) |αcAb||e1c|γ > M∗

a11 limk→∞ ek(2) = ±|a11|
ec2 = |a11|

 If ,  (18)  has  only  one  root,  denoted  by
.  We  obtain  the  limit  cycle  and

;
b) |αcAb||e1c|γ = M∗ a12 b12

limk→∞ ek(2)=±|a12| limk→∞ ek(2)=
±|b12| ec2 = |a12| |b12|

 If ,  (18) has two roots  and .  We
obtain the limit cycles  and 

. Moreover,  or ;
c) |αcAb||e1c|γ < M∗ a13 b13 c13

a13 < b13 < c13
limk→∞ ek(2) = ±|a13| limk→∞ ek(2) = ±|c13|
ec2 = |a13| |c13|

 If , (18) has three roots , , and .
Suppose .  Then,  we  obtain  the  limit  cycles

 and .  Moreover,
 or .

M1 = |αcAb||e1c|γ
ek(2)

αcAb|ek(1)|γsgn(ek(1)) M1
M1

Remark  4: In  the  latter  two  scenarios,  two  possible  limit
cycles exist. The final limit cycle depends on the initial value
of (8), where . However, the actual iteration
of  is  conducted  by  (7),  where  the  additional  term

 is  not  equal  to  but  simply
approaches . Therefore, it is difficult to present the explicit
range of the initial values for a given limit cycle.  

t = nC.  Case: 
t = nWhen , from (3), we obtain

 

ek+1(n) = ek(n)−αcb|ek(n)|γsgn(ek(n))

−α
n−1∑
j=1

cA jb|ek(n− j)|γsgn(ek(n− j)).

limk→∞ ek(t) = etc
t ≤ n−1 etc
t > 1 etc

etc
t = n t = 2

Following  the  induction  principle,  for
,  where  can  be  a  limit  or  limit  cycle.  For  every

,  has multiple possible values;  however,  once the ini-
tial value is given, the limit (cycle)  is determined. The con-
clusion  for  the  case  of  is  similar  to  the  case  of ,

αcAb|ek(1)|γsgn(ek(1)) α
∑n−1

j=1 cA jb|ek(n− j)|γsgn(ek(n−
j))

because  the  major  difference  lies  in  the  replacement  of
 with 

.
ek(t)The following theorem shows the convergence of .

[e0(1),e0(2), . . . ,e0(n)]T [ek(1),ek(2), . . . ,ek(n)]T

ek(i) ek+1(i) k > K ∀i

Theorem 3: Consider error dynamics (3) with initial values
.  will  con-

verge  to  a  nonzero  limit  cycle,  and  there  exists K such  that
 and  have the opposite signs for , .

t = 1 t = 2 ek(t)
t ≤ n−1 limk→∞ ek(t) = ±etc ∀t ≤ n−1

Mk
i−1 ≜ α

∑i−1
j=1 cA jb|ek(i − j)|γsgn(ek(i − j)) Mi−1 ≜

limk→∞
∣∣∣Mk

i−1

∣∣∣

Proof: In Sections III-A and III-B, we have shown the con-
vergence  for  and .  Assuming  that  is  conver-
gent for , i.e., , , we define

 and 
. Using these notations, we obtain (19). We first

examine  the  equilibrium  or  limit  cycle  of  this  equation  and
then analyze asymptotic convergence in the iteration domain.

 

Gn




ek(1)
ek(2)
...

ek(n)





=



−ek(1)+αcb|ek(1)|γsgn(ek(1))

−ek(2)+αcb|ek(2)|γsgn(ek(2))− |Mk
1 |

...

−ek(n−1)+αcb|ek(n−1)|γsgn(ek(n−1))− |Mk
n−1|


(19)

 

∇Gn





e1c

e2c

e3c

...

enc




=



γαcb|e1c|γ−1−1 0

−γαcAb|e1c|γ−1 γαcb|e2c|γ−1−1

−γαcA2b|e1c|γ−1 −γαcAb|e2c|γ−1

...
...

−γαcAn−1b|e1c|γ−1 −γαcAn−2b|e2c|γ−1

0 · · · 0
0 · · · 0

γαcb|e3c|γ−1−1 · · · 0
...

. . .
...

−γαcAn−3b|e3c|γ−1 · · · γαcb|enc|γ−1−1


.

(20)
[e1c,e2c, . . . ,enc]T

t = 2
Suppose  is  the  equilibrium  of  (19),  after

which we obtain (20). In the same way that the case of  is
analyzed, three scenarios of (21) can be examined,
 

x = −x+αcb|x|γsgn(x)−Mn−1 (21)
Mn−1 = |α

∑n−1
j=1 cA jb|e(n− j)c|γsgn(e(n− j)c)|

[e0(1) e0(2), . . . , e0(n)]T limk→∞ ek(n) =
±enc [e0(1)
e0(2), . . . , e0(n)]T limk→∞[ek(1),ek(2), . . . ,ek(n)]T =

±[e1c,e2c, . . . ,enc]T

where .  In  particular,
the three scenarios correspond to cases that (21) has one, two,
and three equilibriums similar to the analysis of (9). Given the
initial value ,  , we obtain 

 for  (19).  Therefore,  given  any  initial  values ,
 ,  we obtain 

. ■
Remark 5: For the vector function (19), the analysis of each
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ith

eic = 0.5
Gn(x) = x

±0.5

entry  is  the  same  as  that  for  (13).  In  particular,  for  the 
entry, all possible values of its limit cycle are calculated with-
out  considering  their  signs.  In  other  words,  the  signs  of  the
variables are indeterminate. For example, for a given group of
initial errors, we may obtain the limit  for the ith time
instant  by  solving .  Then,  the  actual  limit  cycle  is

. However, the signs are excluded from the diagonal ele-
ments of (20); therefore, the convergence is not influenced by
the specific signs.

eic

Remark  6: Different  initial  errors  lead  to  different  limit
cycles. In (20), the notation of limits  indicates any group of
the  limit  cycles  and  (20)  denotes  its  gradient.  However,  we
have proven that the conclusion is valid for any possible can-
didate of the limit cycles.  

D.  Convergence Limit Cycles
ek(t)In  this  subsection,  we  present  the  limit  (cycle)  of  by

summarizing results in the previous subsections.

1 ≤ t ≤ n−1 ect

Denoting  the  absolute  limit  values  of  the  errors  at  time
instants  to  be ,  we  establish  a  nonlinear  equa-
tion
 

−x = x−αcb|x|γsgn(x)−

∣∣∣∣∣∣∣∣α
n−1∑
j=1

(−1)ω jcA jbeγc(n− j)

∣∣∣∣∣∣∣∣
ω j ∈ {0,1} {ω1,ω2, . . . ,ωn−1}

Mωn−1 =
∣∣∣∣α∑n−1

j=1 (−1)ω jcA jbeγc(n− j)

∣∣∣∣
{ω1,ω2, . . . ,ωn−1}

Mωn−1 M∗
t = 2

where . Each combination of  cor-
responds  to  a  certain  case  of  the  limit  cycle  generation.
Denote . For a given combi-
nation  of ,  we  can  obtain  three  scenarios  of
the convergence limits by comparing  and , similar to
the discussions for the case of  in Section III-B. Then, we
obtain the following theorem.

ek(t)

t > 1 ek(i) ±eci 1 ≤ i ≤ t−1

Theorem 4: Consider the error dynamics (3). The error 
converges  to  a  limit  cycle,  determined  as  follows.  For  any

,  suppose  the  limit  cycle  of  is  for .
Define a nonlinear equation
 

−x = x−αcb|x|γsgn(x)−Mωt−1 (22)

Mωt−1 ≜
∣∣∣∣α∑t−1

j=1(−1)ω jcA jbeγc(t− j)

∣∣∣∣
{ω1,ω2, . . . ,ωt−1} ect

where  for  any  given  combi-
nation  of .  Then,  the  limit  for  are  as  fol-
lows.

a) Mωt−1 > M∗ at1 ect = |at1| If , (22) has one root  and ;
b) Mωt−1 = M∗ at2 bt2

ect = |at2| ect = |bt2|
 If ,  (22)  has  two  roots  and ,  we  obtain

 or ; and
c) Mωt−1 < M∗ at3 bt3 ct3

at3 < bt3 < ct3 ect = |at3| ect = |ct3|
 If , (22) has three roots ,  and , satisfy-

ing , we obtain  or .
e0(t)

ek(t) limk→∞ ek(t) = ±ect

Once the initial tracking error  is determined, the error
 converges to a limit cycle, i.e., .

e0(t)
t = 1,2, . . . ek(t) = 0

ek(t) = 0

Remark  7: It  is  worth  noting  that  initial  values  of ,
,  exists  such  that  after  a  finite  number  of

iterations. Therefore, the tracking error is either equal to zero
after  a  finite  number  of  iterations  or  convergent  to  a  limit
cycle  of  period two.  However,  the  measure of  a  set  of  initial
values ensuring  after a finite number of iterations is
zero in the corresponding space.

γ = 1Remark 8: For the proposed update rule (2), if we let ,
it  becomes the conventional  P-type update  rule.  For  a  P-type
update  rule,  the  learning  gain α is  usually  required  to  satisfy

0 < αcb < 2
cb

γ = 1 0 < αcb < 2
x = 0

 to  ensure  convergence.  Thus,  both  the  sign  and
bound of  are necessary for the selection of α.  In (2),  only
the  sign  is  required;  in  other  words,  less  information  is
required  compared  to  the  P-type  update  rule.  Accordingly,
zero-error  tracking  performance  is  difficult  to  realize  by  the
fractional power update rule, but can be tuned by the parame-
ter selection. That is, by tuning the parameters, the fixed value
of the limiting cycle can be as close to zero as possible. How-
ever, any parameter selection cannot lead to convergence to a
unique limit due to fractional power innovation. Furthermore,
for the P-type update rule with  and , the root
of (22) is  only for any time instant and therefore, zero-
error  tracking performance is  ensured.  In other  words,  the P-
type update rule can be regarded as a special case of the pro-
posed rule (2).

Remark  9: We  note  that  the  fractional  power  update  rule
enhances  the  convergence  performance  by  automatically
increasing  the  update  intensity  driven  by  tracking  errors.  In
particular,  the  convergence  rate  is  increased  when  the  track-
ing error is small. Therefore, for practical applications, we can
first apply the P-type update rule to guarantee a fast reduction
of  the  tracking  error  and  then  switch  to  the  fractional  power
update rule to further enhance the performance.  

IV.  Numerical Simulations

We  apply  the  fractional  power  update  rule  to  control  of  a
permanent magnet linear motor (PMLM) model [29], which is
described by (1) with the following system matrices:
 

A =
 1 0.01

0 −0.125

 , b =
 0

2

 , c =
[

0 1
]
.

n = 20
xk(0) = 0 ∀k

u0(t) = 0 ∀t

The iteration length is  set  to .  For each iteration,  the
initial  state  and  input  are  set  to  0,  i.e., , ,  and

, .
{yd(t),1 ≤ t ≤ n}

[0,10]

α = 1 γ = 0.5

The  desired  output  is  a  group  of  numbers ,
randomly  selected  within  prior  to  the  simulation.  We
apply  the  following  fractional  power  update  rule  (2)  with
parameters  and . The algorithm is run for 50 iter-
ations in each experimental trial.  

A.  Convergent Limit Cycle

t = 1,2,3

In  this  subsection,  we verify  the  validity  of  the  convergent
limit  cycles.  To this end,  we first  calculate the limits accord-
ing to Theorem 4 for  as an illustration, and then run
100 independent trials to examine the actual limits. After that,
we present the error profiles of all time instants along the iter-
ation axis for an arbitrary trial.

First, we calculate the theoretical limits.
t = 1 ec1 = (αcb

2 )
1

1−γ = 11) For , by Theorem 4, we have ;
t = 2 |αcAbeγc1| = 0.25

M∗ = 2( 1
γ −1)( γαcb

2 )
1

1−γ = 0.5 ec2

x = −x+
αcb|x|γsgn(x)− |αcAbeγ1c|

x = −x+
2x

1
2 −0.25 x ≥ 0 x = −x−2(−x)

1
2 −0.25 x < 0

x1 = 0.0214 x2 =

0.7286 x′1 = −1.2374

2)  For ,  we  have ,  which  is  less  than
. By Theorem 4,  has two pos-

sible  values,  which  are  solutions  of  the  equation 
.  By  substituting  parameters  in  this

equation,  it  transforms  into  a  pair  of  equations: 
 for  and  for .

From  the  former  equation,  we  obtain  and 
, whereas from the latter one, we obtain .
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a13 = −1.2374 b13 =

0.0214 c13 = 0.7286 ±0.7286
±1.2374 ec2 0.7286 1.2374

According  to  Theorem  4,  we  obtain , 
 and .  Thus,  the limit  cycle  is  or

; that is,  is equal to either  or ;
t = 3 |αcAbeγc2+αcA2beγc1| < M∗

|αcAbeγc2−αcA2beγc1| < M∗ e1c

e2c x = −x+
αcb|x|γsgn(x)−M2 M2 = |αcAbeγ2c±αcA2beγ1c|

ec1 ec2
M2

3)  For ,  we  note  that  and
 for  any  possible  value  of  and

.  To  calculate  the  limit,  consider  the  equation 
 where . Regard-

ing all possible combinations of  and , we list the corre-
sponding values of  in Table I. Then, the possible limits are
calculated from the following groups of equations:
 

(A)
{

x = −x+2x
1
2 −0.1821 (x ≥ 0)

x = −x−2(−x)
1
2 −0.1821 (x < 0)

(B)
{

x = −x+2x
1
2 −0.2446 (x ≥ 0)

x = −x−2(−x)
1
2 −0.2446 (x < 0)

(C)
{

x = −x+2x
1
2 −0.2468 (x ≥ 0)

x = −x−2(−x)
1
2 −0.2468 (x < 0)

(D)
{

x = −x+2x
1
2 −0.3093 (x ≥ 0)

x = −x−2(−x)
1
2 −0.3093 (x < 0).

 
TABLE I 

M2 t = 3Possible Values of  for the Case 

e1c e2c M2 e1c e2c M2

1 0.7286 0.1821 −1 0.7286 0.2446

1 −0.7286 0.2446 −1 −0.7286 0.1821

1 1.2374 0.2468 −1 1.2374 0.3093

1 −1.2374 0.3093 −1 −1.2374 0.2468

 
 

t = 3

The  solutions  of  these  equations  are  collected,  rearranged,
and  presented  in Table II,  which  lists  all  possible  limits  of
error iteration (3) for .
 

TABLE II 

t = 3Possible Limits for the Case 

A B C D
c3 0.8076 0.7351 0.7324 0.6541
a3 −1.1751 −1.2325 −1.2345 −1.2908

 
 

e0(t)

e50(t) t = 1,2,3

To  verify  the  theoretical  limits,  we  perform the  simulation
for  100  independent  trials  with  the  initial  error  varying
from  0  to  10  randomly  for  each  trial.  Then,  we  collect  the
errors  at  the  50th  iteration  for ,  respectively.
The  calculated  values  and  simulation  results  are  depicted  in
Fig. 4,  denoted  by  dashed  lines  and  circles,  respectively.  We
made the following observations.

e50(1)
|e50(1)|
A

A

1) Fig. 4(a)  shows  the  absolute  values  of  for  100
independent  trials.  The  absolute  value  is  equal  to  1
whenever the initial error does not belong to . Three conver-
gent values are equal to zero because their initial errors belong
to ;

e50(2)

|e50(2)| y = 1.2374

2) Fig. 4(b)  shows  the  absolute  values  of  for  100
independent  trials.  Here,  the  possible  limits  have two values.
Most  of  the  outcomes  fall  on  the  lines  of 

y = 0.7286
t = 1 A

t = 2
t = 1

and . Moreover, several limits are equal to 1; this is
because the corresponding initial errors for  belong to ,
and then, the evolution of the tracking error for  becomes
the same as that for ;

e50(3)

ec3
|e50(3)|

αcb αcAb
αcb αcAb

3) Fig. 4(c) shows the absolute value of  for 100 inde-
pendent  trials.  The  first  interesting  observation  is  that,
although we have eight possible limits of , the outcomes of

 mainly fall in four cases of the eight limits. The inher-
ent  reason for  this  is  that  and  have the same sign;
otherwise,  if  and  have  opposite  signs,  the  out-
comes  would  have  fallen  on  the  set  of  the  other  four  cases.
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|e50(1)| |e50(2)| |e50(3)|Fig. 4.     Illustrations of (a) ,  (b) ,  and (c)  for 100 trials

with initial tracking errors varying from 0 to 10 randomly.
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1.2374
0.7286

e0(1) A

Besides,  some  sparse  values  are  equal  to  either  or
,  which  is  due  to  the  degeneration  of  error  dynamics

when  belongs to .
In short, the numerical outcomes of the limit values in Fig. 4

are consistent with the theoretical result given by Theorem 4.
We should mention that Fig. 4 is  derived from different  exe-
cutions  of  the  scheme  to  exhibit  more  possible  situations.
Moreover, the number of possible limits increases as the time
label number increases.

ek(t)
|ek(t)|

We consider  one  simulation  trial  with  ten  iterations. Fig. 5
shows  the  convergence  process  of  both  tracking  errors 
and  absolute  tracking  errors  for  all  time  instants  along
the iteration axis. Each line corresponds to an iteration evolu-
tion for one time instant. Each error profile fluctuates between
two opposite values after a few iterations in Fig. 5(a), indicat-
ing that  the proposed learning rule  yields  asymptotic  conver-
gence of the tracking error to a limit cycle. Besides, Fig. 5(b)
shows the convergence of the absolute tracking error.
  

B.  Tracking Precision

uk+1(t) = uk(t)+αek(t+1)

t = 20

In this subsection, we examine the relationship between the
tracking precision of the proposed scheme and the adjustable
parameters. We compare the performance of the proposed rule
with  the  P-type  update  rule: .  To
reflect the findings, we illustrate the tracking precision for the
case of .

0 < αcb < 1 0 < α < 1
2

α = 0.15,0.25,0.35 0.45
γ = 0.5
ek(t)

We first consider the effect of the learning gain α. To ensure
convergence  of  both  the  proposed  scheme  and  the  P-type
update  rule,  we  let ,  implying .  Four
cases  are  considered: ,  and .  The frac-
tional  power  is  set  to .  The  profiles  of  the  maximum
absolute tracking error  along the iteration axis are shown
in Fig. 6. The figure shows that the convergence speed for the
fractional  power  update  rule  is  nearly  the  same  for  different

|1−αcb|

learning  gains,  requiring  approximately  two  or  three  itera-
tions to achieve the limit.  In contrast,  the learning gain has a
significant  influence  on  the  convergence  speed  of  the  P-type
update rule. A larger learning gain corresponds to a quick con-
vergence for the P-type update rule. Furthermore, for a small
learning gain,  the fractional power update rule exhibits faster
convergence  than  the  P-type  update  rule.  This  is  because  the
fractional power γ rather than the learning gain dominates the
convergence rate  for  the  fractional  power  update  rule,  differ-
ing from the P-type update rule where the convergence rate is
determined  by  contraction  factor .  In  addition,  track-
ing  precision  is  distinct  from the  change  in  the  learning  gain
for  the  fractional  power  update  rule.  Generally,  a  smaller
learning gain corresponds to a smaller tracking error.

α = 0.15
γ = 0.125,0.5,0.75 0.9

Then,  we verify the effect  of  parameters γ while  fixing the
learning  gain  to  be .  Four  cases  are  considered,

,  and .  The  profiles  of  the  maximum
absolute tracking error along the iteration axis are depicted in
Fig. 7.  A  primary  observation  arises  where  as γ approaches
one,  the  final  tracking  error  is  significantly  reduced,  indicat-
ing  better  tracking  performance.  However,  the  improvement
of the final tracking precision comes at a certain cost in terms
of convergence speed; that is,  the convergence speed reduces
as γ approaches one. Furthermore, the tracking performance of
the  proposed  update  rule  approximates  that  of  the  P-type
update  rule  as γ approaches  one.  In  any  case,  the  fractional
power update rule exhibits  a faster  convergence rate for high
precision  error  tracking.  This  demonstrates  connections
between  the  fractional  power  and  P-type  update  rules.  These
observations are consistent with the theoretical results in Sec-
tion III.

We  should  point  out  that  the  proposed  fractional  power
update  rule  exhibits  fine  robustness  against  random noise.  In
other  words,  for  system  (1)  with  process  and  measurement
noise, the tracking error generated by the proposed update rule
would converge to a bounded zone, which is similar to that for
the  P-type  update  rule.  However,  it  is  difficult  to  present  a
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ek(t) |ek(t)|Fig. 5.     Illustration  of  (top)  and  (bottom)  with  initial  tracking

errors varying from 0 to 10 randomly.
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Fig. 6.     Tracking precision for fractional power and P-type update rules with
varying learning gains.
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quantitative  depiction  of  the  influence  of  random  noise  on
tracking performance, which is left for future research.  

V.  Conclusions

In  this  study,  a  fractional  power  update  rule  has  been  pro-
posed for ILC of SISO linear systems, yielding an innovative
design paradigm beyond the traditional  P-type update rule.  It
has  been  shown  that  the  nonlinear  update  control  in  essence
can  improve  learning  ability,  similar  to  FTC  and  TSMC.  A
systematic  convergence  analysis  has  been  done  for  the  pro-
posed fractional power update rule. The convergence has been
proved  inductively  along  the  time  axis  by  investigating  the
evolutionary behaviors of the error dynamics. The limit cycles
for  each  time  instant  have  been  characterized  recursively
using  a  nonlinear  equation,  along  with  limit  combinations  of
the  previous  time  instants.  Numerical  simulations  have
demonstrated  the  effectiveness  and  advantages  of  the  pro-
posed fractional power update rule.  

Appendix

V(u) ≜ ∥u− v∥ ∆V(u) =
V( f (u))−V(u) = ∥ f (u)− v∥− ∥u− v∥ < 0 V(u)

Proof of Lemma 2: Define . We have 
.  Thus,  is  a strict

Lyapunov function. By Lemma 1, v is asymptotically stable in
B. ■

| f ′(x∗)| = ρ > 1
f ′ Uo(x∗) x∗

x ∈ Uo(x∗) | f ′(x)| > 1 xk ∈ Uo(x∗)
|xk+1− x∗| = | f (xk)− f (x∗)| = | f ′(ξk)||xk − x∗| > |xk − x∗|
ξk ∈ (xk, x∗) (x∗, xk) |xk+1− x∗|
|xk − x∗| xk , x∗

Proof of Lemma 3: Suppose . By the continu-
ity  of ,  there  exists  a  neighborhood  of  such  that
for every , . Thus, if , we have

,  where
 or .  Then,  will  be  larger  than

 if , and the lemma is proven. ■
Pk = X(k)−X∗ 1 = [1,1, . . . ,

1]T x1(k+1) = f1(x1(k), x2(k), . . . , xn(k))
Proof  of  Lemma 4: Define  and 
. For , we obtain

 

x1(k+1) = f1(X∗)+∇ f1(X∗)T Pk

+
1
2!

PT
k ∇

2 f1((1−σ)X∗+σX(k))Pk

= x∗1+∇ f1(X∗)T Pk +o(∥Pk∥).

Pk+1 = ∇F(X∗)Pk +o(∥Pk∥)1
B(X∗,r) Pk ∈ B(X∗,r)

Hence, .  Then,  there  exists  a
ball  such that when , we have
 

∥Pk+1∥ ≤ ∥∇F(X∗)Pk∥+ ∥o(∥Pk∥)1∥

≤
(
∥∇F(X∗)∥+ o(∥Pk∥)

∥Pk∥

)
∥Pk∥

< ϑ∥Pk∥
0 < ϑ < 1 limk→∞ ∥Pk∥ = 0

X(0) = X0 B(x∗,r)
limk→∞ X(k) = X∗

where  is a constant. Hence, . There-
fore, for every  in  as the initial value of (4),
we have . ■
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Fig. 7.     Tracking  precision  for  fractional  power  update  rule  with  different
fractional powers.
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