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   Abstract—This  paper  investigates  the  security  issue  of  multi-
sensor remote estimation systems.  An optimal stealthy false  data
injection  (FDI)  attack  scheme  based  on  historical  and  current
residuals, which only tampers with the measurement residuals of
partial  sensors  due  to  limited  attack  resources,  is  proposed  to
maximally  degrade  system  estimation  performance.  The  attack
stealthiness  condition  is  given,  and  then  the  estimation  error
covariance  in  compromised  state  is  derived  to  quantify  the  sys-
tem  performance  under  attack.  The  optimal  attack  strategy  is
obtained by solving several  convex optimization problems which
maximize  the  trace  of  the  compromised estimation error  covari-
ance  subject  to  the  stealthiness  condition.  Moreover,  due  to  the
constraint  of  attack  resources,  the  selection  principle  of  the
attacked sensor is provided to determine which sensor is attacked
so  as  to  hold  the  most  impact  on  system  performance.  Finally,
simulation results are presented to verify the theoretical analysis.
    Index Terms— Cyber-physical  systems  (CPSs),  false  data  injection
(FDI) attacks, remote state estimation, stealthy attacks.
  

I.  Introduction

CYBER-PHYSICAL  systems  (CPSs)  combine  various
physical resources and complete the integrated design of

the systems by computation, communication, sensing and con-
trol  technologies  [1]–[5],  which  have  supported  numerous
applications  such  as  power  grid  systems,  unmanned systems,
and  multi-agent  systems  [6]–[9].  For  these  CPSs,  the  cyber
security  is  a  practical  problem that  has  to  be  considered  and
solved due to the openness of communication networks [10].

It  is  well  known that  attack  and  defense  have  always  been
inseparable  in  CPSs,  both of  which promote  the  construction
of  their  security  framework.  The  former  mainly  focuses  on
how to design cyber attacks to vandalize a system [11]–[14].
This  discloses  the vulnerability  of  CPSs in  advance,  and fur-

ther  boosts  the  establishment  of  the  corresponding  defense
measures  including  attack  detection  [15]–[20],  secure  state
estimation  [21]–[23],  and  secure  control  [24]–[29],  etc.
Hence, the design of attack strategies is of great importance in
constructing secure CPSs, which has attracted more and more
attention in recent years.

χ2

As one of typical cyber attacks, stealthy false data injection
(FDI)  attack  aims  at  achieving  the  objective  of  damaging  a
target system, meanwhile being able to evade attack detection.
Due  to  both  the  destructiveness  and  stealthiness,  such  an
attack attracts many scholars and is also the research focus of
this  paper.  In  [30]  and  [31],  Kullback-Leibler  divergence
(KLD) was adopted to  quantify  the  attack stealthiness,  based
on  which  a  notion  of ϵ-stealthy  FDI  attack  was  proposed.  In
[32] and [33], stealthy FDI attacks were designed for the feed-
back  and  forward  channels  for  the  sake  of  destabilizing  a
closed-loop  control  system  while  bypassing  a  residual-based
detector. In [34]–[36], an optimal stealthy FDI attack scheme,
which  tampers  with  measurement  and  control  information,
was  developed  to  drive  a  system  to  attackers’ desired  state
under the specific stealthiness constraint. In [37], for a remote
estimation  system  with  smart  sensors,  a  residual-based  FDI
attack method was proposed to degrade its estimation perfor-
mance to  the greatest  extent  without  triggering a  detector.
Then,  the  effect  of  such  an  attack  on  the  estimation  perfor-
mance  was  further  explored  in  [38]–[40]  by  adopting  the
KLD-based  attack  stealthiness  metric.  Furthermore,  the  side
information  was  considered  and  utilized  in  [41]  to  design
residual-based  attack  signals.  In  order  to  further  enhance  the
attack  destructiveness,  a  novel  residual-based  attack  scheme
was studied in [42]–[44] to utilize both historical and current
residuals  to  construct  attack  signals,  and  the  corresponding
results  showed  that  this  attack  caused  more  loss  of  system
estimation performance than that in [37].

All  the  aforementioned  works  address  the  vulnerability  of
single-sensor systems by designing the specific attacks. How-
ever,  most  of  those  attack  schemes  would  lose  stealthiness
when  attacking  one  of  the  transmission  channels  of  a  multi-
sensor system, which has been investigated in [45]. That is to
say, it becomes inappropriate to utilize the cyber attack strate-
gies  for  single-sensor  systems  to  analyze  the  vulnerability  of
multi-sensor  systems.  Hence,  it  is  necessary  to  develop  a
novel  stealthy  FDI  attack  scheme  against  multi-sensor  sys-
tems for the sake of exploring the possible existing vulnerabil-
ity,  which is  the main motivation of this  paper.  Moreover,  to
the  best  of  our  knowledge,  few  works  focus  on  designing
stealthy FDI attacks against multi-sensor systems expect [46]
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and [47].  However,  in [46] and [47],  only real-time residuals
were used to design the attack signals to tamper with the mea-
surement  residuals  of  partial  sensors.  Inspired  by  [42]–[44],
the  historical  residuals  are  additionally  introduced  in  this
paper to design the attack signals aiming at further improving
the  attack  effect  on  the  estimation  performance  of  multi-sen-
sor  systems.  Due  to  constrained  attack  resources,  malicious
attackers only can falsify the measurement residuals of partial
sensors,  and  thus  it  is  not  a  simple  and  easy  extension  from
the single-sensor case in [42]–[44]. The main contributions of
this paper are presented as follows.

1)  A  multi-sensor  estimation  system  is  considered,  where
each sensor sends its measurement residual to the remote esti-
mator, and an optimal stealthy FDI attack scheme, which uti-
lizes  both  the  historical  and  current  residuals,  is  proposed  to
tamper  with  the  measurement  residuals  of  the  partial  sensors
under limited attack resources.

2) The stealthiness condition of the proposed attack scheme
is derived, and then the compromised estimation error covari-
ance is given to evaluate the system performance under attack.
Several  convex  optimization  problems,  which  aim  at  maxi-
mizing  the  estimation  error  under  the  stealthiness  constraint,
are  formed  to  obtain  the  worst-case  attack  strategy  at  each
attack interval.

3)  With  limited  attack  resources,  the  selection  principle  of
the attacked sensor is derived to determine to tamper with the
measurement residuals of which sensors such as to cause more
degradation of the system performance. Also, all the theoreti-
cal results are verified by the offered numerical simulation.

The  rest  of  this  paper  is  organized  as  follows.  Section  II
describes a multi-sensor remote state estimation system. Then,
the  proposed  stealthy  FDI  attack  scheme  and  its  stealthiness
condition are presented in Section III.  Section IV derives the
worst-case attack strategy and gives the selection principle of
the  attacked  sensor.  Section  V  provides  several  simulation
results to verify all the theoretical analyses. Finally, this paper
is concluded in Section VI.

Rn

X ≥ 0 X > 0
tr(X) N(a,b)

E[·]

In n×n ⌈·⌉

Notations: Throughout  this  paper,  is  the n-dimensional
Euclidean space. The positive semi-definite and positive defi-
nite  matrices  are  denoted  by  and ,  respectively.

 stands for the trace of the matrix X.  denotes the
Gaussian  distribution  with  mean a and  covariance b.  is
the  mathematical  expectation. I and  0  denote  an  identity
matrix and a zero matrix with appropriate dimensions, respec-
tively,  and  is  an -dimensional  identity  matrix. 
denotes the value of a number rounded upwards to the nearest
integer.  

II.  Problem Statement
  

A.  System Model
A CPS with N sensors is modeled as

 

xk+1 = Axk +wk (1a)
 

yi,k = Hixk + vi,k (1b)
xk ∈ Rn yi,k ∈ Rqiwhere  is  the  system  state,  is  the  measure-

i = 1,2, . . . ,N wk ∈ Rn

v1,k ∈ Rq1 v2,k ∈ Rq2 , . . . ,vN,k ∈ RqN

wk ∼ N(0,Q) Q ≥ 0 vi,k ∼ N(0,Ri)
Ri > 0 i = 1,2, . . . ,N (A,

√
Q)

(A, Hi) i = 1,2, . . . ,N

ment  of  sensor i ( ),  and  the  noises  and
,  are  independent  of  each

other,  which  satisfy ,  and ,
, , respectively. It is assumed that 

is stabilizable and  is detectable for .
The following measurement residual of each sensor is calcu-

lated and sent to the remote estimator via its own channel:
 

zi,k = yi,k −Hi x̂k|k−1 (2)

x̂k|k−1where  is  the  priori  estimate  of  the  remote  estimator,
which is broadcasted back to each sensor [45]–[47].  

B.  Remote State Estimator
Define

 

H =


H1

H2

...

HN

 , Vk =


v1,k
v2,k

...

vN,k

 , R =


R1

R2

. . .

RN

 .
Then,  the  augmented  form  of  all  sensor  measurements  is

described as
 

Yk =
[
yT

1,k yT
2,k . . . yT

N,k

]T
= Hxk +Vk (3)

Yk ∈ Rm m =
∑N

i=1 qi Vk ∼ N(0,R)where , , and .
With (2)  and (3),  the  measurement  residuals  received from

all the sensors can be expressed as
 

Zk ≜
[
zT

1,k zT
2,k . . . zT

N,k

]T
= Yk −Hx̂k|k−1. (4)

After  receiving these measurement residuals,  a  Kalman fil-
ter is employed in the remote center to estimate the state of the
physical system (1a), whose steady form is
 

x̂k+1|k = Ax̂k (5a)
 

x̂k = x̂k|k−1+KZk (5b)

x̂k|k−1 x̂k
xk

where  and  are  the  priori  and  posteriori  estimates  of
the state , respectively. The Kalman filter gain is given as
 

K = ΦHT (HΦHT +R)−1 (6)
where Φ is the priori estimation error covariance in the steady
state, which is defined as
 

Φ = lim
k→+∞

E[(xk − x̂k|k−1)(xk − x̂k|k−1)T ]

with
 

Φ = AΦAT +Q−AΦHT (HΦHT +R)−1HΦAT .
  

C.  Anomaly Detector
ZkWith  (4),  the  measurement  residual  in  the  steady  state

satisfies
 

Zk ∼ N(0,Ξ) (7)

where the covariance Ξ is 
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Ξ = HΦHT +R

=



Ξ1 H1ΦHT
2 . . . H1ΦHT

N

H2ΦHT
1 Ξ2 . . . H2ΦHT

N

...
...

. . .
...

HNΦHT
1 HNΦHT

2 . . . ΞN


(8)

Ξi = HiΦHT
i +Riwith .

χ2Based on the statistical property of residual, a  detector is
adopted  at  the  side  of  the  remote  estimator  to  detect  system
anomaly. The corresponding detection index is defined as
 

gk =

k∑
t=k−J+1

ZT
t Ξ
−1Zt

H0
≶
H1
ε (9)

H0
H1

gk

where J is the size of the detection window, ε is the detection
threshold,  and  represents  that  the  system  operates  nor-
mally,  while  means  that  the  system is  under  attack.  Once

 is larger than ε, the detector will trigger an alarm.
E[zi,kzT

j,k] = HiΦHT
j , 0

i , j

E[za
i,kz

aT
i,k ] =

E[zi,kzT
i,k] E[za

i,k z̃
T
i,k] =

E[zi,k z̃T
i,k] z̃i,k

Remark  1: It  is  clear  from (8)  that 
for ,  i.e.,  the  residual  of  each  sensor  is  not  independent.
When  existing  single-sensor  attack  schemes  are  applied  to
multi-sensor systems, most of them only guarantee 

 in, e.g., [37] and [42], while not ensuring 
,  where  is  the  residual  of  the  normal  sensors

except attacked sensor i, which tends to cause the distribution
of  the  residual  in  (7)  to  change  and  further  induces  detector
(9)  to  trigger  an  alarm.  This  means  that  multi-sensor  CPSs
have some degree of disclosure capability to the existing sin-
gle-sensor  attack  schemes,  which  has  been  analyzed  in  [45]
and [47].  

III.  Stealthy FDI Attack Scheme

zi,k
x̂a

k|k−1

za
i,k x̂k|k−1

As  shown  in Fig. 1,  the  measurement  residual  of  each
sensor and the state estimate  are transmitted to specified
destinations through communication networks, which are tam-
pered as  and  by a malicious attacker, respectively. It
is assumed that the attacker can disclose the full knowledge of
the target system (i.e., A, H, Q and R) and run a same Kalman
filter as in (5).  

A.  Attack Model
Based on the  historical  and current  measurement  residuals,

the stealthy FDI attack scheme is designed as
 

Za
k = FkZk−τ+LkZk +bk (10)

Zk−τ
τ ≤ k Fk Lk

bk
bk ∼ N(0,Γk) Γk ≥ 0
gk χ2

τ ≥ J

where  is  the  historical  residual  stored  by  the  attacker
with the positive integer ,  and  are the attack matri-
ces  to  be  designed,  and  is  the  injection  Gaussian  white
noise which satisfies  with . It is noted that
the detection variable  obeys a  distribution, and in order
to  unchange  its  distribution,  the  parameter τ is  restricted  to

.

Fk Lk

Due to  resource constraint,  for  the  convenience of  analysis
and  without  loss  of  the  generality,  it  is  assumed  that  the
attacker only selects one sensor channel, denoted by sensor i,
to  launch  the  attack.  Then,  the  attack  matrices  and  in
(10) are designed as
 

Fk =

[Fi,k 0
0 0

]
, Lk =

[Li,k Ni,k

0 I

]
(11)

bkand  the  injection  noise  and  its  covariance  matrix  are
designed as
 

bk =

[
bi,k

0

]
, Γk =

[
Γi,k 0
0 0

]
. (12)

Substituting (11) and (12) into (10) yields
 

Za
k = FkZk−τ+LkZk +bk

=

[Fi,k 0
0 0

] [zi,k−τ
z̃i,k−τ

]
+

[Li,k Ni,k

0 I

] [zi,k

z̃i,k

]
+

[
bi,k

0

]
=

[
Fi,kzi,k−τ+Li,kzi,k +Ni,k z̃i,k +bi,k

z̃i,k

]
(13)

z̃i,kwhere  denotes the normal residual  except for that  of  sen-
sor i. It is clear from (13) that only the measurement residual
of  sensor i is  tampered.  Then,  for  the  normal  and  compro-
mised  sensors,  the  corresponding  system  matrices  are
redescribed as
 

H =
[Hi

H̃i

]
, R =

[Ri

R̃i

]
, K =

[
Ki K̃i

]
.

And, the normal residual covariance (8) is redivided as
 

Ξ =

[
Ξi Mi

MT
i Ξ̃i

]
(14)

Mi = HiΦH̃T
i Ξ̃i = H̃iΦH̃T

i + R̃iwhere , and .
  

B.  Stealthiness Condition
It  is well known that the attack stealthiness is an important

precondition  before  successfully  launching  an  attack.  That  is
to  say,  once  the  attack  is  detected  by  an  anomaly  detector  at
the beginning, it is impossible to continue to attack the target
system,  not  to  mention  to  destroy  the  system.  For  the  attack
scheme (13), the stealthiness condition is given in the follow-
ing theorem.

Theorem 1: In order to ensure that the attack scheme (13) is
stealthy, the attack matrices (11) and the covariance matrix in
(12) need to satisfy the following condition:
  Fi,kΞiFT

i,k +Li,kΘiLT
i,k +Γi,k = Θi

Ni,k = (I−Li,k)MiΞ̃
−1
i

(15)

Θi = Ξi−MiΞ̃
−1
i MT

iwhere .
Proof: With  (11)  and  (12),  the  covariance  of  the  compro-
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Sensor 1
y1,k z1,k

Sensor N

Attacker

Anomaly
detector

Wire/wireless
networks

Remote
estimatoryN,k

xk|k − 1
^

xk|k − 1
^

zN,k

za
i,k

xa
k|k − 1

Za
k

^

 
Fig. 1.     A multi-sensor remote estimation system under attack.
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mised residual (13) is derived as
 

Ξa
k = E[Za

k Za
k

T ]

= FkΞFT
k +LkΞLT

k +Γk

=

[Fi,k 0
0 0

] [ Ξi Mi

MT
i Ξ̃i

] [
FT

i,k 0
0 0

]
+

[
Γi,k 0
0 0

]

+

[Li,k Ni,k

0 I

] [ Ξi Mi

MT
i Ξ̃i

] LT
i,k 0

NT
i,k I


=

 Ξa
i,k Li,k Mi+Ni,kΞ̃i

MT
i LT

i,k +Ξ̃iNT
i,k Ξ̃i

 (16)

where
 

Ξa
i,k = Fi,kΞiFT

i,k +Li,kΞiLT
i,k +Ni,k MT

i LT
i,k

+Li,k MiNT
i,k +Ni,kΞ̃iNT

i,k +Γi,k. (17)

In order to achieve strict stealthiness, compromised residual
covariance  (16)  needs  to  keep  the  same  as  the  normal  one
(14), i.e.,
  Ξa

i,k Li,k Mi+Ni,kΞ̃i

MT
i LT

i,k +Ξ̃iNT
i,k Ξ̃i

 = [ Ξi Mi

MT
i Ξ̃i

]
.

Then, we obtain
  Ξa

i,k = Ξi

Li,k Mi+Ni,kΞ̃i = Mi.
(18)

It can be obtained from the second condition of (18) that
 

Ni,k = (I−Li,k)MiΞ̃
−1
i . (19)

Substituting (19) into (17) yields
 

Ξa
i,k = Fi,kΞiFT

i,k +Li,kΞiLT
i,k +Γi,k

+Li,k MiΞ̃
−1
i MT

i (I−LT
i,k)

+ (I−Li,k)MiΞ̃
−1
i MT

i LT
i,k

+ (I−Li,k)MiΞ̃
−1
i MT

i (I−LT
i,k)

= Fi,kΞiFT
i,k +Li,k(Ξi−MiΞ̃

−1
i MT

i )LT
i,k

+MiΞ̃
−1
i MT

i +Γi,k. (20)
And  then,  with  the  first  condition  of  (18),  the  following

equation holds:
 

Fi,kΞiFT
i,k +Li,k(Ξi−MiΞ̃

−1
i MT

i )LT
i,k +Γi,k

= Ξi−MiΞ̃
−1
i MT

i

which forms the stealthiness condition (15) with (19). ■
Ni,k = 0Remark 2: As shown in (13), when , the attack sig-

nal against sensor i becomes
 

za
i,k = Fi,kzi,k−τ+Li,kzi,k +bi,k (21)

Li,k , I

which is the same as the single-sensor case in [42]. However,
it is very difficult to guarantee stealthiness condition (15) due
to  the  optimal  attack  matrix  in  [42].  That  is  to  say,

Ni,k

such an attack scheme is no longer stealthy for a multi-sensor
system,  which  is  consistent  with  the  analysis  in  Remark  1.
Therefore,  in  order  to  achieve  both  the  destructiveness  and
stealthiness, the attack matrix  is introduced into the attack
scheme, which is the main difference with [42].  

IV.  Main Results

The  attacker  mainly  aims  at  degrading  the  system  estima-
tion  performance  to  the  largest  extent  without  being  noticed
by  anomaly  detector  (9).  Hence,  under  the  stealthiness  con-
straint (15), the objective of the attacker is formed as the fol-
lowing optimization problem:
 

max
Fi,k ,Li,k ,Γi,k

tr(Pa
k)

s.t. Fi,kΞiFT
i,k +Li,kΘiLT

i,k +Γi,k = Θi (22)

Pa
kwhere  is  the  posteriori  estimation  error  covariance  under

attack, of which the evolution is derived in the following.  

A.  Estimation Performance of Compromised System
Under the attack (13), the Kalman filter (5) is rewritten as

 

x̂a
k+1|k = Ax̂a

k (23a)
 

x̂a
k = x̂a

k|k−1+KZa
k (23b)

x̂a
k|k−1 x̂a

kwhere  and  denote the priori  and posteriori  estimates
under attack, respectively. The compromised estimation error
covariance is given in the following theorem.

[ka, ka+ k̃)
[ka+ f τ, ka+ ( f +1)τ) f = 0,1, . . . ,

⌈k̃/τ⌉−1

Theorem  2: The  whole  FDI  attack  duration  is
split into the intervals  with 

,  and  for  each  attack  interval,  the  estimation  error
covariance is given as follows.

1) f = 0 : Sensor i is chosen to be attacked, and
 

Pa
k = APa

k−1AT +Q−KΞKT

+KiΘi(I−LT
i,k)KT

i +Ki(I−Li,k)ΘiKT
i . (24)

f ≥2)  1: Sensor j is chosen to be attacked including the fol-
lowing two cases:

j = ii)  (i.e.,  the  attacked sensor  in  the  current  attack  inter-
val is the same as that in the previous interval)
 

Pa
k = APa

k−1AT +Q−KΞKT

+KiΘi(I−LT
i,k)KT

i +Ki(I−Li,k)ΘiKT
i

+AτKi(Li,k−τ− I)ΘiFT
i,kKT

i

+KiFi,kΘi(LT
i,k−τ− I)KT

i AτT . (25)
j , iii)  (i.e., the attacked sensor in the current attack inter-

val is different from that in the previous interval)
 

Pa
k = APa

k−1AT +Q−KΞKT

+K jΘ j(I−LT
j,k)KT

j +K j(I−L j,k)Θ jKT
j . (26)

Proof: For the compromised filter (23), the priori and poste-
riori estimation errors are defined respectively as
 

ea
k|k−1 = xk − x̂a

k|k−1

and 
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ea
k = xk − x̂a

k .

With (1a) and (23a), we have
 

ea
k|k−1 = Aea

k−1+wk−1. (27)

The priori estimation error covariance is derived as
 

Pa
k|k−1 = E[ea

k|k−1eaT
k|k−1]

= APa
k−1AT +Q

(28)

Pa
k = E[ea

keaT
k ]where . And, subtracting (23b) from (1a) yields

 

ea
k = ea

k|k−1−KZa
k . (29)

Thus,  the posteriori  estimation error  covariance is  obtained
as
 

Pa
k = Pa

k|k−1+KΞKT

−E[ea
k|k−1ZaT

k KT ]−E[KZa
k eaT

k|k−1]. (30)

Next,  we  only  need  to  further  derive  the  last  two  items  of
(30).

With (13), the next-to-last item of (30) is derived as
 

E[ea
k|k−1ZaT

k KT ]

= E[ea
k|k−1(FkZk−τ+LkZk +bk)T KT ]

= E[ea
k|k−1ZT

k−τF
T
k KT ]+E[ea

k|k−1ZT
k LT

k KT ]. (31)

Then, the last item of (31) is calculated as
 

E[ea
k|k−1ZT

k LT
k KT ]

= E[(xk − x̂k|k−1)ZT
k LT

k KT ]

+E[(x̂k|k−1− x̂a
k|k−1)ZT

k LT
k KT ]

= ΦHT LT
k KT +E[(x̂k|k−1− x̂a

k|k−1)ZT
k LT

k KT ]. (32)

Combining (5) and (23) yields
 

x̂k|k−1− x̂a
k|k−1

= A(x̂k−1|k−2− x̂a
k−1|k−2)+AK(Zk−1−Za

k−1)

= Ak−ka (x̂ka |ka−1− x̂a
ka |ka−1)+

k−1∑
t=ka

Ak−tK(Zt −Za
t )

=

k−1∑
t=ka

Ak−tK(Zt −Za
t ). (33)

Zk Zt Za
t t < kSince  is  independent  of  and  for ,  the  second

item of (32) equals zero, i.e.,
 

E[(x̂k|k−1− x̂a
k|k−1)ZT

k LT
k KT ] = 0.

Thus, (32) is obtained as
 

E[(xk − x̂a
k|k−1)ZT

k LT
k KT ] = ΦHT LT

k KT . (34)

For the first item of (31), we have
 

E[ea
k|k−1ZT

k−τF
T
k KT ] = E[(xk − x̂k|k−1)ZT

k−τF
T
k KT ]

+E[(x̂k|k−1− x̂a
k|k−1)ZT

k−τF
T
k KT ]. (35)

With (1a) and (5), we obtain
 

xk − x̂k|k−1 = A(xk−1− x̂k−1|k−2)+wk−1−AKZk−1

= Aτ(xk−τ− x̂k−τ|k−τ−1)+
τ−1∑
t=0

Atwk−t−1

−
τ−1∑
t=0

At+1KZk−t−1.

Zk−τ wk−t−1 Zk−t t < τThen, since  is independent of  and  for ,
the first item of (35) is
 

E[(xk − x̂k|k−1)ZT
k−τF

T
k KT ]

= AτE[(xk−τ− x̂k−τ|k−τ−1)ZT
k−τ]F

T
k KT

−AτE[KZk−τZT
k−τ]F

T
k KT

= Aτ(ΦHT −KΞ)FT
k KT

= 0. (36)
With (33), the second item of (35) is

 

E[(x̂k|k−1− x̂a
k|k−1)ZT

k−τF
T
k KT ]

= E

k−1∑
t=ka

Ak−tK(Zt −Za
t )ZT

k−τF
T
k KT


= E

k−1∑
t=ka

Ak−tK(Zt −FtZt−τ−LtZt −bt)ZT
k−τF

T
k KT


= E

k−1∑
t=ka

Ak−tK(Zt −LtZt)ZT
k−τF

T
k KT

 . (37)

f = 0 k ∈ [ka, ka+τ) k−τ ∈ [ka−τ, ka)
E[ZtZT

k−τ] = 0 t = ka,ka+1, . . . ,k−1
When , i.e., , we have ,

which  means  that  for .
Thus, during this attack interval, (37) becomes
 

E[(x̂k|k−1− x̂a
k|k−1)ZT

k−τF
T
k KT ] = 0. (38)

With (36) and (38), (35) becomes
 

E[ea
k|k−1ZT

k−τF
T
k KT ] = 0. (39)

And,  with  (34)  and  (39),  (31),  i.e.,  the  next-to-last  item of
(30), is obtained as
 

E[ea
k|k−1Za

k
T KT ] = ΦHT LT

k KT .

Then, the last item of (30) is derived as
 

E[KZa
k ea

k|k−1
T ] = KLkHΦ.

k ∈ [ka, ka+τ)Hence,  for ,  the  compromised  estimation
error covariance is derived as
 

Pa
k = APa

k−1AT +Q+KΞKT −ΦHT LT
k KT −KLkHΦ. (40)

[ka, ka+τ)Furthermore,  since  only  sensor i is  attacked  in ,
substituting (11) into (40) yields
 

Pa
k = APa

k−1AT +Q−KΞKT

+KΞ(I−LT
k )KT +K(I−Lk)ΞKT

= APa
k−1AT +Q−KΞKT
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+
[
Ki K̃i

] [ Ξi Mi

MT
i Ξ̃i

] I−LT
i,k 0

−NT
i,k 0

 KT
i

K̃T
i


+
[
Ki K̃i

] [I−Li,k −Ni,k

0 0

] [ Ξi Mi

MT
i Ξ̃i

] KT
i

K̃T
i


= APa

k−1AT +Q−KΞKT

+KiΘi(I−LT
i,k)KT

i +Ki(I−Li,k)ΘiKT
i .

f ≥ 1 k ∈ [ka+ f τ,ka+ ( f +1)τ) k−τ ∈
[ka+ ( f −1)τ,ka+ f τ) ∈ [ka,k−1]

When ,  i.e., ,  we  get 
. Thus, (37) becomes

 

E[(x̂k|k−1− x̂a
k|k−1)ZT

k−τF
T
k KT ]

= E[
k−1∑
t=ka

Ak−tK(Zt −LtZt)ZT
k−τF

T
k KT ]

= AτΦHT FT
k KT −AτKLk−τΞFT

k KT .

Thus, in this case, the compromised estimation error covari-
ance is derived as
 

Pa
k = APa

k−1AT +Q+KΞKT

−ΦHT LT
k KT −AτΦHT FT

k KT +AτKLk−τΞFT
k KT

−KLkHΦ−KFkHΦAτT +KFkΞLT
k−τK

T AτT . (41)

j = i

j , i

Then, there exist  two cases:  1) The attacked sensor j is  the
same as sensor i in the previous attack interval (i.e., ); 2)
The attacked sensor j is different from sensor i in the previous
attack interval (i.e., ).

1)  j  =  i: The  compromised  estimation  error  covariance  is
obtained as
 

Pa
k = APa

k−1AT +Q−KΞKT

+KΞ(I−LT
k )KT +AτK(Lk−τ− I)ΞFT

k KT

+K(I−Lk)ΞKT +KFkΞ(LT
k−τ− I)KT AτT

= APa
k−1AT +Q−KΞKT

+KiΘi(I−LT
i,k)KT

i +Ki(I−Li,k)ΘiKT
i

+Aτ
[
Ki K̃i

] [Li,k−τ− I Ni,k−τ
0 0

] [ Ξi Mi

MT
i Ξ̃i

]

×
[
FT

i,k 0
0 0

] KT
i

K̃T
i


+
[
Ki K̃i

] [Fi,k 0
0 0

] [ Ξi Mi

MT
i Ξ̃i

]

×
LT

i,k−τ− I 0

NT
i,k−τ 0

 KT
i

K̃T
i

AτT
= APa

k−1AT +Q−KΞKT

+KiΘi(I−LT
i,k)KT

i +Ki(I−Li,k)ΘiKT
i

+AτKi(Li,k−τ− I)ΘiFT
i,kKT

i

+KiFi,kΘi(LT
i,k−τ− I)KT

i AτT .

j , i2) : The  estimation  error  covariance  under  attack  is
derived as
 

Pa
k = APa

k−1AT +Q−KΞKT

+K jΘ j(I−LT
j,k)KT

j +K j(I−L j,k)Θ jKT
j

+AτK(Lk−τ− I)ΞFT
k KT

+KFkΞ(LT
k−τ− I)KT AτT . (42)

Since  in  the  previous  attack  interval,  only  sensor i is
attacked, the following equation holds:
 

(Lk−τ− I)Ξ =
[Li,k−τ− I Ni,k−τ

0 0

] [ Ξi Mi

MT
i Ξ̃i

]

=

[
(Li,k−τ− I)Ξi+Ni,k−τMT

i 0
0 0

]
.

And further, we obtain
 

(Lk−τ− I)ΞFT
k

=


(Li,k−τ− I)Ξi+Ni,k−τMT

i 0 0

0 0 j 0
0 0 0



0i 0 0

0 FT
j,k 0

0 0 0


= 0.

Hence, the compromised estimation error covariance (42) is
 

Pa
k = APa

k−1AT +Q−KΞKT

+K jΘ j(I−LT
j,k)KT

j +K j(I−L j,k)Θ jKT
j . ■

τ1 = 1 τ2 = 2
Aτ2 Aτ1

τ2 = 2 τ1 = 1
τ2 > τ1 τ1

τ2
[ka, ka+τ2)

τ2

Remark 3: From (25), it is clear that the parameter τ directly
affects the estimation error covariance when the attacked sen-
sor is unchanged. Two cases need to be considered: 1) When
A is  stable,  as τ increases,  the  last  two  items  of  (25)  tend  to
zero,  which  implies  that  the  destruction  effect  declines.  2)
When A is unstable, it is easy to make us instinctively believe
that the larger τ causes more system performance loss, but it is
wrong. For a simple example (  and ), the absolute
value of the largest eigenvalue of  is larger than that of 
with  unstable A.  Therefore,  the  trace of  the last  two items of
(25) with  is  larger  than that  with .  Nevertheless,
since , the attack with  enters into the next stage ear-
lier than that with . That is to say, for the first attack inter-
val ,  the  compromised  estimation  error  covari-
ance with  becomes
 

Paτ2
k = APaτ2

k−1AT +Q−KΞKT

+KiΘi(I−LT
i,k)KT

i +Ki(I−Li,k)ΘiKT
i .

τ2 > τ1
τ1 [ka, ka+τ2)

[ka, ka+τ1) [ka+τ1, ka+τ2) k ∈ [ka, ka+τ1)

Since , the compromised estimation error covariance
with  in the attack interval  includes two stages:

 and . For 
 

Paτ1
k = APaτ1

k−1AT +Q−KΞKT

+KiΘi(I−LT
i,k)KT

i +Ki(I−Li,k)ΘiKT
i

k ∈ [ka+τ1, ka+τ2)and for  
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Paτ1
k = APaτ1

k−1AT +Q−KΞKT

+KiΘi(I−LT
i,k)KT

i +Ki(I−Li,k)ΘiKT
i

+Aτ1 Ki(Li,k−τ1 − I)ΘiFT
i,kKT

i

+KiFi,kΘi(LT
i,k−τ1 − I)KT

i Aτ1 T .

tr(Paτ1
k ) ≥

tr(Paτ2
k )

τ = J

Since  the  trace  of  the  last  four  terms  of  (25)  is  greater  or
equal to the trace of the last two terms of (24) under the opti-
mal  attack  strategy  (see  (57)),  with  unstable A, 

 holds in the same attack duration. That is to say, when
A is unstable, the result is the same as that for stable A. Hence,
when the attacked sensor is unchanged, in order to degrade the
estimation  performance  to  the  best  extent,  the  parameter τ is
chosen as .  

B.  Worst-Case Attack Strategy
The main focus of this part is to search the worst-case attack

strategy by solving the optimization problem (22).
F∗i,k L∗i,kTheorem  3: The  optimal  attack  matrices  and  are

obtained  by  solving  the  following convex optimization  prob-
lems.

k ∈ [ka, ka+τ)1) For , Sensor i Is Attacked:
 

min
S i,k

tr(S i,kΨi)

s.t.
 Θi S i,k

S T
i,k Λ−1

i

 ≥ 0 (43)

where
 

S i,k = [Fi,k Li,k] , Ψi =

[ 0

ΘiKT
i Ki

]
, Λi =

[
Ξi

Θi

]
.

k ∈ [ka+ f τ, ka+ ( f +1)τ) f ≥ 12) For , :
j = ii) Sensor  is attacked:

 

min
S i,k

tr(S i,kΥi,k)

s.t.

 Θi S i,k

S T
i,k Λ−1

i

 ≥ 0 (44)

where
 

Υi,k =

Θi(I−LT
i,k−τ)K

T
i AτT Ki

ΘiKT
i Ki

 .
j , iii) Sensor  is attacked:

 

min
S j,k

tr(S j,kΨ j)

s.t.

Θ j S j,k

S T
j,k Λ−1

j

 ≥ 0. (45)

N∗i,k Γ∗i,kMoreover, the attack matrices  and  are as follows:
 

N∗i,k = (I−L∗i,k)MiΞ̃
−1
i

Γ∗i,k = Θi−S ∗i,kΛiS ∗Ti,k .

k ∈ [ka, ka+τ)Proof: For ,  the  trace  of  the  compromised
estimation error covariance (24) is 

tr(Pa
k) = tr(APa

k−1AT +Q−KΞKT )

+2tr(KiΘiKT
i )−2tr(Li,kΘiKT

i Ki) (46)
which  shows  that  only  the  last  term  is  related  to  the  attack
matrix. Hence, the optimization problem (22) is equivalent to
the following problem:
 

max
Fi,k ,Li,k

−tr(Li,kΘiKT
i Ki)

s.t. Θi−Fi,kΞiFT
i,k −Li,kΘiLT

i,k ≥ 0. (47)
S i,k = [Fi,k Li,k]Let , and the above stealthiness constraint is

transformed into
 

Θi−S i,kΛiS T
i,k ≥ 0

which can be further converted into
  Θi S i,k

S T
i,k Λ−1

i

 ≥ 0 (48)

by  using  the  Schur  complement  lemma.  Then,  the  constraint
optimization problem (47)  is  transformed into a  convex opti-
mization problem as shown in (43).

k ∈ [ka+ f τ, ka+ ( f +1)τ) f ≥ 1
j = i

For , , the trace of the estima-
tion error covariance (25) for attacked sensor  is
 

tr(Pa
k) = tr(APa

k−1AT +Q−KΞKT )+2tr(KiΘiKT
i )

+2tr(Fi,kΘi(LT
i,k−τ− I)KT

i AτT Ki)

−2tr(Li,kΘiKT
i Ki). (49)

Then, the optimization problem (22) is equivalent to
 

max
Fi,k ,Li,k

tr(Fi,kΘi(LT
i,k−τ− I)KT

i AτT Ki−Li,kΘiKT
i Ki)

s.t. Θi−Fi,kΞiFT
i,k −Li,kΘiLT

i,k ≥ 0 (50)

which is converted into (44) by combining with (48).
j , i

[ka, ka+τ)

Furthermore,  for  the  attacked  sensor  case ,  the  opti-
mization  problem  is  formed  as  shown  in  (44)  by  using  the
same way in .

F∗i,k L∗i,k
N∗i,k Γ∗i,k

In  addition,  with  the  solution  of  and ,  the  attack
matrices  and  can  also  be  obtained  according  to  the
stealthiness condition (15). ■

Li,k L j,k

Remark  4: As  shown  in  (43)  and  (45),  the  objective  func-
tion only includes the attack matrix  or , which is con-
sistent  with  our  previous  work  [47].  Hence,  the  analytical
solutions of optimization problems (43) and (45) are given as
follows:

k ∈ [ka, ka+τ)1) For :
 

F∗i,k = 0, L∗i,k = −I, N∗i,k = 2MiΞ̃
−1
i , Γ

∗
i,k = 0. (51)

k ∈ [ka+ f τ, ka+ ( f +1)τ) f ≥ 1 j , i2) For , , :
 

F∗j,k = 0, L∗j,k = −I, N∗j,k = 2M jΞ̃
−1
j , Γ

∗
j,k = 0. (52)

k ∈ [ka+τ, ka+2τ)
Υi,k

It  is  clear  that  the  optimal  solutions  of  (43)  and  (45)  are
time-invariant matrices, as shown in (51) and (52). Reconsid-
ering  the  optimization  problem  (44),  for ,
the coefficient matrix  is given as
 

Υi,k =

2ΘiKT
i AτT Ki

ΘiKT
i Ki


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k ∈ [ka+τ, ka+2τ)
which  is  time-invariant.  Therefore,  the  optimal  solution  of
(44) is also time-invariant for . Then, it can
be concluded that in whole attack intervals, the optimal attack
strategy is piecewise time-invariant.  

C.  Selection of Attacked Sensor
In the above subsections, the optimal attack strategy in each

attack interval is derived for one arbitrarily attacked sensor i.
However,  different  attacked  sensors  may  cause  different
impacts on the system performance (see (24)–(26)). This part
focuses on deriving the selection principle of the attacked sen-
sor for the sake of maximizing the degradation of the system
estimation performance under limited attack resources.

Theorem 4: In  the whole attack interval,  under  the optimal
attack strategy, the selection principle of the attacked sensor is
 

i⋆ = argmax
i

tr(KiΘiKT
i ). (53)

k ∈ [ka, ka+τ)Proof: For ,  with  the  optimal  attack  strategy
(51),  the  trace  of  the  compromised  estimation  error  covari-
ance in (46) is
 

tr(Pa
k) = tr(APa

k−1AT +Q−KΞKT )+4tr(KiΘiKT
i ) (54)

which implies that the largest last item corresponds to the sen-
sor to be attacked, and further forms (53).

k ∈ [ka+ f τ, ka+ ( f +1)τ) f ≥ 1

j , i

For , , when the attacked sen-
sor is  different  from that  in the previous attack interval,  with
the optimal attack strategy (52), the trace of the compromised
estimation  error  covariance  (26)  is  the  same  as  (54).  Hence,
like (53), the sensor  is determined by
 

j⋆
′
= argmax

j,i
tr(K jΘ jKT

j ). (55)

f ≥ 1
j = i

When the attacked sensor in the f-th attack interval ( ) is
the same as that in the previous one, i.e., , under the opti-
mal attack strategy, the last three terms of (49) satisfy
 

2tr(KiF∗i,kΘi(L∗Ti,k−τ− I)KT
i AτT )

+2tr(Ki(I−L∗i,k)ΘiKT
i )

≥ 2tr(Ki(I−Li,k)ΘiKT
i ). (56)

F∗i,k = 0If (56) is not satisfied, we have , and then, the opti-
mization  problem  (50)  is  transformed  into  (47).  Therefore,
under  the  optimal  attack  strategy,  considering  (55),  (56)
becomes
 

2tr(KiF∗i,kΘi(L∗Ti,k−τ− I)KT
i AτT )

+2tr(Ki(I−L∗i,k)ΘiKT
i )

≥ 4tr(KiΘiKT
i )

≥ 4tr(K jΘ jKT
j ), j , i. (57)

Hence,  the  attacked  sensor  is  selected  according  to  (53),
which  shows  that  the  attacked  sensor  is  fixed  in  the  whole
attack interval. ■  

V.  Simulation Results

5000
In  this  section,  a  stable  system and  an  unstable  system are

provided as the target systems, and  Monte Carlo simula-

tions are run to verify the above theoretical analyses.  

A.  Stable System
The  stable  system  matrix  and  process  noise  covariance

matrix are randomly chosen as
 

A =


0.7698 0.5094 0.2197
0.0156 0.9127 0.0251
0.0073 0.0260 0.8526

 , Q = 0.1I3.

Three  sensors  are  employed  to  measure  the  system output,
and the corresponding parameters are randomly set as
 

H1 =

[
0.6190 0.0597 0.5853
0.1034 0.2404 0.1238

]
, R1 = 0.5I2

H2 =

[
0.7513 0.1060 0.6010
0.0051 0.8091 0.0593

]
, R2 = 0.1I2

H3 =

[
0.5472 0.0493 0.4407
0.2386 0.3575 0.6543

]
, R3 = 0.7I2.

With (6), the Kalman filter gain is given as
 

K = [K1 K2 K3]
where
 

K1 =


0.0535 0.0112
−0.0005 0.0346
0.0804 0.0109

 , K2 =


0.4159 0.0718
0.0485 0.6168
0.3112 −0.0990


K3 =


0.0424 −0.0270
0.0018 0.0229
0.0340 0.1058

 .
[0,200]

J = 5
[101,200]

The system operates in the time interval . The detec-
tion  window  length  is  set  as .  And  the  attacker  injects
attack signals in .

Define
 

ρ f =


4tr(KiΘiKT

i ), f = 0

2tr(KiF∗i,kΘi(L∗Ti,k−τ− I)KT
i AτT )

+2tr(Ki(I−L∗i,k)ΘiKT
i ), f ≥ 1.

τ = 5 ρ f

2 ρ f
ρ f f ≥ 1

ρ0
τ = 5

For ,  the  values  of  for  each  sensor  under  different
attack intervals are shown in Fig. 2. It is clear that, when sen-
sor  is attacked, the values of  are larger than those of the
other two sensors. Furthermore,  with  is always larger
than . Therefore, the selection principle of the attacked sen-
sor  applies  to  the  whole  attack  interval.  And  then,  for ,
the  estimation  performance  of  the  system  with  different
attacked  sensors  is  shown in Fig. 3,  which  is  consistent  with
the  result  in Fig. 2.  Furthermore,  the  randomly  attacked  sen-
sor  scheme,  which  selects  the  attacked  sensor  with  a  same
probability for each attack interval, is adopted (see green line
in Fig. 3),  which  further  illustrates  the  effectiveness  of  the
selection principle of the attacked sensor.

τ = 5 τ = 15 τ = 25
Next, for the attacked sensor 2, three experiments under dif-

ferent τ: ,  and , are conducted. Furthermore,
an  attack  scheme  without  considering  historical  residuals
investigated  in  [47]  is  adopted  for  comparison.  The  corre-
sponding simulation results are shown in Fig. 4, which clearly
shows that, as the value of τ increases, the corresponding esti-
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mation  error  decreases,  which  is  consistent  with  Remark  3.
And, compared with the effect of the attack scheme [47] (see
orange  line  in Fig. 4),  the  proposed  attack  scheme  based  on
the historical and current residuals causes more loss of system
estimation performance. In addition, from all the above exper-
iments  (Figs. 3 and 4),  it  is  easy  to  see  that  the  empirical
results  are  extremely  close  to  the  theoretical  results,  which
directly verifies the theoretical analysis.

τ = 5
In  order  to  show  the  stealthiness  of  the  proposed  attack

scheme, the detection index under  is shown in Fig. 5. It
shows  that  the  distribution  of  the  detection  index  has  no
change  in  the  normal  and  compromised  situations,  which
means that the proposed attack scheme can successfully evade

the anomaly detector.  

B.  Unstable System
An unstable system is considered with

 

A =


1.0063 0.3023 0.2459
0.0035 0.7514 0.4268
0.0012 0.0025 0.6105

 .
Other parameters are the same as those in the stable system

case. And, the Kalman filter gain is
 

K = [K1 K2 K3]
where
 

K1 =


0.0727 0.0054
0.0022 0.0354
0.0543 0.0159

 , K2 =


0.5033 −0.0929
0.0359 0.6136
0.2113 0.0814


K3 =


0.0524 −0.0201
0.0007 0.0383
0.0224 0.0829

 .
The simulation results are displayed in Figs. 6−9, which are

similar  to  those  in  the  aforementioned  stable  system  simula-
tion  case.  In  addition,  it  is  worth  noting  that  the  estimation
errors  of  the  unstable  system  under  attack  diverge,  which
means that the unstable system is very weak when facing the
attack.  

VI.  Conclusion

This  paper  has  explored  how  to  design  the  stealthy  attack
strategy to maximally degrade the estimation performance of a
multi-sensor system under limited attack resources. A stealthy
FDI  attack  scheme  based  on  historical  and  current  residuals
has been proposed against partial sensors. The attack stealthi-
ness condition has been derived for the sake of bypassing the
residual-based  detector.  Then,  the  compromised  estimation
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error covariance has been given and used to quantify the sys-
tem performance under attack. And, it has been analyzed and
determined to utilize which time instants of historical  data to
design the  attack signals  to  cause more attack effect.  Several
convex optimization problems have been formed to obtain the
optimal attack strategy for each attack interval. Moreover, the
selection principle of the attacked sensor has been derived by
analyzing which sensor is attacked to cause the worst effect on
the  system.  Finally,  some  simulation  results  have  been  pro-
vided  to  verify  the  theoretical  analyses  and  demonstrate  the
superiority of the proposed attack scheme.

It is noted that the design of the stealthy attack scheme has

been  studied  for  the  security  of  multi-sensor  remote  estima-
tion systems. However, our ultimate goal is to construct effec-
tive  attack  detection  methods  and  secure  estimation  methods
against such an attack [48], [49], which are much more chal-
lenging and will be further explored in our future work.
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