
 

Letter

Sliding Mode Control for Recurrent Neural Networks
With Time-Varying Delays and Impulsive Effects

Lanfeng Hua, Kaibo Shi, Member, IEEE, Zheng-Guang Wu,
Member, IEEE, Soohee Han, Senior Member, IEEE, and

Shouming Zhong

   Dear Editor,
This  letter  studies  the  problem  of  sliding  mode  control  (SMC)

design  for  recurrent  neural  networks  (RNNs)  with  impulsive  distur-
bances and time-varying transmission delays. To this end, an appro-
priate integral sliding surface function and SMC law are adopted for
use  under  impulsive  disturbances  and  time-varying  delays.  Then,
based  on  the  finite-time  stability  and  the  discontinuous  Lyapunov
analysis  method,  the  finite-time  reachability  of  the  designed  sliding
surface  and  the  exponential  stability  of  the  resulting  sliding  mode
dynamic  are  analyzed  respectively.  Finally,  a  numerical  example  is
presented to illustrate the effectiveness of the proposed results.

Introduction: In the past decades, RNNs have attracted consider-
able  attentions  for  their  advantages  of  memory and self-adaptability
[1]–[3]. Further, they have successful applications in many different
fields  [4]  and  [5].  It  has  been  generally  acknowledged  that  in  the
electronic  implementation  of  RNNs,  time  delays  are  likely  to  occur
due to sudden noise or signal propagation speed limitations. Besides
delayed features  of  RNNs,  there  might  also  be impulsive  disturban-
ces,  which  could  potentially  affect  the  performance  of  the  systems
[6]–[8].  Therefore,  the  dynamic  behaviors  of  the  RNNs  with  time-
varying delays and impulsive effects have been increasingly studied.

SMC is known as an effective approach to solve the control prob-
lem  of  complex  dynamical  systems  due  to  its  excellent  properties
[9]–[11]. In the literature, SMC law has been widely used in practi-
cal applications, such as robotics, power systems, etc. [12]–[14]. Fur-
thermore,  the  SMC  design  for  RNNs  also  has  drawn  widespread
attention [15] and [16]. However, it is worth noting that the existing
works on SMC mainly focus on continuous-time systems.  Actually,
many  practical  systems  are  inevitably  subject  to  impulsive  distur-
bances.  This  implies  that  the  dynamic process  of  the  systems is  not
continuous but may change suddenly at certain instants, which might
lead to the unavailable of the existing widely used.

This  letter  addresses  how to  design  the  SMC law for  the  systems
with impulsive disturbances and time-varying delays. The main con-
tributions  of  this  letter  are  that:  an  appropriate  integral  sliding  sur-

s(t) = 0

face  function  and  an  SMC law are  introduced  for  use  under  impul-
sive disturbances and time-varying delays. Then, based on the theo-
ries  of  finite-time  stability  and  impulsive  control,  some  sufficient
conditions  are  deduced  to  ensure  that  the  considered  system  states
can be driven to the designed sliding surface  within a finite
time.  Meanwhile,  the  reaching-time  up  to  the  designed  sliding  sur-
face  can  be  estimated,  which  is  dependent  on  the  impulses.  More-
over, by employing the average dwell-time and the Lyapunov analy-
sis  method,  the  exponential  stability  of  the  resulting  sliding  mode
dynamic, which is modeled by a delayed impulsive nonlinear system,
is guaranteed.

Problem  formulation: Consider  the  RNN  with  time-varying
delays and impulsive effects described by the following model:
 ẋ(t) = −Cx(t)+A f (x(t))

+B f (x(t−τ(t))), t <K
∆x(t) =Gx(t−), t ∈ K

(1)

x(t) ∈ U ⊆ Rn

f :U→ Rn τ(t)
0 ≤ τ(t) ≤ τ, τ̇(t) ≤ µ < 1 ∆x(t) =

x(t+)− x(t−) K = {ti, i ∈ Z+}
(t0,∞) C ∈ Rn×n

B,A ∈ Rn×n

G ∈ Rn×n

where  is  the  state  vector  of  the  RNN,  the  function
 is the neuron activation function,  is the time-varying

transmission  delay  and  satisfies , 
 is the impulsive disturbance, the set  is a

strictly increasing impulses sequence on , the matrix 
is  a  positive  definite  diagonal  matrix,  the  matrices  are
the  connection  weight  with  and  without  delays,  and  the  matrix

 means  the  impulsive  strength.  The  following  assumptions
are needed.

Assumption 1 xi(t) xi(t) = xi(t+):  have  left  and right  limits,  and  at
all times.

Assumption 2 fi(·)
λi ∈ R+ | fi(y1)− fi(y2)| ≤ li|y1 − y2| ∀y1, y2 ∈ R

:  satisfies  Lipschitz  condition,  that  is,  there
exists  such that  for .

Letting  the  RNN  (1)  as  the  drive  system,  the  corresponding
response system are introduced as follows:
 ẏ(t) = −Cy(t)+A f (y(t))

+B f (y(t−τ(t)))+DU(t), t <K
∆y(t) =Gy(t−), t ∈ K

(2)

y(t) ∈ U ⊆ Rn

U(t) ∈ Rm

D ∈ Rn×m rank(D) = m

where  is  the  state  vector  of  the  response  system,
 is the control input to be designed later on, and the matrix
 satisfies .

e(t) = y(t)− x(t)Define  the  synchronization  error .  Then,  the  syn-
chronization error dynamic is deduced as follows:
 ė(t) = −Ce(t)+A f̃ (e(t))

+B f̃ (e(t−τ(t)))+DU(t), t <K
e(t) = G̃e(t−), t ∈ K

(3)

f̃ (e(·)) = f (y(·))− f (x(·)) G̃ = I+G.where , and 

K
ϑ, ε > 0

e(t; t0,e0)

Definition 1 [6]: The response RNN (2) is said to be exponentially
synchronized onto the drive RNN (1) over the impulse sequences ,
if there exist constants  such that for any initial condition, the
solution  of the synchronization error system (3) satisfies
 

∥e(t; t0,e0)∥ ≤ ϑe−ε(t−t0)∥e0∥ν, ∀t ≥ t0.
Main results: In this section, we will study the SMC design for the

RNNs. We design the following sliding function:
 

s(t) = Pe(t)+
w t

0
P(C−DH)e(σ)dσ (4)

PDwhere P is chosen such that  is a nonsingular matrix, and H will
be designed later. Then the following SMC law is considered:
 

U(t) = He(t)−φ(t)sgn(s(t)) (5)
φ(t) = β + γ∥e(t)∥ + δ∥e(t − τ(t))∥ l̃ =max1≤i≤n{li} γ ≜

l̃∥(PD)−1PA∥ δ ≜ l̃∥(PD)−1PB∥
K1

where ,  and , 
, . We consider the impulses sequence

 satisfying
 

min
{

i ∈ Z+ : ti ≥ t0 + ξ
1
2 (i−1)
1

V1−α
0

ρ(1−α)

}
= I0 < +∞ (6)

ξ1where  the  positive  constants α and ρ will  be  given  later,  and  is
determined by impulsive strength.

1 2
K

ξ1 > 1,α = 1
2 ρ =

β

λ̃

Theorem  1:  For  the  RNNs  (1)  and  (2),  if  Assumptions  and 
hold,  the  impulses  sequence  satisfies  the  condition  (6)  with

 and , and the following condition holds:
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G̃T (PD)−1G̃ ≤ ξ1(PD)−1 (7)

λ̃ =
( 1

2λmax((PD)−1)
) 1

2where ,  then the synchronization error system
(3) can be driven onto the designed sliding surface (4) within a finite
time  under  the  SMC law (5)  and  maintain  there  thereafter.  Further-
more, the reaching-time is upper bounded by
 

T (e0,K) ≤ T̃0 ≜ t0 + ξ
1
2 (I0−1)
1

2λ̃V
1
2

0
β
. (8)

Proof: Choose the Lyapunov function
 

V(t) =
1
2

sT (t)(PD)−1s(t). (9)

Based on the sliding function (4), one has
 

ṡ(t) =−P[DHe(t)+A f̃ (e(t))+B f̃ (e(t−τ(t)))+DU(t)]. (10)
Then, the time derivative of the Lyapunov function (9) is given as

 

V̇(t) ≤ ∥sT (t)∥× ∥(PD)−1PA∥×∥ f̃ (e(t))∥
+ ∥sT (t)∥× ∥(PD)−1PB∥×∥ f̃ (e(t−τ(t)))∥
− sT (t)He(t)+ sT (t)U(t)), t <K . (11)

2
∥s(t)∥ ≤ ∥s(t)∥1

Under  Assumption ,  substituting  the  SMC law (5)  into  (11)  and
employing the inequality , yield
 

V̇(t) ≤−β∥sT (t)∥ ≤ −β
λ̃

V(t)
1
2 , t <K . (12)

From the condition (7), it turns out that
 

V(t) ≤1
2

sT (t−)G̃T (PD)−1G̃s(t−) ≤ ξ1V(t−), t ∈ K . (13)

T0 =
2λ̃V

1
2

0
β V(t)−

1
2

[t0, t1)
Denote . Multiplying both sides of (12) with  and

integrating them over the interval , it follows that:
 

V(t)
1
2 ≤ V

1
2

0 −
β

2λ̃
(t− t0), t ∈ [t0, t1). (14)

t1 ≥ t0 +T0 V(t) ≤ V0,∀t ∈ [t0, t0 +T0)
V(t) ≡ 0,∀t ≥ t0 +T0 e(t)

s(t) = 0
T0 t1 ≤ t0 +T0 I0 ≥ 2 ξ1 > 1

If ,  then  we  have  and
,  that  is,  the  synchronization  error  system 

can reach the designed sliding surface  within the finite time
. If ,  it  implies that .  Since ,  with a similar

method as above, it can be deduced from (12)−(14) that
 

V(t)
1
2 ≤ ξ

1
2
1

[
V

1
2

0 −
β

2λ̃
(t1 − t0)

]
− β

2λ̃
(t− t1)

≤ ξ
1
2
1 V

1
2

0 −
β

2λ̃
(t− t0), t ∈ [t1, t2). (15)

Finally, we have
 

V(t)
1
2 ≤ ξ

1
2
1

[
V(tI0−2)

1
2 − β

2λ̃
(tI0−1 − tI0−2)

]
− β

2λ̃
(t− tI0−1)

≤ ξ
1
2 (I0−1)
1 V

1
2

0 −
β

2λ̃
(t− t0), t ∈ [tI0−1, tI0 ). (16)

V(t) ≤ ξI0−1
1 V0, ∀t ∈ [t0, T̃0) V(t) ≡ 0,∀t ≥ T̃0

e(t)
T̃0

e(t)
s(t) = 0

It is obvious that   and ,
that is, the system  can reach the designed sliding surface within
the  finite  time  under  the  SMC  law  (5).  Then,  it  is  not  hard  to
deduce from (13) that the synchronization error system  will still
maintain  on  the  surface  under  the  impulsive  disturbance.
Therefore,  it  turns  out  that  the  synchronization error  system (3)  can
reach the designed sliding surface (4) within a finite time and stay on
the surface, and the reaching-time is upper bounded by (8). ■

ṡ(t) = 0
Ue(t)

According to Theorem 1, when the states of synchronization error
system (3) slide along the designed sliding surface, from , we
obtain the equivalent controller  as follows:
 

Ue(t) = He(t)− (PD)−1PA f̃ (e(t))− (PD)−1PB f̃ (e(t−τ(t))). (17)
By substituting the equivalent controller (17) into the synchroniza-

tion  error  system  (3),  the  following  sliding  mode  dynamic  can  be
acquired:
 {

ė(t) = −C̃e(t)+ Ã f̃ (e(t))+ B̃ f̃ (e(t−τ(t))), t <K
e(t) = G̃e(t−), t ∈ K (18)

C̃=C−DH Ã = [I−D(PD)−1P]A B̃= [I−D(PD)−1P]Bwhere ,  and .
Next,  we  present  a  criteria  to  ensure  the  stability  of  the  synchro-

nization error system (3).  For this purpose, we consider the impulse

K2sequence  that satisfies the following condition:
 

N(t, T̃0) ≤ N0 +
t− T̃0

ℓ
, ∀t ≥ T̃0 ≥ 0 (19)

N(t, T̃0)
[T̃0, t] N0 ℓ
where  is  the  number  of  impulsive  points  on  the  interval

,  is a positive constant, and  is average dwell-time.
1 2

K
ℓ >

ln(2ϑξ2)
ε G̃

G̃T G̃ ≤ ξ2I ξ2 > 1

Theorem  2:  For  the  RNNs  (1)  and  (2),  if  Assumptions  and 
hold,  the  impulses  sequence  satisfies  the  condition  (19)  with  the
average  dwell-time ,  the  impulsive  strengths  matrices 
satisfy  with , and the matrices H satisfy
 

Ω = I−C̃+ 1
2
ÃÃT +

l̃2

4(1−µ) B̃B̃
T +

1
2

L2 < 0 (20)

then,  the  response  RNN  (2)  is  exponentially  synchronized  onto  the
drive RNN (1) under the SMC law (5).

Proof: Choose the Lyapunov function
 

V(t) =
1
2

eT (t)e(t)+
w t

t−τ(t)
eT (σ)e(σ)dσ. (21)

t <KThen, it can be easily seen that for ,
 

V̇(t) = eT (t)ė(t)+ eT (t)e(t)− (1− τ̇(t))eT (t−τ(t))e(t−τ(t))
≤ eT (t)(I−C̃)e(t)+ eT (t)Ã f̃ (e(t))+ eT (t)B̃
× f̃ (e(t−τ(t)))− (1−µ)eT (t−τ(t))e(t−τ(t)). (22)

Based on inequality technique and Assumption 2, we have
 

V̇(t) ≤eT (t)Ωe(t) ≤ −ζeT (t)e(t), t <K . (23)
ζ = λmin(−Ω) ϖ(t) = eε(t−T̃0)V(t)where . Letting , we obtains

 

ϖ̇(t) = εeε(t−T̃0)V(t)+ eε(t−T̃0)V̇(t)

= εeε(t−T̃0)
(

1
2

eT (t)e(t)+
w t

t−τ(t)
eT (σ)e(σ)dσ

)
− ζeε(t−T̃0)eT (t)e(t), t <K . (24)

[T̃0, t]By integrating (24) over the interval , we have
 

ϖ(t)−ϖ(T̃0) ≤ 1
2
ε
w t

T̃0
eε(ς−T̃0)eT (ς)e(ς)dς

+ε
w t

T̃0

w ς
ς−τ

eε(ς−T̃0)eT (σ)e(σ)dσdς

− ζ
w t

T̃0
eε(ς−T̃0)eT (ς)e(ς)dς, t ∈ [T̃0, tk) (25)

tk > T̃0 e(t)where  is the first  impulse point after the system  reaches
the designed sliding surface. Changing the order of integration yields
 w t

T̃0

w ς
ς−τ

eε(ς−T̃0)eT (σ)e(σ)dσdς ≤ τeετ
w T̃0

T̃0−τ
eT (σ)e(σ)dσ

+τeετ
w t

T̃0
eε(σ−T̃0)eT (σ)e(σ)dσ. (26)

Substituting (26) into (25), we have that for sufficiently small ε
 

ϖ(t) ≤ 1
2

eT (T̃0)e(T̃0 + (1+ετeετ)
w T̃0

T̃0−τ
eT (σ)e(σ)dσ, t ∈ [T̃0, tk).

(27)
As a result, there exists a positive constant ϑ such that

 

ϖ(t) ≤ϑeT (T̃0)e(T̃0), t ∈ [T̃0, tk) (28)
which leads to that
 

∥e(t)∥ ≤ϑ 1
2 e−

1
2 ε(t−T̃0)||e(T̃0)||, t ∈ [T̃0, tk). (29)

With a similar method as above, it can be deduced from (23) that
 

V(t) ≤ ϑe−ε(t−tk+ j−1)eT (tk+ j−1)e(tk+ j−1)

≤ ϑe−ε(t−tk+ j−1) ×2ξ2ϑe−ε(tk+ j−1−tk+ j−2)eT (tk+ j−2)e(tk+ j−2)

≤ ϑ(2ϑξ2) je−ε(t−T̃0)eT (T̃0)e(T̃0), t ∈ [tk+ j−1, tk+ j) (30)
j ∈ Z+ ∀t > tkwhere . From (19) and (30), it holds that for 

 

V(t) ≤ ϑ(2ϑξ2)N(t,T̃0)e−ε(t−T̃0)eT (T̃0)e(T̃0)

≤ ϑ(2ϑξ2)(N0+
t−T̃0
ℓ )e−ε(t−T̃0)eT (T̃0)e(T̃0)

= ϑeN0 ln(2ϑξ2)−(ε− ln(2ϑξ2)
ℓ )(t−T̃0)eT (T̃0)e(T̃0). (31)
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It can be deduced from (31) that
 

∥e(t)∥ ≤ϑ̃e−ε̃(t−T̃0)||e(T̃0)||, ∀t > tk (32)

ϑ̃ = ϑ
1
2 e

1
2 N0 ln(2ϑξ2) ε̃ = 1

2
(
ε− ln(2ϑξ2)

ℓ

)
where  and .  Thus,  we  finally
conclude  that  the  response  RNN  (2)  is  exponentially  synchronized
onto the drive RNN (1). ■

A =
[
−2.3 1
1.1 −1.8

]
, B =

[
2 −1
0 2

]
C =D = I

f1(x) = f2(x) = 1
2 (|x+1| − |x−1|)

0 ≤ τ(t) = 1[
∆x1(t)
∆x2(t)

]
=

[
−2.5

−2.5

] [
x1(t−)
x2(t−)

]
, t <K

K = {0.5i, i ∈ Z+}
x0 = [−2.5,3.2]T y0 = [1.25,−2.7]T t ∈ [−1,0]

Numerical  example: In  this  section,  a  numerical  example  is  pre-
sented.  Consider  the  drive-response  RNNs  (1)  and  (2)  with  the

parameters given by [2]: , ,

the neuron activation functions , and
the delay satisfies . The systems are subject to the impul-

sive  disturbances  as  where

. The initial  values of the RNNs (1) and (2) satisfy
 and  for ,  respectively.

Fig. 1 shows  the  simulation  results  for  the  synchronization  error
dynamics without control input. It is also observed that the response
RNN  (2)  without  control  input  can  not  be  synchronized  onto  the
drive RNN (1).

P = 1
2 I, H = −3I

β = 15

L = I γ = −0.9718 δ = 2 K
I0 = 5 i ≥ 5

ℓ = 0.5
ξ1 = ξ2 = 2.25

Choose  the  parameter  matrices  of  the  proposed
sliding  surface  function  (4),  and  the  parameter  of  the  pro-
posed  SMC  law  (5).  From  the  parameters  of  the  RNNs,  it  follows
that ,  and .  Then  the  impulses  sequence 
satisfies  the  condition  (6)  with ,  and  when  also  satisfies
the  condition  (19)  with .  In  addition,  the  conditions  (7)  and
(20)  hold,  and .  Therefore,  according  to  Theorems  1
and 2, the proposed SMC law can ensure that the response RNN (2)
is  synchronized  onto  the  drive  RNN  (1)  under  impulsive  disturba-
nces and time-varying delays. The simulation results appear in Fig. 2.

Conclusion: In this letter, we have shown how to design the SMC
law  to  guarantee  the  exponential  synchronization  of  the  drive-
response RNNs with impulsive disturbances and time-varying delays.
Firstly,  the  finite-time  reachability  of  the  designed  integral  sliding
surface  has  been guaranteed,  where  the  reaching-time of  the  sliding
surface is dependent on a class of impulse sequences, and the result-
ing sliding mode dynamic is modeled by a delayed impulsive nonlin-
ear  system.  Then,  some  sufficient  conditions  dependent  on  impulse
sequence have been deduced to ensure the exponential stability of the
resulting  sliding  mode  dynamic.  Lastly,  a  numerical  example  has
been presented to illustrate the effectiveness of the proposed results.
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Fig. 1. Simulation results for the synchronization error dynamics of the drive-
response RNNs (1) and (2) without control input.
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Fig. 2. Simulation results for the synchronization error dynamics of the drive-
response RNNs (1) and (2) with the SMC law (5).
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