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   Dear Editor,

With the development of automobile industry and artificial intelli-
gence  (AI)  domains,  autonomous  vehicles  (AVs)  are  becoming  a
reality  and  promise  to  revolutionize  human  mobility  [1]–[3].  The
decision-making  system  of  AVs  is  crucial,  which  is  typically
required  to  trade  off  multiple  competing  objectives.  For  example,
when  determining  driving  policies,  autonomous  electric  vehicles
(AEVs)  need  to  consider  two  conflicting  objectives:  transport  effi-
ciency  and  electricity  consumption.  As  one  of  state-of-the-art  AI
technologies,  reinforcement  learning  (RL)  has  demonstrated  its
potential  in  a  series  of  challenging  tasks.  Accordingly,  RL  has
attracted considerable attention from global researchers [4].

Many studies have employed various RL methods to learn the opti-
mal  driving  modes  (e.g.,  keeping,  acceleration  and  deceleration)  of
AVs. For instance, an entropy-constrained RL approach is developed
to enable AEVs to learn multi-modal driving policies in [5].

While  the  existing  methods  have  achieved  numerous  compelling
results, there are still various technical barriers to AVs. Firstly, many
real-world decision-making tasks have to trade off multiple conflict-
ing objectives.  Secondly,  user  preferences regarding multiple objec-
tives  may  change  with  driving  conditions.  For  example,  passengers
of  AEVs  typically  focus  more  on  travel  efficiency  than  on  energy
conservation. In contrast, when AEVs are about to run out of energy,
users  put  more  weight  on  energy  saving.  Hence,  we  should  attach
importance to  the multi-objective decision-making problem in AVs.
Several existing studies have attempted to tackle this challenge. One
popular scheme is to leverage a hierarchical architecture considering
personalized driving behaviours and multi-objective cost function [6]
and [7]. In such a method, the decision module is designed by com-
bining  game  theory  or  potential  field  with  personalized  driving
behaviours. Then, the control module is developed via model predic-
tive control (MPC) based on the multi-objective cost function.

The  aforementioned  approach  is  highly  interpretable;  however,
some challenges  remain.  First,  such  an  approach is  computationally
tricky for large state spaces, and its generalization to unseen cases is
intractable  to  guarantee,  since  it  requires  solving  an  optimization
problem  in  each  of  the  different  conditions.  Second,  such  an
approach cannot directly adapt to arbitrary user preferences, as it has
to  solve  a  new  optimization  problem  based  on  a  different  multi-
objective cost function when user preferences change. Consequently,
to address  these requirements,  the developed solution should satisfy
two aspects. On the one hand, learning-based methods are necessary
to allow trained policy models to handle previously unseen scenarios
without learning. On the other hand, the input to the policy model is
required  to  include  user  preferences  concerning  multiple  objectives,
which  aims  to  enable  the  trained  policy  model  to  directly  approxi-
mate  the  optimal  driving  policy  based  on  the  current  state  and  user

preferences.
Unlike  traditional  RL  that  optimizes  policies  via  a  single  scalar

reward,  multi-objective  RL  (MORL)  seeks  to  learn  the  Pareto  opti-
mal policies through combining a multi-objective reward vector with
user  preferences.  Although  a  small  number  of  researchers  have
employed MORL to cope with autonomous driving tasks [8] and [9],
they  cannot  provide  user-preference-conditioned  driving  policies
over  the  entire  preference  space  by  a  single  model.  Furthermore,
MORL  techniques  have  not  been  fully  explored  in  energy-aware
autonomous driving.

Here,  a  novel  MORL approach,  called  multi-objective  actor-critic
(MOAC), is proposed for user-preference-conditioned decision-mak-
ing  that  trades  off  the  energy  consumption  and  travel  efficiency  of
AEVs.  The  MOAC  algorithm  tries  to  train  a  single  model  that
approximates Pareto optimal policies over the entire user preference
space. Specifically,  the proposed MOAC method maximizes the dot
product  between  a  user  preference  and  a  vectorized  action-value
function,  enabling the  agent  to  learn  Pareto  optimal  policies.  At  the
same  time,  to  ensure  the  diversity  of  learned  policies  and  the  effi-
cient alignment between user preferences and corresponding optimal
policies, the MOAC algorithm minimizes the norm of the cross-prod-
uct between the user preference and the vectorized action-value func-
tion. The three stochastic dynamic traffic flows with different densi-
ties are carried out to assess the performance of the proposed method
in highway scenarios via simulation of urban mobility (SUMO) [10].
The  results  demonstrate  that  our  method  is  effective  and  surpasses
both classical and state-of-the-art baselines.
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Proposed methodology: Fig. 1 illustrates our user-preference-con-
ditioned decision-making framework of AEVs in highway scenarios.

, , ,  and  represent  the  state,  user  preference,
action,  multi-objective  reward  vector  and  user-preference-condi-
tioned policy at  the time step t,  respectively.  Moreover,  and 
indicate  the  optimal  policy  and  utility  function,  respectively.  Ego
vehicle  is  red,  and  it  is  an  AEV.  The  vehicles  of  other  colors  are
social  vehicles.  The  input  of  the  agent  contains  14  dimensions,  and
the detailed description is shown in Fig. 1. Its output is the continu-
ous longitudinal acceleration or deceleration of the ego vehicle.
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Fig. 1. Illustration of the proposed user-preference-conditioned decision-mak-
ing approach for AEVs in a highway scenario.
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U(·)
To  learn  the  optimal  user-preference-conditioned  policies,  we

design the utility function  as
 

U(s,a,ω) = ωT ·Qπ(s,a,ω)−α
∥∥∥ωT ×Qπ(s,a,ω)

∥∥∥ (1)
ω = [ω1, . . . ,ωk]T

ωk

R(s,a) = [r1, . . . ,rk]T rk

Qπ(s,a,ω) = [Qπ1, . . . ,Q
π
k ]T

Qπk (·) = E[
∑

t γ
trk(st,at)]

Qπk (·) Qπ(·)

where α is  a  weight.  represents  user  preference
vector.  corresponds  to  a  preference  across  one  objective. k
denotes  the  objective  number.  The  multi-objective  reward  function
vector  can  be  represented  as .  The  reward  is
scalar.  Moreover,  a  multi-objective  action-value  function  can  be
expressed  as ,  where  the  action-value
function  for  objective k is  represented  as .
Each  denotes one objective. Clearly, we expect  to be par-
allel to the user preference ω and its norm to be large.

π∗ ∈ argmaxπE[U(s,a,ω)]
Therefore, the Pareto optimal policy can be learned by solving the

problem .  The  proposed  MOAC  com-
prises  policy  evaluation  and  improvement,  and  these  two  learning
processes are optimized alternately until the policy converges.

ϕz z ∈ {1,2}

Multi-objective policy evaluation: Since the target and current net-
works are too similar to provide an independent estimation in actor-
critic,  our  MOAC  algorithm  employs  two  multi-objective  action-
value functions with network parameters ,  to improve the
performance  of  the  policy  model.  Additionally,  the  loss  function  of
multi-objective critic network can be defined as
 

J1
c (ϕz) = E

T s∼M

[∥∥∥y−Qπ(st,at,ωt;ϕz)
∥∥∥2

2

]
(2)

T s
M

where y represents the target vector,  and  denotes transition sam-
pled from replay memory .

π̂(st,ωt;θ) = π(st,ωt;θ)+
βδ

δ ∼ N(0,1) N(·)

The action with the parameterized deterministic policy and the ran-
dom noises  at  time step t is  represented  as 

, where θ is the parameter of multi-objective actor network, β is a
weight, δ denotes  random  noises, ,  and  denotes
Gaussian distribution.

The  minimum  estimation  between  two  target  multi-objective
action-value  functions  is  utilized  to  train  the  multi-objective  critic
network. The target vector at time step t can be written as
 

y = R(st,at)+γ min
z∈{1,2}

Q̂π
(
st, π̂(st,ωt;θ),ωt; ϕ̄z

)
(3)

γ ∈ (0,1) Q̂π(st,at,ωt; ϕ̄z)

ϕ̄z

where  denotes  a  discount  factor,  indicates
the  target  multi-objective  action-value  function  with  the  network
parameters .

ȳ
To further consider user preference in the learning process, a scalar

target  is developed as
 

ȳ = ωT R(st,at)+γ min
z∈{1,2}

ωT Q̂π
(
st, π̂(st,ωt;θ),ωt; ϕ̄z

)
. (4)

The second loss function for multi-objective critic network can be
designed as
 

J2
c (ϕz) = E

T s∼M

[∥∥∥ȳ−ωT Qπ(st,at,ωt;ϕz)
∥∥∥2

2

]
. (5)

Jc(ϕz) = 1
2

(
J1

c (ϕz)+ J2
c (ϕz)

)
ϕ̄z

ϕ̄z← ρϕ̄z + (1−ρ)ϕz ρ

Hence,  with (2)  and (5),  the parameters  of  multi-objective action-
value  functions  can  be  updated  by  minimizing  the  loss  function

.  Furthermore,  the  parameters  of  the
target multi-objective action-value functions can be updated through
Polyak  averaging ,  where  is  a  scale  factor
between 0 and 1.

Q̄π(s,a,ω)

Multi-objective  policy  improvement: The  policy  improvement
aims  to  optimize  and  update  the  policies.  The  average  multi-objec-
tive action-value function  is leveraged
 

Q̄π(·) = 1
2
[
Qπ
(
s, π̂(s,ω;θ),ω;ϕ1)+Qπ

(
s, π̂(s,ω;θ),ω;ϕ2)]. (6)

U(·)Hence, with (6), we can redefine the utility 
 

U(s,a,ω) = ωT · Q̄π(s,a,ω)−α
∥∥∥ωT × Q̄π(s,a,ω)

∥∥∥ . (7)
The Pareto optimal policy can be solved by maximizing the follow-

ing loss function of multi-objective actor network:
 

Ja(θ) = E
T s∼M

[
ωT · Q̄π(s,a,ω)−α

∥∥∥ωT × Q̄π(s,a,ω)
∥∥∥]. (8)

Algorithm 1 Reward Function Vector for Two Objectives

Input: State and action of the MORL agent.
r1(s,a) = v0/501: .　　　\\* Encourage agent to be more efficiency
r2(s,a) =max(0,1− e0/100)2: . 　\\* Encourage energy conservation

3: if Collision occurs then
r1(s,a) = r1(s,a)−0.504: 　 .　　　\\* Penalize collision
r2(s,a) = r2(s,a)−0.505: 　 .　　　\\* Penalize collision

6: end if
R(s,a) =

(
r1(s,a),r2(s,a)

)
Output: .

r1(s,a)
r2(s,a)

Algorithm 1 outlines the reward function vector that involves two
competing  objectives.  The  first  reward  corresponds  to  the
objective  concerning  travel  efficiency.  The  second  reward 
represents the objective regarding energy conservation. Furthermore,
if  the vehicle collides,  it  receives a penalty signal  that  penalizes the
unsafe  action.  The  MOAC  scheme  simultaneously  optimizes  these
two  conflicting  objectives  to  enable  the  autonomous  agent  to  learn
user-preference-conditioned Pareto optimal policies.

Pn Pl Ph

Pn Pl Ph

Results and discussions: Our evaluation is implemented to test the
performance  of  the  proposed  user-preference-conditioned  decision-
making approach for AEVs in highway scenarios. SUMO is adopted
to  create  three  highway  scenarios  with  the  stochastic  mixed  traffic
flows  based  on  different  densities. ,  and  are  leveraged  to
represent  the  probabilities  for  emitting  a  vehicle  each  second  in
stochastic  traffic  flows  based  on  normal,  low  and  high  densities,
respectively.  We  set ,  and  as  0.10,  0.20  and  0.30,  respec-
tively.

The MOAC algorithm and the baselines are assessed in both train-
ing and testing. The policy models of all the methods are trained and
tested in the stochastic traffic flow with the normal density. Addition-
ally, the mixed traffic flows with the low and high densities are only
utilized to test the performance of the trained policy models.

To benchmark the proposed approach, we set up comparisons with
the  classical  MORL  algorithm  with  the  weighted-sum  scalarization
[11] and the state-of-the-art envelope-MORL method [12]. Two clas-
sical  MORL  algorithms  are  implemented  by  combining  the
weighted-sum scalarization with the twin delayed deep deterministic
(TD3)  framework  [13].  The  first  classical  MORL  method  is  called
the  scalar  actor-based  multi-objective  TD3  (SA-MOTD3).  The  sec-
ond classical MORL scheme is named scalar actor-critic-based multi-
objective  TD3  (SAC-MOTD3).  The  envelope  multi-objective  TD3
(EMOTD3)  algorithm  is  developed  as  the  state-of-the-art  MORL
baseline  via  combinin  the  envelope-MORL  generalized  framework
with TD3.

Hypervolume  is  widely  leveraged  to  measure  the  optimality  and
convergence of Pareto optimal policies or solutions. For model train-
ing phase, these four algorithms are assessed by five random seeds in
the stochastic  mixed traffic  flows with  the  normal  density. Fig. 2(a)
demonstrates that the MOAC method outperforms the baselines with
a  large  margin,  both  in  terms  of  the  hypervolume  and  the  learning
efficiency.  The  solid  curve  represents  the  mean,  and  the  shaded
region indicates the standard deviation.  Moreover,  we can find that,
in contrast to the baselines, our MOAC algorithm converges rapidly
and steadily to the optimal hypervolume during training.

32.15% 71.62%
5.86%

The performance of the final policy models traind via SA-MOTD3,
SAC-MOTD3,  EMOTD3  and  MOAC  algorithms  are  evaluated  in
Table 1. To measure the hypervolume of the each policy, one policy
model  is  tested via  randomly sampling 500 preferences.  The results
demonstrate  that  our  MOAC  agent  outperforms  all  the  baselines  in
three highway scenarios  based on the stochastic  mixed traffic  flows
with  different  densities.  For  example,  in  comparison  with  SA-
MOTD3,  SAC-MOTD3  and  EMOTD3  agents,  the  hypervolume
based  on  the  MOAC  agent  is  enhanced  by  about , 
and  respectively, in the mixed traffic flows with high density.

Figs. 2(b)  and 2(c)  visually  illustrates  the  quality  of  the  Pareto
fronts found by the single models trained via the different algorithms
in the mixed traffic flows with low and high densities.  It  is  obvious
that  the  proposed  MOAC  technique  can  find  more  Pareto  optimal
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policies than the three baselines.
Fig. 3 illustrates the performance of our MOAC autonomous driv-

ing  agent  under  different  user  preferences  in  the  stochastic  mixed
traffic flows with normal density. Here vectors are leveraged to rep-
resent user preferences in this work. The first and second elements of
the  user  preference  vector  denote  trade-offs  for  transport  efficiency
and energy conservation, respectively. It  can be found that the elec-
tricity consumption of the ego vehicle is smaller when the preference
concerning energy conservation is larger.
 

Mixed traffic flow with normal density
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Fig. 3. The average energy consumption of our autonomous driving agent.
 

= [0.5,0.5]

1.07×10−4 3.28×10−2

We implement  the  comparison in  terms of  computational  cost  for
the MOAC and MPC methods. Under the user preference 
and  the  normal-density  traffic  flows,  the  computational  time  of  the
MOAC and MPC schemes are about  s and  s
respectively.  This  is  because  our  trained  model  no  longer  requests
updating  the  model  parameters  in  the  test,  while  the  MPC  method
needs to solve an optimization problem at each time step.

Conclusion: The results demonstrate that the MOAC autonomous
driving  agent  can  make  driving  decisions  considering  user  prefer-
ences in the highway scenarios with three different  traffic  densities.
Specifically, our agent is capable of trading off the energy and speed
of AEVs according to user preferences to determine the optimal user-
preference-conditioned  driving  policies.  Additionally,  the  MOAC
agent shows superior performance in contrast to the three baselines.
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Table 1.  Hypervolume of Different Agents in Different Traffic Flows
Method Low density Normal density High density

SA-MOTD3 91.06 ± 37.17 104.83 ± 18.76 93.84 ± 28.06
SAC-MOTD3 85.29 ± 53.00 80.27 ± 55.16 72.26 ± 52.60

EMOTD3 118.00 ± 10.20 116.53 ± 8.51 117.15 ± 3.19
MOAC 123.50 ±7.76 126.73 ± 4.33 124.01 ± 6.76
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Fig. 2. Evaluation of our method and the baselines. (a) The learning curves of the different agents; (b) and (c) Pareto fronts obtained by the different models.
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