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   Dear Editor,

In recent  decades,  owing to the significance of  sampled-data con-
trol way on reducing the burden of communication transmission and
improving  the  control  capability  of  networked  control  systems,  the
research of sampled-data systems has become increasingly important
(see [1]–[5]).

For  the  basic  stability  problem  of  linear  sampled-data  systems,
there  are  two  popular  methods  recently,  including  the  looped-func-
tional  method  and  the  discontinuous  Lyapunov  functional  method.
On one hand, the looped-functional method was firstly introduced by
[4]. Then, [6] combined Wirtinger’s inequality to further improve the
results.  Afterwards,  Zeng et  al.  [5]  provided  a  two-sided  looped-
functional, which efficiently improved the previous functionals. Shao
et  al.  [7],  [8]  obtained novel  stability  criteria  based on new looped-
functionals.  And Park  and  Park  [9]  extended  the  looped-functionals
without requiring them to be always continuous. On the other hand,
the  discontinuous  Lyapunov  functional  method  was  introduced  by
[10]  for  the  stability  of  sampled-data  systems.  Later,  Lee  and  Park
[11] provided free-matrix-based discontinuous Lyapunov functional.
And our latest study [12] also dedicated to extend the two methods.

V(t)
V(tk) = 0 tk

Vd(t)
Vd(tk) = 0 Vd(t) ≥ 0 t , tk

V(t) V̇(t) < 0 V(t)

V1(t) V2(t)
V1(t−k+1)−V2(t+k ) > 0 V1(t+k+1) = V2(t−k ) = 0

V̇(t) < 0 V(t)

The above two methods played important roles in the stability anal-
ysis  of  sampled-data  systems,  and  they  were  also  combined  to  fur-
ther solve more complex problems (see [13]–[15]). But, after obser-
vation,  the  two  well-used  methods  are  both  with  strict  formal  con-
straints, in details, the looped-functional terms of  are required to
be  continuous  and  at  sampling  instants  or  equivalent
conditions, and the discontinuous Lyapunov functional terms of 
have  to  satisfy  and  when .  And  the  meth-
ods  are  based  on  the  functional  being  to  ensure 
decreasing. These strict conditions not only bring conservatism to the
obtained  results,  but  also  hinder  the  further  improvements  of  the
methods.  Recently,  although Park et  al.  [9],  [12] tried to extend the
two methods through requiring the new terms  and  to sat-
isfy  and , they still did not
deeply extend and improve the previous methods,  and did not  relax
the condition  through considering the discontinuity of .
Therefore,  it  is  difficult  but  necessary  to  propose  a  new  method  to
relax the above critical conditions of ensuring functionals decreasing,
and then obtain improved results.

V̇(t) < 0

Based  on  the  above  discussion,  for  the  stability  of  sampled-data
systems,  the  letter  presents  a  semi-looped-functional  method  with
relaxed constrain,  which extends and improves  the  recent  two com-
mon methods. Especially, the study does not require the functional to
satisfy  through considering its  discontinuity.  Thus,  the new
method flexibly  leads  to  less  conservative  results.  Numerical  exam-
ples  verify  the  effectiveness  and superiority  of  the  new method and
results.

Rn

Rn×m n×m
∗ ε

µ1 µ2 col{µ1,µ2} = [µT
1 ,µ

T
2 ]T

Sym(X) = X+XT diag{X,Y} =
[
X 0
0 Y

]
V(t) V(t−k ) = limt→t−k

V(t) V(t+k ) = limt→t+k
V(t)

Notations: In the letter,  represents the n-dimensional Euclidean
space,  denotes  the  set  of  all -dimensional  real  matrices.
“ ” denotes symmetric term in matrix, “ ” means a sufficiently small
positive  scalar.  For  vectors  and , .  For

square matrices X and Y, , and .
For functional ,  and .

Problem  formulation  and  main  method: Consider  linear  sam-
pled-data system
 

ẋ(t) = Ax(t)+Asx(tk), t ∈ [tk, tk+1) (1)
x(t) ∈ Rn As ∈ Rn×n

tk(k = 0,1, . . .) tk+1 − tk = hk ∈ [hl,hu]
hl hu 0 ≤ hl ≤ hu

hk(k = 0,1, . . .)

where  is the state, A and  are known matrices, and
sampling instants  satisfy , where
known scalars  and  satisfy ,  and represent  the  lower
and  upper  bounds  of  the  sampling  intervals ,  respec-
tively.  Therefore,  the  system  (1)  can  be  with  constant  or  aperiodic
sampling.

The  following  Lemma  1  equivalently  transforms  the  asymptotic
stability of the system (1).

Lemma 1: For the system (1),  the following two situations 1) and
2) are equivalent.

1) The system (1) is asymptotically stable;
x(tk)2) The sampling state  asymptotically tends to 0.

[tk, tk+1) x(t)
x(tk)

Proof:  From the  situation  1),  it  is  easy  to  get  2).  Considering  the
uniform boundedness of the transfer function of the system (1) over

, it is obtained that  asymptotically tends to 0 if sampled-
data  state  asymptotically  tends  to  0  as  in  [4].  Thus,  1)  is
obtained from 2). ■

The  following  Lemma  2  provides  a  theoretical  basis  for  the
improved functional compared with [5]–[7] and [9].

x(t)
V0(t) t ∈ (tk, tk+1)

Lemma 2: For non-zero state , define differentiable and contin-
uous function  for . The following two statements 1)
and 2) are equivalent.

V0(t)
tk tk+1

1) The function  is decreasing between the adjacent sampling
instants  and , i.e.,
 

△Vk
0 := V0(tk+1)−V0(tk) < 0.

V(t)
t ∈ (tk, tk+1)

2)  There  exists  functional  which  is  continuous  and  differen-
tiable when  such that
 

hkV̇(t) < (V(t−k+1)−V(t+k ))− (V0(tk+1)−V0(tk)). (2)
V0(t)

ς1 ς2

Moreover,  if  1)  or  2)  is  satisfied  and  for  there  are  positive
scalars ,  and q such that
 

ς1|x(t)|q ≤ V0(t) ≤ ς2|x(t)|q, ∀x(t) ∈ Rn, t ≥ t0 (3)
then the system (1) is asymptotically stable.

V(t) = − t
hk
△Vk

0
t ∈ (tk, tk+1) V̇(t) = − 1

hk
△Vk

0 (V(t−k+1)−V(t+k ))− (V0(tk+1)−
V0(tk)) = −2△Vk

0 △Vk
0 < 0

Proof: Assume 1) being satisfied. Then, we set  for
, and get  and 

. Consider , so 2) is satisfied.

(tk, tk+1) V0(tk+1)−V0(tk) < 0
Assume 2) being satisfied. Integrate both sides of (2) with respect

to t over , then we get , that is, 1) being
satisfied. Thus, 1) and 2) are equivalent.

For  system (1),  1)  is  a  sufficient  condition  for  the  situation  2)  of
Lemma 1 under (3). According to Lemma 1, considering the equiva-
lence between 1) and 2) in Lemma 2, we know that if 1) or 2) is satis-
fied, the system (1) is asymptotically stable. ■

For simplicity, the following concise expressions are used:
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d1(t) = t− tk, d2(t) = tk+1 − t

χ1(t) =
1

d1(t)

w t

tk
x(s)ds, χ2(t) =

1
d2(t)

w tk+1

t
x(s)ds

χ0 = χ1(tk+1) = χ2(tk)
χ3(t) = x(t)− x(tk), χ4(t) = x(tk+1)− x(t)
ζ1(t) = col {x(t), x(tk), x(tk+1)} , ζ2(t) = col {x(tk), x(tk+1)}
η(t) = col {x(t), x(tk),χ1(t), x(tk+1),χ2(t),χ0}
eκ = [0n×(κ−1)n, In,0n×(6−κ)n], κ = 1,2, ...,6

es = Ae1 +Ase2, ET
1 =
[
eT

2 ,e
T
4

]
, E2 = e1 − e2

E3 = e4 − e1, ET
4 =
[
eT

1 ,e
T
2 ,e

T
3

]
, E5 = e1 + e2 −2e3

ET
6 =
[
eT

4 ,e
T
1 ,e

T
5

]
, E7 = e4 + e1 −2e5, E8 = Ae3 +Ase2

E9 = Ae5 +Ase2, ET
10 =
[
eT

1 ,e
T
2 ,e

T
3 ,e

T
4 ,e

T
5

]
.

P, R1, R2, Y1, Y3, Y4, S 1, S 2,
S 3, S 4, H1, X Y2, H2, H3, Z

V(t)

Lemma  3:  For  symmetric  matrices  
,  matrices ,  define  the  following  semi-

looped-functional  for the system (1):
 

V(t) =
{V0(t), t = tk
V0(t)+V1(t)+V2(t)+V3(t), t , tk

(4)

where
 

V0(t) = xT (t)Px(t)

V1(t) = d1(t)xT (t) [Y1,2Y2]ζ1(t)+d1(t)χT
1 (t)Y3d1(t)χ1(t)

+d1(t)χT
1 (t)Y4χ1(t)+χT

3 (t)(huS 1 +hlS 3)χ3(t)

V2(t) = −d2(t)xT (t) [H1,2H2]ζ1(t)−2xT (t)H3d2(t)χ2(t)

−χT
4 (t)(huS 2 +hlS 4)χ4(t)

V3(t) = 2χT
3 (t)Zχ4(t)+d1(t)d2(t)ζT2 (t)Xζ2(t)

+d2(t)
w t

tk
ẋT (s)R1 ẋ(s)ds−d1(t)

w tk+1

t
ẋT (s)R2 ẋ(s)ds.

If there is
 

hkV̇(t) < V1(t−k+1)−V2(t+k ) (5)
t ∈ (tk, tk+1) V0(tk) > V0(tk+1)when , then .

V1(t+k ) = V3(t+k ) = V2(t−k+1) = V3(t−k+1) = 0 V0(t)
(V(t−k+1)−V0(tk+1))− (V(t+k )−V0(tk)) =

V1(t−k+1)−V2(t+k ).

Proof:  From  and 
being  continuous,  there  is 

 So if (5) holds, then,
 

hkV̇(t) < (V(t−k+1)−V(t+k ))− (V0(tk+1)−V0(tk)). (6)
V0(tk) > V0(tk+1)From (6) and Lemma 2, we deduce .

V(t) V(tk) > V(tk+1) V0(tk) > V0(tk+1)
V̇(t) < 0 V(t) V1(t) V2(t)

V1(t+k ) = 0 V1(t−k+1) , 0 V2(t+k ) , 0 V2(t−k+1) = 0 V(t)

As Fig. 1,  satisfies  (i.e., ) and
is  not  required .  In ,  new  term  or  satisfies

,  or , ,  so  is called
semi-looped-functional. ■

(V(t−k+1)−
V(t+k ))− (V0(tk+1)−V0(tk)) > 0 V1(t+k ) =
0 V1(t−k+1) ≥ 0 V2(t+k ) ≤ 0 V2(t−k+1) = 0

V(t)
V(tk) = 0 Vd(t)

Vd(tk) = 0 Vd(t) ≥ 0 t , tk
V(t) V1(t−k+1)−V2(t+k ) >

hkV̇(t) (V(t−k+1)−V(t+k ))− (V0(tk+1)−V0(tk)) > hkV̇(t)
V(tk) > V(tk+1) V1(t−k+1) = 0 V2(t+k ) = 0 V1(t)
V2(t) V1(t−k+1)−V2(t+k ) >
0 V1(t) V2(t)

Remark 1: The extended looped-functionals in [9] satisfy 
, and the terms in [12] is with 

,  or , .  These  terms  extend  the
common  looped-functional  terms  (being  continuous  and

) in [4]–[7] and discontinuous functional terms  (satis-
fying  and  when ) in [10], [11]. Further, the
semi-looped-functional  merely  require 

 (i.e., )  to ensure
.  And  if  set  or ,  then  or

 degenerates into looped-functional term; if set 
,  then  and  degenerate  into  extended  looped-functional

terms.  Thus,  the new method constructs  a  flexible functional,  and it
further extends and improves the previous methods.

V(t)
V1(t) V2(t) V1(t−k+1)−V2(t+k ) > 0

(V(t−k+1)−V(t+k ))− (V0(tk+1)−V0(tk)) > 0
V̇(t) < 0

V1(t−k+1)−V2(t+k ) > 0

Remark 2: The previous methods usually require functionals to be
derivative  negative  definite  as  in  [4]–[12],  while  we  do  not  require
such a  condition through considering the discontinuities  of .  As
in  [9]  and  [12],  the  terms  and  with 
(equivalent to ) already lead
to  improved  results,  then  (5)  is  more  relaxed  than ,  and  we
even do not require . Therefore, we improve the

V̇(t) < 0
V(t)

results through relaxing the requirement  in view of the dis-
continuity of .

V1(t) V2(t)
V1(t−k+1) V2(t+k )

V1(t−k+1) ≥ 0 V2(t+k ) ≤ 0
hkV̇(t) < V1(t−k+1)−V2(t+k )

V1(t) V2(t) V̇(t) V1(t−k+1) ≥ 0 V2(t+k ) ≤ 0
V̇(t) < 0

Remark 3: Both terms  and  are novelly selected as asym-
metric,  so  and  are  asymmetric.  Thus,  our  previous
method  in  [12]  can  not  directly  ensure  and ,
while the new method ensures  by the cooper-
ation  of ,  and .  And  setting , ,

, the new method is reduced to being similar to the method in
[12].

Main results: Now we provide the main results based on the new
method.

hl hu

P,R1,R2 ∈ Rn×n Y1,Y3,Y4,H1,S 1,S 2,S 3,
S 4 ∈ Rn×n X ∈ R2n×2n Y2,H2 ∈ Rn×2n H3,Z ∈ Rn×n

Nι ∈ R3n×n ι = 1,2,3,4 W1,W2 ∈ R5n×n

Theorem  1:  Given  positive  scalars  and ,  the  system  (1)  is
asymptotically stable if there exist positive definite symmetric matri-
ces ,  symmetric  matrices 

, ,  matrices , ,
( ), , such that

 

S 1 +S 2 >0,S 3 +S 4 < 0 (7)
 [

Σ(tk)−Λ
√

hkΩ2
∗ −R2

]
<0,
[
Σ(tk+1)−Λ

√
hkΩ1

∗ −R1

]
< 0 (8)

where
 

Σ(θ) = Φ0 +Φ1(θ)+Φ2(θ)+Φ3(θ)+Φ4(θ)

Φ0 = Sym{eT
1 Pes}

Φ1(θ) = Sym{eT
1 Y2E1 + eT

1 Y4e3 + eT
s (huS 1 +hlS 3)E2}

+d1(θ)Sym{eT
s Y1e1 + eT

s Y2E1 + eT
1 Y3e3}

+ eT
1 Y1e1 − eT

3 Y4e3

Φ2(θ) = Sym{eT
1 H2E1 + eT

1 H3e1 + eT
s (huS 2 +hlS 4)E3}

−d2(θ)Sym{eT
s H1e1 + eT

s H2E1 + eT
s H3e5}+ eT

1 H1e1

Φ3(θ) = Sym{eT
s ZE3 −ET

2 Zes +ET
4 N1E2 +ET

4 N2E5

+ET
6 N3E3 +ET

6 N4E7}+ [d2(θ)−d1(θ)]ET
1 XE1

+d2(θ)eT
s R1es +d1(θ)eT

s R2es

Φ4(θ) = Sym
{
d1(θ)ET

10W1E8 −ET
10W1E2 +d2(θ)ET

10W2E9

−ET
10W2E3

}
Λ = Sym{eT

4 Y2E1 + eT
2 H2E1 + eT

2 H3e6}
+ eT

4 Y1e4 +hkeT
6 Y3e6 + eT

6 Y4e6 + eT
2 H1e2

+ (e4 − e2)T (S 1 +S 2 +S 3 +S 4)(e4 − e2)

Ω2 = [ET
6 N3,ET

6 N4], R2 = diag{R2,3R2}
Ω1 = [ET

4 N1,ET
4 N2], R1 = diag{R1,3R1}

hk hl huand  in (8) is replaced by  and  successively.
V(t)

V(t) t ∈ (tk, tk+1)
Proof:  Choose  the  semi-looped-functional  in  (4).  Taking  the

derivative of  for  yields 

V̇(t) = V̇0(t)+ V̇1(t)+ V̇2(t)+ V̇3(t). (9)
V̇3(t)Through Wirtinger’s inequality as in [6], we know in 

 

−
w t

tk
ẋT (s)R1 ẋ(s)ds ≤ d1(t)ηT (t)Ω1R−1

1 Ω
T
1 η(t)

+ ηT (t)Sym{ET
4 N1E2 +ET

4 N2E5}η(t) (10)
 

 

0
t0

…

…

…
…

tk − 1 tk tk + 1 tk + 2 t

V(t)

 
V(t)Fig. 1. Schematic illustration of semi-looped-functional .
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−
w tk+1

t
ẋT (s)R2 ẋ(s)ds ≤ d2(t)ηT (t)Ω2R−1

2 Ω
T
2 η(t)

+ηT (t)Sym{ET
6 N3E3 +ET

6 N4E7}η(t). (11)
tk tk+1From integrating (1) from  to t and t to , there is

 

0 = 2ηT (t)ET
10W1(d1(t)E8 −E2)η(t) (12)

 

0 = 2ηT (t)ET
10W2(d2(t)E9 −E3)η(t). (13)

Combining (9)−(13), we deduce
 

V̇(t) ≤ ηT (t)Ψ(t)η(t) (14)
Ψ(t) = Σ(t)+d1(t)Ω1R−1

1 Ω
T
1 +d2(t)Ω2R−1

2 Ω
T
2where .
ΛBesides, considering (7), from the definition of , we know

 

V1(t−k+1)−V2(t+k ) ≥ hkη
T (t)Λη(t). (15)

Ψ(t)−Λ < 0Based on (14) and (15),  ensures
 

hkV̇(t) < V1(t−k+1)−V2(t+k ). (16)
Ψ(t)−Λ < 0 t ∈ (tk, tk+1)

Ψ(tk)−Λ < 0 Ψ(tk+1)−Λ < 0

hk ∈ [hl,hu] hk hl hu

Through  convex  combination,  holds  for 
when  and , which are guaranteed by (8)
based on Schur complement. And through convex combination, (8) is
ensured for  by replacing  with  and  successively.

V0(tk) > V0(tk+1)
V0(tk) = xT (tk)Px(tk) > 0

From (16) and Lemma 3, there is . And because of
,  according  to  Lemma  2,  the  system  (1)  is

asymptotically stable. ■
S 3 = S 4 = −εIn Y3 = Y4 = H3 = 0

(e4 − e2)T (S 1 +S 2)(e4 − e2) Λ

huS 1 = T̃1, huS 2 = T̃3, Y1 =

Sym(Q̃3
1 + Q̃4

1), H1=Sym(Q̃1
1 + Q̃2

1), Y2=

[
Q̃3

2 − Q̃3
1

Q̃4
2 − Q̃3

1 −2Q̃4
1

]
, H2=

[
Q̃1

2 −2Q̃1
1 − Q̃2

1
Q̃2

2 − Q̃2
1

]
,

Z = Z̃+2T̃2 T̃2, Q̃v
1, Q̃

v
2, Z̃ ∈ R

n×n(v = 1,2,3,4)
T̃1, T̃3 ∈ Rn×n

Remark 4: Theorem 1 is with less conservativeness. In Theorem 1,
let , ,  and  remove  positive  definite

 in  to tighten (8), then Theorem 1 deg-
enerates into being equivalent to the simplified Theorem 1 of [9] with
Wirtinger’s  inequality.  This  shows  that  Theorem  1  is  with  relaxed
LMIs to more effectively describe the stability of the system (1).  In
details, after the above operations, setting 

and ,  where  are  any
matrices and   are any symmetric matrices, Theorem 1 is
reduced  to  that  of  [9].  Thus,  compared  with  [9]  based  on  the
extended  looped-functional,  Theorem  1  based  on  the  semi-looped-
functional  reduces  conservatism  and  provides  a  simplified  result.
And considering that [4]–[7], [12] and [16] also use the looped-func-
tional method, the new method is also able to be combined with these
results to lead to improvements.

We also provide Corollary 1 to demonstrate the new method.
hl hu

P, R1, R2 Y1, Y3, Y4, H1,X Y2,
H2, H3, Z, Nι(ι = 1,2,3,4), W1, W2

Corollary  1:  Given  positive  scalars  and ,  the  system  (1)  is
asymptotically stable if there exist positive definite symmetric matri-
ces ,  symmetric  matrices ,  matrices 

, such that
 [
Σ̂(tk)− Λ̂

√
hkΩ2

∗ −R2

]
< 0,

[
Σ̂(tk+1)− Λ̂

√
hkΩ1

∗ −R1

]
< 0 (17)

Σ̂(θ) = Φ0 +Φ̂1(θ)+Φ̂2(θ)+Φ3(θ)+Φ4(θ) Φ0, Φ3, Φ4,

Ω2, Ω1, R2, R1 Φ̂1, Φ̂2, Λ̂ Φ1, Φ2, Λ
S 1, S 2, S 3, S 4 hk

hl hu

where ,  and 
 are as in Theorem 1,  are as  in

Theorem  1  without  the  terms  related  to  ,  and  in
(17) is replaced by  and  successively.

S 1 = S 2 = εIn S 3 = S 4 = −εInProof:  Letting  and  in  Theorem  1,
Corollary 1 is obtained. ■
Y3 = Y4 = H3 = 0

Y1, H1, Y2, H2

Remark  5:  Corollary  1  is  also  with  less  conservatism.  Letting
,  Corollary  1  degenerates  into  being  equivalent  to

the  simplified  Theorem  1  of  [5]  with  Wirtinger’s  inequality.  In
details,  after  the  above  operations,  setting  as  in
Remark 4, Corollary 1 is reduced to that of [5]. Thus, compared with
[5]  based  on  the  two-sided  looped-functional,  Corollary  1  reduces
conservativeness and simplifies result.

Remark 6: Based on the semi-looped-functional method, Theorem 1
and Corollary 1 provide improved stability results for the system (1).
To  simply  and  clearly  demonstrate  the  new  method,  the  method  is
combined with well-used Wirtinger’s inequality in [6] and its corre-
sponding single integral (12) and (13). The method can also be com-
bined with the latest technologies to be further improved, for exam-

ple  free-matrix-based  inequality  and  its  corresponding  double  inte-
gral equations in [5], N-order canonical Bessel-Legendre inequalities
and  their  corresponding  integral  equations  in  [16],  the  relaxed  inte-
gral  inequalities in [17],  more extended terms in [9],  and other effi-
cient  technologies  in  [8],  [11]  and  [12].  Besides,  the  functional  can
also be augmented to further lead to better results.

Numerical  examples: We  provide  two  examples  to  verify  the
method and results.

A =
[
−2 0
0 −0.9

]
, As =

[
−1 0
−1 −1

]
.Example 1 [5]: 

hl = 10−5

hl
hum

Consider system (1) with the above matrices, which is assumed to
be with aperiodic sampling and .  There is a fact that accu-
rate sampling interval range of stable system reflects good effective-
ness of stability condition. So under fixed ,  larger maximum sam-
pling  upper  bound  of  stable  system  represents  better  effective-
ness of methods and results.

hum

hum

Table 1 presents  each  obtained  by  Corollary  1  and  the  litera-
ture (here we provide Corollary 1 with constrains in Remark 3 to rep-
resent  [12],  and  represent  [5]  and  [9]  by  their  Theorems  1  with
Wirtinger’s inequality, and so is in Example 2). From Table 1, Corol-
lary 1 achieves the most accurate , which shows that our result is
the least conservative.
 

hum hl = 10−5Table 1.  Maximum Aperiodic Sampling Upper Bounds  Under 

Results hum Numbers of decision variables

[4] 2.5156 5n2 +2n

[6] 2.5156 12n2 +3n

[7] 2.5199 24n2 +3n

[11] 2.8554 36n2 +6n

[12] 2.9765 30.5n2 +3.5n

[9] 3.0621 36.5n2 +2.5n

[5] 3.0621 34.5n2 +1.5n

Corollary 1 3.0735 33.5n2 +3.5n
 
 

A =
[
−1 −1
−1 −2

]
, As =

[
0 0
−1 −2

]
.Example 2 [12]: 

hl = 0
hum

The  system  is  with  aperiodic  sampling  and . Table 2 lists
each  calculated by various latest results. Compared with the oth-
ers, Theorem 1 and Corollary 1 are the least conservative, which still
be effective for large sampling intervals.
 

hum hl = 0Table 2.  Maximum Aperiodic Sampling Upper Bounds  UNDER 

Results hum Numbers of decision variables

[7] 2.09 24n2 +3n

[11] 2.18 36n2 +6n

[12] 3.04 30.5n2 +3.5n

[5] 3.99 34.5n2 +1.5n

[9] 3.99 36.5n2 +2.5n

Corollary 1 4.91 33.5n2 +3.5n

Theorem 1 5.21 35.5n2 +5.5n
 
 

The above examples are used to numerically verify the theoretical
improvements of Theorem 1 and Corollary 1 compared with [5] and
[9] as in Remarks 4 and 5. And compared with some other previous
results, although the computational complexity increases, our results
obtain obviously better effectiveness.

Conclusion: The letter  provides  a  semi-looped-functional  method
for  the  stability  of  sampled-data  systems,  which  extends  and  imp-
roves the previous methods. Importantly, the method does not require
the functional to be derivative negative definite through its disconti-
nuity.  The new method therefore  leads  to  less  conservative  stability
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results compared with the literature. Two examples clearly show the
effectiveness and improvements of the provided method and results.
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